BIO 206L

Laboratory Experiments in Biology: Structure and Function of Organisms

Course Syllabus: SPRING 2006

Instructors: Drs. A. W. Allen, A. Lloyd, and W. Thompson
Laboratory Supervisor: Delia Brownson

<table>
<thead>
<tr>
<th>LAB #</th>
<th>LECTURE DATE</th>
<th>Lab Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>JAN. 23</td>
<td>Introduction to the Laboratory</td>
</tr>
</tbody>
</table>
| 02 | JAN. 30 | Techniques of Microscopy I
 Bright field
 Phase contrast |
| 03 | FEB. 06 | Techniques of Microscopy II
 Fluorescence |
| 04 | FEB. 13 | Representative invertebrates: Anatomy of the Crayfish (*Procambarus simulans*), ghost shrimp, (*Palaemonetes sp.*) and amphipoda
 Paramecium Digestion |
| 05* | FEB. 20 | Physiology of the Crayfish, (*Procambarus sp.*)
 Human Cardiovascular Physiology
 Living Circulation in the gold fish (*Carassius auratus*) |
| 06 | FEB. 27 | Urchin (*Arbacia punculata*) & Chick (*Gallus domesticus*) reproduction and development
 Fungal Reproduction Lab (*Phycomyces blakesleeanus*) |
| 07* | MAR. 06 | Bacterial Transformation (*Escherichia coli*)
 Development lab (*Arabidopsis thaliana*) |
| | MAR. 13-17 | **SPRING BREAK** |
| 08 | MAR. 20 | Representative vertebrate: Anatomy of the Rat (*Rattus norvegicus*) |
| 09* | MAR. 27 | Dominance Behavior of the Common Cricket (*Gryllus domesticus*) |
| 10* | APR. 03 | Nest Recognition in the Harvester Ant (*Pogonomyremex barbatus*) |
| 11* | APR. 10 | Plant Transpiration from the bean leaf (*Phaseolus vulgaris*) |
| 12 | APR. 17 | Introduction to Neurophysiology Labs |
| 13 | APR. 24 | Frog Sciatic Nerve |
| 14 | MAY 01 | Frog Nerve/muscle |
| | MAY 10-16 | **FINAL EXAMS** |

These labs are choices for preparation of formal lab reports.
LABORATORY EXPERIMENTS IN BIOLOGY: STRUCTURE AND FUNCTION OF ORGANISMS

Introduction

Bio 206 deals with the structure and function of organisms. Obviously this covers a vast amount of information. It is impossible to treat this much material in depth in a single semester course. Therefore, we shall emphasize certain things that we consider to illustrate important biological principles. You will be exposed to a diversity of biological material, mainly in an experimental rather than a descriptive context. You should be enrolled in Bio 214 or BIO 311D (or have taken one or the other already) in order to take Bio 206L. If this is not the case you should consult one of the instructors as soon as possible.

During this course you will conduct exercises that illustrate some of the relationships between structure and function in organisms. You will write lab reports explaining your observations as well as their significance.

You are required to attend lecture meetings associated with this course. They provide an important introduction/background for the lab exercises.

You should read each exercise before coming to lab. You should check the bulletin board outside of Painter 1.04 each week for special announcements concerning exams, review sessions, changes in deadlines, etc.

Do not begin any lab work until instructed to do so by your Laboratory Instructor; in some cases there will be additional instructions, altered procedures, or special precautions that must be explained first.

Always label materials that you are working with. In most cases you will use a short piece of white label tape (1.5 to 2 inches long) to make a label. A complete label has the following information: Name (or initials), Date, Exact contents, Experiment designation, & lab number.
Textbooks

The required texts for Bio 206 are the lab manual: *Laboratory Experiments in Biology: Structure and Function of Organisms* printed by the University CO-OP and the *Photo Atlas for Biology, 1st ed. (1996)* by Perry and Morton. An optional text, *Biology: Concepts and Applications 6th ed. (2006)* by Cecie Starr is recommended for students who do not have a biology text to use as a background reference. All text page references in the manual refer to either the Perry and Morton or Cecie Starr texts.

Supplemental reference material will be on reserve in the Life Sciences Library (MAI 220). Included in this material will be sample articles, books, and a guide to provide you with information to help you write your major lab reports.

