Correlated evolution (not coevolution!)

Have two characters evolved together?

Correlated character change

Does character A always arise with character B? Does character A always precede character B?

Gregariousness in aposematic butterfly larvae

- Aposematic forms tend to be gregarious.
- R. A. Fisher suggested warning coloration evolved through kin selection.
- An individual may die during the "lesson" that teaches naïve predator not to eat brightly colored larvae, but if predator leaves kin alone, inclusive fitness of dead larvae is positive
- Laying eggs in clutches will result in kin groups on same plant
- **Prediction**: aggregation evolves before coloration

Prediction based on kin selection

Comparative method

Phylogeny makes cross-species comparisons non independent

- Overestimating the number of independent events in "natural experiments"
 - Example: Six white species that live in the arctic.
 - What if the six species are fox, hare, ptarmigan, lynx, weasel, and fur seal?
 - What if the six species are all mice?

Bill size vs. favorite seed size in nine species of birds. Is there a conspicuous pattern here?

How do we formally test adaptive hypotheses using a phylogeny?

We need different methods for:

- Discrete (qualitative) characters: character traits that have qualitatively discrete states
 - E.g., Number of fingers, color, type of mating behavior
- Continuous (quantitative) characters: Characters that have continuous distributions
 - E.g., height, rate at which an enzyme functions, oil composition in a seed

- If the trait only evolved once, there is not strong evidence for adaptation.
 - Could have just arisen that single time by chance
 - Thereafter maintained by descent

A pattern like this, however, shows large bills evolving several times in association with seed eating. This kind of convergence is more consistent with true adaptation.

Comparative analyses that use phylogeny can also lead to the discovery of previously unknown adaptations

An example from a gene family in vertebrates, the voltage-gated sodium channels

Many deadly neurotoxins target sodium channels.

There should be selection for toxin resistance (I.e. decreased toxin binding), but how do we identify mutations that might lead to this?

Phylogeny can reveal patterns of parallel evolution.

- Pufferfish toxicology has been studied by the Japanese for over 100 years as a public health issue. The liver, gonads, and sometimes skin of at least 21 genera are known to contain tetrodotoxin and saxitoxin.

- For mammals (including humans), pufferfish poisoning results in paralysis, including paralysis of diaphragm muscle which can lead to respiratory failure.

Origin and abundance of guanidinium toxins (1)

Paralytic Shellfish Poisoning (PSP) and some "red tides" are caused by saxitoxin, produced by explosive populations of marine dinoflagellates

A red tide bloom in Nova Scotia

Alexandrium funyense

Origin and abundance of guanidinium toxins (2)

Tetrodotoxin has been detected in widely diverse organisms

- Marine Invertebrates:

Platyhelminthes (flatworms) Chaetognaths (arrow worms) Nemertines (ribbon worms) Tunicates ("sea squirts" = primitive chordates) Echinoderms (starfish and sea urchins) Horseshoe crabs The blue-ringed octopus (*Hapalochlaena* sp.)

- Marine and Terrestrial Vertebrates:

Several families of Tetraodontiform fish (pufferfish) A few species of goby fish Five genera of frogs Seven genera of salamanders

- Many strains of marine bacteria

Models of STX and TTX binding involve pore region amino acids in all four Na_v channel domains. Domain Pore Sequence D F/Y W E N Ι ΙI Е WIE Т III Μ D K G W ΙV G W D G Outer ring Inner ring From Lipkind and Fozzard, 1994

Mutation					Kn	own From	Toxin resistance (approximate)		
Domain I D(F/Y)WEN aromatic-to-nonaromatic				Puff thre	ferfish ¹ , <i>C</i> e mamma	<i>Synops</i> newts ² , lian channels	~ 190- to 2000-fold for TTX/STX		
Domain II Glu-Asp		EWIE	Т	Soft	shell clan	n <i>Mya arenaria</i> ³	STX: ~ 3000-fold		
Domain	Po	re Seq	uenc	е					
I	D	F/Y	W	Е	N				
I II	D E	F/Y W	W I	E E	N T		0		
I II III	D E K	F/Y W G	W I W	E E M	N T D				

