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Ranaviruses are large dsDNA viruses that are considered emerging pathogens, 

and they are known to cause mortality events in amphibian and fish populations.   This 

research utilizes experimental and genomic data to elucidate the mechanisms driving the 

evolution and spread of ranaviruses, with a focus on host switching within the genus.  In 

Chapter 1, we utilize virus challenge assays to examine potential transfer of ranaviruses 

between cultured juvenile largemouth bass (M. salmoides) and bullfrog tadpoles (Rana 

catesbeiana). Additionally, a commonly used antiparasitic treatment containing malachite 

green and formalin (MGF) was utilized to suppress the immune system of largemouth 

bass to assess the susceptibility of immunocompromised fish to ranaviruses. The results 

indicate that tadpoles are not susceptible to Largemouth Bass Virus (LMBV), but that 

bass are susceptible to ranaviruses isolated from amphibians. Furthermore, 

immunocompromised fish were more susceptible to both LMBV and FV3 infections than 

immunocompetent fish. In Chapter 2, we used eight sequenced ranavirus genomes and 

two selection-detection methods (site-based and branch-based) to identify genes that 

exhibited signatures of positive selection, potentially due to the selective pressures at play 

during host switching. We found evidence of positive selection acting on four genes via 

the site-based method, three of which are newly-acquired genes unique to ranavirus 
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genomes. Our results suggest that the group of newly acquired genes in the ranavirus 

genome may have undergone recent adaptive changes that have facilitated interspecies 

and interclass host switching. In Chapter 3, we annotated and analyzed the nearly 

complete genomic sequence of LMBV to determine its taxonomic classification.  The 

available genomic content and phylogenetic evidence suggests that LMBV is more 

closely related to amphibian-like ranaviruses (ALRVs) than grouper ranaviruses, and this 

is further supported by greater genomic collinearity between LMBV and ALRVs. This 

data suggests that the classification of LMBV as a ranavirus is warranted. The results 

presented here will help to clarify the taxonomic relationships of ranaviruses, and will 

also be useful in developing management strategies to limit interspecific and intraspecific 

viral spread. The information garnered from this research will have far-reaching 

implications in studies of amphibian conservation, disease evolution, and virology. 



 viii 

Table of Contents 

List of Tables .......................................................................................................... ix	
  

List of Figures .......................................................................................................... x	
  

Chapter 1: Increased susceptibility of largemouth bass (Micropterus salmoides) to 
ranaviruses when exposed to a commonly used disease treatment containing 
malachite green and formalin ......................................................................... 1	
  

Chapter 2:  Recent host-shifts in ranaviruses: signatures of positive selection in the 
viral genome ................................................................................................. 27 

Chapter 3:  Genomic characterization of Largemouth Bass Virus (LMBV) provides 
further insights into Ranavirus taxonomic and phylogenetic relationships .. 60	
  

References ............................................................................................................. 87	
  

	
  



 ix 

List of Tables 

Table 1.1:	
  Experimental setup for Challenge I and Challenge II .......................... 20 

Table 1.2:	
  Challenge	
  I:	
  Detection	
  of	
  viral	
  DNA	
  in	
  bullfrog	
  tadpoles	
  and	
  

largemouth	
  bass	
  challenged	
  with	
  various	
  ranaviruses ............... 21 

Table 1.3:	
  Challenge	
  II:	
  	
  Results	
  of	
  survival	
  curve	
  comparisons	
  based	
  on	
  Mantel-­‐

Cox	
  log-­‐rank	
  test ............................................................................. 22	
  

Table 2.1:	
  Fifteen	
  genomes	
  utilized	
  in	
  the	
  present	
  study	
  and	
  their	
  host	
  species

 .......................................................................................................... 45	
  

Table 2.2:	
  Four	
  genes	
  under	
  positive	
  selection	
  identified	
  using	
  site-­‐based	
  tests	
  

 .......................................................................................................... 46	
  

Table S2.1:	
   Inclusion/exclusion	
  and	
  recombination	
  status	
  of	
  genes	
  examined	
  in	
  

study ................................................................................................. 47	
  

Table 3.1:	
  Twenty-­‐six	
  core	
  Iridoviridae	
  genes	
  and	
  the	
  corresponding	
  predicted	
  

LMBV	
  ORFs	
  with	
  FV3	
  homologs	
  as	
  a	
  reference ............................ 74	
  