Additional Requirements

By the second lecture on January 30, all students need to purchase an individual response pad from the bookstore (UT CO-OP). Along with the pad itself, you will purchase an enrollment code. Students are responsible for registering their response pad online under the unique number for which they have registered. Be sure to use your UTEID as your identification number! Students are required to bring their response pad to every lecture since your participation grade will depend upon your individual responses on the wireless cps system used in the lecture.

For more information on the wireless cps system is available online at the following address: <http://www.ph.utexas.edu/~ctalk/>

Online Facilities

CLASS WEBSITE
Copies of handouts, class announcements, and additional material and photographs from class can be found on the class web page. Passwords are presently not needed for this site, but will be made available to students if protected sections are created.

<http://cluster3.biosci.utexas.edu/courses/bio206/>

eGRADEBOOK
All student grades will be available for individual inspection on eGradeBook. Access your class grades on eGradeBook via UT Direct. You need your UT EID in order to access your UT Direct site. Once you are on UT Direct, you should find the unique number for the BIO 206L section for which you registered. This will be your link to your grades.
Grading

Your grade will be determined by your performance on the following:

Laboratory Section
Informal Lab Write-ups
(Best 12 of 13, @ 10 pts each):
(27.5%)

Formal Lab Reports
(Written for 1 lab @ 30 pts each):
(07.5%)

In-lab Quizzes:
(12 quizzes @ 5 points each)
(15.0%)

Lecture Section
Midterm Exam
(Lecture and laboratory):
(22.5%)

Final Exam
(Lecture and laboratory):
(22.5%)

Lecture participation (via cps)
(05.0%)

TOTAL:
400 points = (100%)

Letter grades will be awarded as follows:

100 to 90 = A
89 to 80 = B
79 to 70 = C
69 to 60 = D
59 to 00 = F
Formal Lab Reports

You will write the results of one of the laboratory exercises conducted during the semester as a formal lab report. This report is to be submitted in the format of an article in a professional scientific journal. See the separate "Guidelines For Lab Reports" in your lab manual.

Informal Lab Write-ups

All of the remaining 13 labs are to be recorded as informal lab write-up. The entries for experiments should include a brief description of the materials used (including identification of the organism[s]), a one-paragraph summary of the procedures followed, the results obtained, and a summary or conclusion as appropriate for the exercise. The results may be data in tabular or graphic form or description or illustrations of observations, depending on the type of exercise. You must have participated in the lab in order to turn in a lab write-up.

The observations of living or preserved specimens should be in the form of notes, drawings, and/or diagrams as appropriate for the exercise and must include complete identification of the organism, body part(s) or structure(s), and any other pertinent information (e.g., age or state of maturity, sex, specific strain or preparation, etc.). Any illustration made with the aid of a microscope should have a note next to it indicating the type of microscope used (e.g., bright-field) and the total magnification at which the specimen was observed. The Teaching Assistants/Assistant Instructors will provide students with a guideline at the beginning of each lab for the number and types of drawings that are expected for the particular lab. If the exercise involves making a series of observations to note changes over time, the report should also include a brief summary or conclusion. The work will not be graded on the quality of the artwork; however, the organisms and/or structures must be clearly recognizable and properly labeled.

The reports must be the student’s own work; tracings of drawings in the manual or another student’s report or plagiarism of another student’s results or summary/conclusions will not be tolerated. Each individual exercise must be identified; multiple exercises in a single lab must be clearly separated from each other, preferably, in numerical order. Students may make their observations and/or notes on a piece of paper and then copy them into the lab reports. Grading of the work will be based on completeness, evidence that experiments have been conducted correctly and carefully, accuracy of illustrations and identifications/labels, interpretation of results, and clarity. Neatness will also be a consideration. Laboratory exercises completed in this format will be due one week following the lab in which the experiment was performed, unless your Laboratory Instructor informs you otherwise. Any Exercise that is turned in late will be penalized by a reduction of 5% from the total possible points for each day that it is late and will receive a grade of "0" if turned in more than one week late. The exercises should be submitted to your
Laboratory Instructor. Each entry for each laboratory will be worth 10 points. The lowest grade of the 13 labs will be dropped in the computation of your final grade.

Midterm Exam
There will be a midterm exam given on Monday March 27 from 7:30 to 9:00 PM. This exam will cover both lecture and laboratory material relating to Labs #1 through #7; it will have a written as well as a practical portion. The details of this exam will be discussed at a later date.