nyiogenetic	Inference Helps Ide	entify Un	ique N	lutation	Events
or Domain I, this	s evolutionary tree of the sl	celetal mus	scle Na _v (channel N	la _v 1.4
hared replacem	ents in Domain I (to C), Do ly present in the evolutiona	main II (to rv ancesto	N), and r of <i>Tetra</i>	Domain IV aodon and	/ (to <mark>G</mark>) d <i>Arothron</i>
,		,			
n this example, 7	Tetraodon has a unique rep	placement	in Domai	n III (to T), and
<i>Irothron</i> has a u	nique replacement in Doma	ain IV (to N	1)		
		DI	DII	DIII	DIV
- Nav1.4					
	(Homo sapiens)	QDYWENL	GEWIETM	FKGWMNI	ITTSAGWD
Nav1.4	(Homo sapiens) (Thamnophis sirtalis)	QDYWENL	GEWIETM	FKGWMNI	ITTSAGWD V
Nav1.4	(Homo sapiens) (Thamnophis sirtalis) (Gasterosteus aculeatus) (Danio rerio)	QDYWENL	GEWIETM	FKGWMNI	ITTSAGWD V
Nav1.4 Nav1.4a Nav1.4a Nav1.4a Nav1.4a	(Homo sapiens) (Thamnophis sirtalis) (Gasterosteus aculeatus) (Danio rerio) (Takifugu rubripes)	QDYWENL 	GEWIETM	FKGWMNI	ITTSAGWD V
Nav1.4 Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a	(Homo sapiens) (Thamnophis sirtalis) (Gasterosteus aculeatus) (Danio rerio) (Takifugu rubripes) (Tetraodon nigroviridis)	QDYWENL F NS. C	GEWIETM	FKGWMNI	ITTSAGWD VG
Nav1.4 Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a	(Homo sapiens) (Thamnophis sirtalis) (Gasterosteus aculeatus) (Danio rerio) (Takifugu rubripes) (Tetraodon nigropunctatus)	QDYWENL 	GEWIETM	FKGWMNI	ITTSAGWD VG
Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a	<pre>(Homo sapiens) (Thamnophis sirtalis) (Gasterosteus aculeatus) (Danio rerio) (Takifugu rubripes) (Tetraadan nigroviridis) (Arothron nigropunctatus) (Sternopygus macrurus)</pre>	QDYWENL 	GEWIETM	FKGWMNI	ITTSAGWD VG
Nav1.4 Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a Nav1.4a	(Homo sapiens) (Thamnophis sirtalis) (Gasterosteus aculeatus) (Danio rerio) (Takifugu rubripes) (Tetraodon nigrovirdis) (Arothron nigropunctatus) (Sternopygus macrurus) (Halocynthia roretzi)	QDYWENL	GEWIETM	FKGWMNI	ITTSAGWD VG MG

Complication: Vertebrate animals can have ten or more Na_v channel genes in their genomes, each of which encodes a Na_v channel isoform that has specialized expression in different excitable tissues.

Na _v 1.1	Na _v 1.2	Na _v 1.3	Na _v 1.7	Na _v 1.4	Na _v 1.5	Na _v 1.8	Na _v 1.9	Na _v 1.6
CNS PNS	CNS	embryonic CNS	PNS	skeletal muscle	heart & skeletal	PNS	PNS	CNS PNS

Gene nomenclature and expression profile in mammals. CNS=Central Nervous System. PNS=Peripheral Nervous System. Chromosomal locations: Blue, HC2; Black, HC17; Orange, HC3; Green, HC12

Therefore: while invertebrates can acquire guanidinium toxin resistance via evolution of their single Na_v channel, vertebrate animals must accumulate mutations in **all** their Na_v channels in order to achieve whole-organism resistance. This implies **parallel evolution** of the isoforms.

1.) Survey the diversity of Compare	f Na _v ch re with	nannel an outo	pore co group c	onfigura ontrol s	ations fo species	ound in (<i>Dani</i> o	four ge rerio.)	enera o)	f pufferfish.
Nav gene	1.1La	1.1Lb	1.4a	1.4b	1.5La	1.5Lb	1.6a	1.6b	
Danio	DYWEN EWIET KGWMP GGWDG	DFWEN EWIET KGWMD AGWDG	DFWEN EWIET KGWMD AGWDG	DFWEN EWIET KGWMD AGWDG	DYWES EWIET KGWME AGWNN	DYWEN EWIET KGWME AGWDN	DYWEN EWIET KGWMD AGWDG	DFWEN EWIET KGWME AGWDG	
Takifugu	 тр GК	 Gт	.NS T	т. т.	.Ск D.	.С S тр т	.F G	.YG D	No.
Tetraodon	.A TD GT	.Y TE GR	.C N TA GQ	D. E	K DY	ø	.F G	.AA D	
Canthigaster	ø	.Y TT G	ø	D T. N.	ø	.CT TD G	.FD G	.AR.A S D	
Arothron	ø	.Y V TT GM	.C N P G	D T. N.	.ск р.	ø	.F G	.AA D	NOS
			Ø=	gene no	t found,	possibly	lost fron	n genom	e

Mutation	Known From	Toxin resistance (approximate)		
Domain I D(F/Y)WEN aromatic-to-nonaromatic	Pufferfish ¹ , <i>Cynops</i> newts ² , three mammalian channels	~ 190- to 2000- fold for TTX/STX		
Domain II EWIET Glu-Asp	<i>Tetraodon</i> Nav1.4b ; also softshell clam <i>Mya arenaria</i> ³	STX: 3000-fold		
Domain II EWIE T Thr-Ser or -Asn	Pufferfish and mammal channels with Domain 1 nonaromatic	Unknown		
Domain III KGWMD Met-Thr	Several pufferfish genes ; also flatworm <i>Bdelloura candida</i> ⁴	TTX: 15.2-fold STX: 15-fold		
Domain IV AGWDG Ala-Gly	Several pufferfish genes ; also Nav1.1La in <i>Danio rerio</i>	TTX: 1.5-fold STX: 11-fold		
Domain IV (I 1561) Ile-Met	Pufferfish Nav1.6b and Nav1.4a; also <i>Thamnophis</i> garter snakes ⁵	TTX: 2- to 5-fold		
Domain IV AGWDG Asp-Asn	Canthigaster Na _v 1.4b, also some Thamnophis garter snakes ⁵	TTX: ~300-fold		

Comparative analyses that use phylogeny can also lead to the discovery of previously unknown adaptations

There should be selection for toxin resistance (I.e. decreased toxin binding), but how do we identify mutations that might lead to this?

Phylogeny can reveal patterns of parallel evolution...

...and cause us to investigate those patterns even further.