Table 3.2:	
  Fifteen	
  genomes	
  utilized	
  in	
  the	
  present	
  study	
  and	
  their	
  host	
  species

 .......................................................................................................... 75	
  

Table 3.3:	
  Predicted	
  LMBV	
  open	
  reading	
  frames	
  (ORFs) ................................. 76	
  

	
  



 x 
 

List of Figures 

Figure 1.1:	
  Challenge I: Percent cumulative survival of R. catesbeiana tadpoles 

infected with FV3 and LMBV .......................................................... 23	
  

Figure 1.2:	
  Challenge I: Percent cumulative survival of M. salmoides juveniles 

infected with FV3, SSMe, and LMBV ............................................. 24	
  

Figure 1.3:	
  Challenge II: Percent cumulative survival of M. salmoides juveniles 

exposed to virus only and those exposed to virus in combination with 

MGF treatment ................................................................................. 25	
  

Figure 1.4:	
  Length and weight distributions for dead/moribund and surviving M. 

salmoides juveniles exposed to virus only and those exposed to virus in 

combination with MGF treatment .................................................... 26	
  

Figure 2.1:	
  A model for Ranavirus host switching within and between vertebrate 

classes ............................................................................................... 51	
  

Figure 2.2:	
  Phylogenetic relationships among vertebrate Iridoviridae genomes 

included in the study ......................................................................... 52	
  

Figure 2.3:	
  Three Core and RV genes with elevated dN/dS identified using branch-

based tests ......................................................................................... 53	
  

Figure 2.4:	
  Four F/A/R genes with elevated dN/dS identified using branch-based tests

 .......................................................................................................... 54 

Figure 2.5:	
  Significant differences in median and mean dN/dS values of Core, RV, 

and F/A/R gene groups detected using branch-based tests ............... 55	
  

Figure S2.1:	
  Phylogenetic relationships among vertebrate Iridoviridae genomes 

included in the study ......................................................................... 56	
  



 xi 

Figure S2.2:	
  Secondary structures for proteins encoded by genes under positive 

selection (site-based method) show that several positively selected sites 

lie in unordered regions of the protein ............................................. 57	
  

Figure S2.3:	
  Four “Other” genes with elevated dN/dS identified using branch-based 

tests ................................................................................................... 58	
  

Figure S2.4:	
  Congruent topologies between 15-taxon and 8-taxon phylogenies .. 59	
  

Figure 3.1:	
  Best BLASTX matches for predicted LMBV ORFs illustrate a higher 

similarity to ALRVs ......................................................................... 81 

Figure 3.2:	
  Dot plot analyses of the LMBV sequence compared to the complete 

genomic sequences from grouper and ALRVs indicate limited 

collinearity ........................................................................................ 82	
  

Figure 3.3:	
  Phylogenetic relationships among vertebrate Iridoviridae based on the 26 

core Iridoviridae genes indicate a closer LMBV-ALRV relationship   

 .......................................................................................................... 83	
  

Figure 3.4: Phylogenetic	
  relationships	
  among	
  vertebrate	
  Iridoviridae	
  suggests	
  

two	
  major	
  host	
  switches	
  within	
  Ranavirus ................................... 84	
  

Figure S3.1:	
  Secondary protein structure for FV3 ORF79R/Putative ATPase-

dependent protease shows the region with positively selected sites is 

only present in ALRVs ..................................................................... 85	
  

Figure S3.2:	
  Elevated dN/dS identified along the ATV branch for the F/A/R gene 

ORF 71R ........................................................................................... 86	
  

	
  

 



 1 

Chapter 1:  Increased susceptibility of largemouth bass (Micropterus salmoides) to 

ranaviruses when exposed to a commonly used disease treatment containing 

malachite green and formalin 

 

ABSTRACT 

Ranaviruses are large dsDNA viruses that cause recurrent mortality events in wild 

and commercial amphibian and fish populations.  Ranaviruses are considered emerging 

pathogens, and researchers have developed several hypotheses to explain the emergent 

nature of the viruses including: 1) introduction into naïve host populations via amphibian 

or fish vectors; 2) geographic spread through the bait, pet, and food industries; and 3) 

adverse effects on the immune system due to extrinsic immunocompromising agents. 