Final Exam
This exam will cover both lecture and laboratory material relating to Labs #8 through 14; it will have a written as well as a practical portion. The tentative Final exam for the class follows the official university posted exam schedule: <http://www.utexas.edu/student/registrar/schedules/062-finals/>

<table>
<thead>
<tr>
<th>Lecture meeting time</th>
<th>Date of final</th>
<th>Time of final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday 8:00-9:00 AM</td>
<td>Tuesday 16 May</td>
<td>2:00 PM-5:00 PM</td>
</tr>
<tr>
<td>Monday 9:00-10:00 PM</td>
<td>Friday 12 May</td>
<td>9:00 AM-12:00 noon</td>
</tr>
<tr>
<td>Monday 2:00-3:00 PM</td>
<td>Saturday 13 May</td>
<td>7:00 PM-10:00 PM</td>
</tr>
</tbody>
</table>

Quizzes
Your Lab Instructor will give quizzes at the beginning of each lab to make certain you are preparing for lab properly. The quiz questions will come from a bank of possible quiz questions posted on the class website. These will be brief quizzes that will cover the information presented in lectures and/or information in the lab manual that you should know in order to conduct the lab scheduled for the week of the quiz. If you read the exercise before coming to class and attend the lectures, these quizzes should be quite easy. The quizzes will count a total of 60 points.

Final Course Grade
The total number of points you have earned during the semester (as outlined above) will be divided by 4 to get your final % score. Letter grades will be awarded as follows: 100 to 90 = A; 89 to 80 = B; 79 to 70 = C; 69 to 60 = D; 59 to 0 = F. Each student will be evaluated individually based on the number of total points achieved by the student. The grade you earn is the grade you will receive!

If you have any problems with the course, or must miss a lab, please contact your Lab Instructor as soon as possible to make special arrangements to get help or to make up missed work. We are not able to offer make-up labs. However, with the permission of an instructor and both Laboratory Instructors
involved, it *may* be possible for you to conduct a lab exercise at a time other than your regularly scheduled lab period.

*** IMPORTANT NOTES ***

There **will not be any extra credit** assignments to make up for poor performances on quizzes or exams.

Students are responsible for keeping track of the important dates listed in the University calendar that may affect their status.

<table>
<thead>
<tr>
<th>Date</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 1 Wednesday</td>
<td>Last day of the official add/drop period, after this date, changes in registration require the approval of the chairman and usually the student's dean. (See General Information, chapter 4, for required approvals.)</td>
</tr>
<tr>
<td>February 1 Wednesday</td>
<td>Last day to drop a course for a possible refund.</td>
</tr>
<tr>
<td>February 13 Monday</td>
<td>Last day to drop a course without a possible academic penalty. (See General Information, chapter 4, for required approvals.)</td>
</tr>
</tbody>
</table>

The information in the boxes above is quoted from the "Calendar of the University," *The University of Texas at Austin: Course Schedule Spring 2006*

Students with Disabilities

Please notify your instructors at the beginning of the semester of any modification/adaptation you may require to accommodate a disability-related-need. You will be requested to provide documentation to the Dean of Students’ Office, in order that the most appropriate accommodations can be determined. Specialized services are available on campus through Services for Students with Disabilities.
GUIDELINES FOR FORMAL LAB REPORTS

Course Requirements

Each student is responsible for preparing and submitting one formal lab report. Your Laboratory Instructor may assign the whole class to write a formal report on one specific laboratory exercise. Otherwise, you may choose the lab on which you will prepare reports from any of the laboratory exercises designated with an asterisk on the syllabus. The report will be due one week following the lab in which the experiment was completed unless your Laboratory Instructor informs you otherwise. Reports that are turned in late will be penalized by a reduction of 5% from the total possible points for each day late and will receive a grade of "0" if turned in more than one week late. The reports should be submitted to your Laboratory Instructor. The formal lab report will be worth 30 points (grade out of 100 X 0.30).

The major lab report is to be written in the format of an article in a professional scientific journal. Samples of journal articles may be reviewed among the publications shelved in the Life Science Library. The report must be the student's own work; tracings or drawings in the manual or another student's notebook or plagiarism of another student's work will not be accepted. The report should be submitted to your Laboratory Instructor.