Here, we utilize virus challenge assays to examine the role that each mechanism may 

play in the transfer of ranaviruses between cultured juvenile largemouth bass 

(Micropterus salmoides) and bullfrog tadpoles (Rana catesbeiana), which can cohabit in 

aquaculture settings. Additionally, a commonly used antiparasitic treatment containing 

malachite green and formalin (MGF) was utilized to suppress the immune system of 

largemouth bass to assess the susceptibility of immunocompromised fish to ranaviruses. 

The results indicate that bullfrog tadpoles are not susceptible to a ranavirus isolated from 

fish, but that largemouth bass are susceptible to ranaviruses isolated from amphibians. 

Immunocompromised fish were more susceptible to ranavirus infections than 

immunocompetent fish. This suggests that juvenile largemouth bass may act as a 

reservoir for ranaviruses that commonly infect bullfrogs, and that the susceptibility of the 

fish may be heightened after exposure to commonly used antiparasitic treatments. 

Considering the extensive introduction of largemouth bass worldwide, precautions should 
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be taken to limit contact between cultured largemouth bass and wild amphibian 

populations. Furthermore, management strategies should be developed to the prevent 

introduction of infected fish to naïve habitats where native amphibian populations may be 

at risk. 

 

INTRODUCTION 

The genus Ranavirus includes large dsDNA viruses (150 nm) that cause recurrent 

mortality events in wild and commercial amphibian and fish populations, and some 

strains are known pathogens of reptiles (Chinchar 2002; Whittington et al. 2010; Miller et 

al. 2011). Ranaviruses are considered emerging due to the relatively recent increase in 

incidence, geography, and host range (Daszak et al. 2000); isolates have been detected on 

every continent with the exception of Africa and Antarctica.  Most ranaviruses cause 

systemic infections involving the liver, kidneys, and gastrointestinal tract, which may 

result in hemorrhages of these organs (Williams et al. 2005; Whittington et al. 2010). 

However, asymptomatic infections are common, and several in vivo studies have 

identified susceptible hosts that have no documentation of infection in wild populations 

(Cullen & Owens 2002; Schock et al. 2008; Bayley et al. 2013; Becker et al. 2013). This 

suggests that numerous species may have the potential to act as viral reservoirs and 

vectors. 

Several hypothesis have been put forth to explain the emergent nature of 

ranaviruses. Researchers have proposed that introduction into naïve host populations via 

amphibian or fish vectors may facilitate the spread to new species. For instance, Mao et 

al. (1999a) isolated identical ranavirus specimens from sympatric red-legged frogs (Rana 

aurora) and three-spine stickleback fish (Gasterosteus aculeatus), thus suggesting the 
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possible role of one of the species as a vector or reservoir for the virus.  Moreover, the 

bait, pet, and food industries are considered major contributors to the spread of 

ranaviruses to naïve localities. This hypothesis is supported by phylogenetic and physical 

evidence that ranaviruses isolated from tiger salamanders (Ambystoma tigrinum) are 

spread throughout the western United States via the bait trade (Jancovich et al. 2005; 

Picco & Collins 2008). Lastly, adverse effects on the immune system via extrinsic 

immunocompromising agents or outbreeding depression have also been proposed as 

mechanisms that enable epidemic transmission of ranaviruses. With regard to the role of 

immunosuppression in amphibians, researchers have hypothesized that single or multiple 

combinations of stressful environmental changes may alter the neuroendocrine system, 

resulting in immunosuppression (Carey et al.1999). For instance, researchers determined 

that exposure to the common pesticides atrazine and chlorpyrifos increased the 

susceptibility of tiger salamanders to ranaviruses (Forson & Storfer 2006; Kerby & 

Storfer 2009.)  Thus, immunosuppression could leave individuals more susceptible to 

ranavirus infections, or facilitate pathogen host switching. Furthermore, a study of 

outbreeding depression in largemouth bass (Micropterus salmoides) determined that 

hybrid individuals were more susceptible to a ranavirus strain than their wild-type parents 

(Goldberg et al. 2005). Although evidence supports each hypothesis, the emergent nature 

of ranaviruses is most likely due to the synergistic effects of the mechanisms discussed 

above. 

Bullfrogs (Rana catesbeiana) and largemouth bass (M. salmoides) represent two 

abundant and commonly introduced species, which are known hosts of the ranaviruses 

Frog Virus 3 (FV3) and Largemouth Bass Virus (LMBV), respectively.  Together, the 

two species represent an ideal system to study interspecific ranavirus reservoirs and the 

potential spread through anthropogenic avenues. Both species are native to the eastern 
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United States, and are regularly farmed on a global scale for food, scientific, and 

recreational purposes (Schloegal et al. 2009; Cooke et al. 2002).  Bullfrogs have been 

introduced to over 40 countries and four continents, and ranavirus infections have been 

detected in both cultured and wild populations (Green et al. 2002; Hanselmann et al. 

2004; Gray et al. 2007; Miller et al. 2007). Similarly, the largemouth bass is considered 

an alien species in nearly 80 countries (Global Invasive Species Database 2013), and 

LMBV infections have been detected in wild and cultured populations across the 

southeastern United States (Plumb et al. 1999; Hanson et al. 2001; Maceina & Grizzle 

2006; Neal et al. 2009; Southard et al. 2009; Blazer et al. 2010). The open pond designs 

of many aquaculture facilities often result in habitation by wild frogs and tadpoles (Corse 

& Metter 1980; Carmichael & Tomasso 1983; Kloskowski 2010). Bullfrog tadpoles 

inhabit artificial fishponds where fingerling largemouth bass are held (Abrams personal 

observation), which permits ranaviruses to spread between the two species. Picco et al. 

(2010) showed that asymptomatic largemouth bass were susceptible to a ranavirus 

isolated from salamanders.  Therefore, it is possible that upon exposure to infected 

amphibians, cultured largemouth bass could become infected.  Many cultured largemouth 

bass are relocated to stock private and public bodies of water that are open to wild 

amphibian habitats.  If infected while in captivity, the relocated fish could potentially 

transfer ranaviruses to naïve amphibian habitats.  

The possible spread of ranaviruses between cohabitating bullfrog tadpoles and 

fingerling largemouth bass could be exacerbated by the stressful conditions associated 

with general fish husbandry, collection, and transport.  Fish eggs and fish stocks are 

regularly treated for bacterial, fungal, and protozoan infections with antiparasitic 

solutions containing malachite green and formalin (Meinelt et al. 2001; Srivastava et al. 

2004; Sudova et al. 2007).  Malachite green is an organic dye, and formalin is an aqueous 
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solution of the organic compound formaldehyde. Exposure to antiparasitic solutions 

containing malachite green and formalin (hereafter referred to as MGF treatments) can 

elicit significant stress responses, and malachite green is a known immunosuppresent in 

fish (Culp and Beland 1996; Yildiz and Pulatsu 1999; Kodama et al. 2004, Silveira-

Coffigny et al. 2004; Yonar and Yonar 2010). The reduced capacity of the immune 

system may result in increased viral proliferation; therefore, fish cohabiting with diseased 

wild amphibians may be more susceptible to ranaviruses after exposure to commonly 

used antiparasitic treatments. 

Although several viral challenge studies have reported the susceptibility of fish to 

ranaviruses isolated from amphibians (Moody & Owens 1994; Jancovich et al. 2001; 

Gobbo et al. 2010; Bang Jensen et al. 2009; Picco & Collins 2010), only one study has 

examined the susceptibility of amphibians to ranaviruses isolated from fish (Bayley et al. 

2013).  Here, we present data from viral challenge assays used to determine the 

susceptibility of bullfrog tadpoles to LMBV and the susceptibility of juvenile largemouth 

bass to FV3 and a virus isolated from salamanders (Spotted Salamander Maine Virus, 

SSMe).  We subsequently examined variation in the susceptibility of largemouth bass to 

LMBV and FV3 under conditions where fish were regularly exposed to 

immunocompromising MGF treatments and those where they were not.  The results 

indicate that bullfrog tadpoles are not susceptible to LMBV, but that largemouth bass are 

susceptible to FV3 and SSMe.  Furthermore, fish challenged under 

immunocompromising conditions were more susceptible to both LMBV and FV3 

infections than untreated fish.  However, the difference in susceptibility between 

treatments was more pronounced in fish exposed to FV3.  This data suggests that juvenile 

largemouth bass may act as a reservoir for FV3-like viruses that commonly infect 
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bullfrogs, and that the susceptibility of the fish may be heightened after exposure to 

commonly used antiparasitic treatments containing malachite green and formalin. 