Writing Guidelines

The reports should be typed on 8.5 X 11 inch white paper. Each report may not be longer than 10 pages, including a title page and a list of references cited. All information included in a report must be typed. Text must be written in complete sentences, using correct grammar, syntax, and spelling. Sentences and paragraphs should flow in a logical sequence so that the reader can easily understand the contents. Include tables, figures, and other illustrations whenever you think they are appropriate. The report should be double-spaced, except for the abstract and list of references, which should both be single-spaced. The pages should be numbered. Please do not put the reports in covers.
Components of the Reports

Page one of your report should contain only the following information, arranged on the page as shown below:

Title

Your Name

BIO 206, Semester, Year

Date the report is due

Title: Choose a succinct title for the report that you think best describes what you accomplished in the exercise. The title should reflect the effect of the independent variable upon the dependent variable. Do not use the title of the laboratory exercise that is given in your laboratory manual. The title should not be more than 12 words long.

The body of the report (the substantive information of the report) should follow the title and begin on page two. The body should be written in sections and each section should begin with a heading. The following sections, with their appropriate headings, must all be included and presented in the order listed below.

Abstract: Begin page two of your report with the title (the same title used on page one). Write the abstract below the title on page two. Don't put any other information on that page of the report. The abstract should be no longer than half a page. It should be an attempt to capture the essence of the entire report. Thus, it should clearly describe your results, but it should also include elements of the introduction, materials and methods, and conclusions as they can best be summarized. Do not cite references in the abstract. Write the abstract single-spaced in paragraph form, without including any tables, figures, or other illustrative information. Even though the abstract is the first component of the body of the completed report, you may find it easiest to prepare the abstract last.

Introduction: Begin page three of your report with the introduction. The introduction provides background information that helps prepare the reader to understand the remaining contents of the report. For example, it may describe the theory or purpose of techniques used in the exercise, it may describe the general significance of some of the methods, and/or it may refer to literature which the reader may wish to consult in order to learn more about related work. It should also include the objectives of your
work. The introduction of most reports will be less than one page long. This is where most references are cited in scientific publications. Cite references in the text by placing the name of the author(s) in parentheses at the end of the sentence citing the information. If there are more than two authors, write the first author's name and then "et al." The list of references is included as the last section of the report.

Methods and Materials: This section describes the procedures, methods, techniques, organisms or cultures, instruments used to conduct the work, and any data analysis methods used to obtain the results described in the paper. The methods section should not include any data, but only a description of the biological material studied and the means employed to collect data and obtain results. Be selective in what you include in this section, describing only methods and materials that help the reader to generally understand what was done. The purpose is to outline what one would do to reproduce your experiment. The entire procedures section from your laboratory manual should not be included in your report.

Results: This will likely be the longest part of your report, as it is the central section of most reports. The results section should include the data you show in the report, displayed in a concise, logically displayed, and clear form. Figures, tables, and other illustrations are all appropriate for the results section. The results must also contain text, in paragraph form, which explains the graphic data, is well organized, and is well written. The information in this section should flow naturally from one topic to the next, so that the reader's interest is sustained. Be careful that this section contains only results you observed and not conclusions or explanations of the results.

Discussion: This section contains your interpretation of the results you obtained. You can explain what you learned as a scientist (not as a student) from doing the exercise, whether or not the results you obtained were the expected results (and why you might not have obtained the expected results), and/or what might be extrapolated from the work you did. You may also compare your results to those obtained by other investigators and cite the references in which these scientists reported their experiments. Remember that data should not be included in the discussion section of your report but you may refer to your results section.

References: This section should follow immediately after the discussion. List the references in alphabetical order by the last name of the first author of each reference. You must cite at least two references in each report. There is no standard format for a list of references, but your list must use a format consistent with one used in a scientific journal and must use the
same format throughout the list. You may refer to a recent issue of a scientific journal in the library to establish a format for references.

REFERENCES: (single space, 2nd line indented five spaces)

List in alphabetical order the books, journal articles, etc. that you used. Use a formal documentation format such as the American Psychological Association (APA) style <www.apa.org> or the Council of Biology Editors (CBE)/Council of Science Editors (CSE) <www.councilscienceeditors.org> documentation styles. Refer to style manuals for details on referencing and documentation formats. Some sample writing manuals are listed below:

Sample references, APA format, for journals, books, and online articles follow:

(Journal)

(Book)

(Online)

Online Publication with print equivalent:

Online Publication with no print equivalent:

Grade Assignment

A grade will be assigned to each of your formal reports, based on the following criteria:

- Title and abstract: 10 %
- Introduction: 10 %
- Materials and methods: 10 %
- Results, including figures, illustrations, etc.: 25 %
- Discussion: 20 %
- References: 10 %
- Style, grammar, spelling, etc.: 10 %
- Legibility, neatness, labeling, etc.: 05 %

100 %
Safety Rules

1. Students must be supervised at all times in the laboratory.

2. Immediately report any accidents or mishaps to your laboratory instructor.

3. Know the nearest location and proper use of the fire extinguisher, first-aid kit, chemical spill-kit, eye-wash, and safety shower.

4. Know the location of safety glasses, gloves, and plastic aprons. Use these safety items as necessary during laboratory periods.

5. No food or beverages are allowed in the laboratory.

6. For your own safety and that of others, discard all waste in the manner as directed in this laboratory manual and by your laboratory instructor.
Safety and Housekeeping Rules

1. Know the location of the nearest fire extinguisher and first aid kit.

2. Report any mishaps to your teaching assistant.

3. DO NOT SMOKE or consume food or beverages in the lab rooms; take all breaks in the hall.

4. The lab room should be as clean (or cleaner) when you leave, as it was when you arrived.

5. Discard all wastes in the manner prescribed by your teaching assistant; never discard solid wastes in the sink.

6. Do not play with lab equipment or other lab materials.

7. Boiling water baths: use the beakers designated for this purpose unless instructed otherwise. Use a small amount of water—enough to cover the materials to be heated. Using a full beaker wastes both time and energy. Use test tube holders to remove tubes. Use the white plastic “hot hand” to move the beaker.

8. Dispose of dirty glassware as indicated below:
 a) Glass slides and cover slips—labeled white plastic containers (Note: do not discard concave slides.)
 b) Pasteur pipets and capillary tubes—labeled plastic container.
 c) Graduated pipets—in the tall pipet jar—**tips down**.
 d) Test tubes—wash them at the sink and place upside down to dry in test tube racks over a paper towel.
 e) Beakers, flasks, etc.—clean and place on the draining racks.
 f) Petri dishes (glass)—if they do **not** contain medium, rinse out. Stack dishes up in hood or in labeled pan for later removal. Remove labels
Housekeeping Rules

Your Bio206 Grade and CLEANLINESS

Cleaning up after oneself is an essential part of any experiment and is just as important as preparation, setup, and performance of the actual laboratory exercise.

Before your lab group may be excused upon completion of laboratory exercises, you are required to restore your laboratory work-space to its proper condition with items in their appropriate place, as you found them upon your arrival. Your lab space and materials should be as clean or cleaner than you found them.

Your laboratory instructor will be notified about the cleanliness of student work areas after each laboratory section.

STANDARD WASHING PROCEDURE

1. Remove ink or tape labels or marks that you personally made. Use ethanol to remove ink.
2. Scrub items with warm soapy water.
3. Rinse repeatedly with tap water until soap is gone.
4. Inspect for cleanliness. If not clean, wash again.
5. Rinse twice with distilled water.
6. Drain excess water in sink.
7. Invert all items to dry in designated location for next class. Note, drying racks are provided for items that are easily tipped over.

Graduated Glass Pipets: After use, place graduated pipets in the large plastic pipet wash jar (near sink). Always PLACE TIPS DOWN to ensure proper cleaning. Be careful when inserting pipets because the pipet wash jar contains bleach.

GLASS DISPOSAL: Disposable Pasteur pipets, glass slides, and coverslips should be placed in the white plastic container labeled “For Glass Disposal”. Only glass items should be placed in white containers, never in the red sharps containers). For occasional accidental breakage of glassware, collect all pieces with broom and dustpan and dispose of broken glass in the large cardboard box (near sink).

METAL SHARPS DISPOSAL: Razors, scalpel blades, and syringes with needles attached, and other METAL sharp items should be placed in the Red plastic SHARPS containers. Only metal sharps should be placed red SHARPS containers, never any glass or plastic tips.

Plastic Pipette TIPS: Plastic beakers are provided for convenient tableside disposal of plastic micropipetter tips and disposable transfer pipets.
SPECIAL CIRCUMSTANCES: During certain laboratory exercises, you may be given special instructions regarding disposal of hazardous materials, chemical solutions such as organic solvent wastes, or biological material such as animal carcasses and antibiotic-resistant bacteria. For your own safety and that of others, please follow these special directions carefully. If you are unsure of the proper procedure, always ask questions!