 

MATERIALS AND METHODS 

Two viral challenge assays were performed.  The purpose of Challenge I was to 

determine the susceptibility of bullfrog tadpoles (R. catesbeiana) to LMBV (isolated 

from fish), and juvenile largemouth bass (M. salmoides) to FV3 and SSMe (isolated from 

amphibians).  Although FV3 and LMBV are known pathogens of bullfrogs and 

largemouth bass respectively, experimental evidence has shown variation in both the 

susceptibility of bullfrogs to FV3 and largemouth bass to LMBV (Woodland et al. 2002; 

Goldberg et al. 2003; Miler et al. 2007; Hoverman et al. 2011).  Thus, trials using 

challenging each host with its respective pathogen were used to determine the sensitivity 

of the specific populations used in the study.   The purpose of Challenge II was to 

determine if largemouth bass exposed to an immunocompromising antiparasitic treatment 

containing malachite green and formalin (MGF) exhibited heightened susceptibility to 

FV3 and LMBV when compared to those that did not receive the MGF treatment. A 

subset of both tadpoles and fish were humanely euthanized and screened for ranavirus 

DNA before the start of each trial, and no evidence of infection was detected.  The 

husbandry and experimental conditions for both challenge assays are described below. 

 

Animal Husbandry: Challenge I- Tadpole and Fish Susceptibility 

Tadpoles 

 Field-collected R. catesbeiana tadpoles (1-3 cm) were obtained from Carolina 

Biological Supply Company (Burlington, NC). Tadpoles were housed in 58 L aquaria 
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that contained gravel and treated tap water.  Tadpoles were acclimated in the laboratory 

for at least two weeks prior to virus exposure, and were held under a 12-hr. light: 12-hr. 

dark cycle.  During the acclimation and experimental periods, tadpoles were fed tadpole 

pellets (Zoo Med Laboratories, Inc.) ad libitum once per day, and water was changed 

weekly. 

 

Fish 

Juvenile M. salmoides (5-8 cm) were obtained from a commercial fish farm 

(Fittstown, Oklahoma).  Fish were housed in 38 L, 58 L, 78 L, or 246 L circulating 

aquaria during an acclimation period for at least two weeks prior to virus exposure and 

were held under a 12-hr. light: 12-hr. dark cycle.  During the experimental period, all fish 

were housed in in 58 L circulating aquaria that contained gravel and treated tap water. 

During the acclimation and experimental periods, fish were fed cichlid pellets 

(OmegaSea, Ltd.) ad libitium once per day, and water was changed weekly.  A fungal 

infection was detected in all experimental tanks on Day 9 of the experiment, and fish 

were treated daily with an MGF solution until visible signs of infection were eliminated 

(Day 15).  Each dose of the MGF solution contained a malachite green concentration of 

0.05 ppm and a formalin concentration of 15 ppm after the solution was added to the 

tank. A partial water change (approximately 25%) was performed prior to the addition of 

the MGF solution, and carbon filters were removed.  During treatment, fish were exposed 

to the MGF solution for approximately 7 hours.  Carbon filters were replaced to absorb 

malachite green and formalin (Aitcheson et al. 2000), and the water was filtered for 

approximately 17 hours.  Full water changes were completed on a weekly basis. 
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Animal Husbandry: Challenge II- Susceptibility of Immunocompromised Fish 

Juvenile largemouth bass were obtained, acclimated, and maintained as described 

above.  During the first week of acclimation, all fish were treated every other day with an 

MGF solution to eliminate fungal infections and other parasites. Each dose of the MGF 

solution contained a malachite green concentration of 0.05 ppm and a formalin 

concentration of 15 ppm. A partial water change (approximately 25%) was performed 

prior to the addition of the MGF solution, and carbon filters were removed.  During 

treatment, fish were exposed to MGF solution for approximately 7 hours.  Carbon filters 

were replaced to absorb malachite green and formalin, and the water was filtered for 

approximately 17 hours.  Fish were fed cichlid pellets (OmegaSea, Ltd.) once per day, 

and full water changes were completed each week.   

During the experimental period, all fish were housed in in 58 L circulating aquaria 

that contained gravel and treated tap water, and were held under a 12-hr. light: 12-hr. 

dark cycle.  Fish were fed cichlid pellets once per day, and full water changes were 

completed on a weekly basis. 

 

Virus Stocks 

Frog Virus 3 (FV3), Spotted Salamander Maine Virus (SSMe), and Largemouth 

Bass Virus (LMBV) virus stocks that were grown in fathead minnow cell culture were 

obtained from Dr. V. Gregory Chinchar (University of Mississippi Medical Center). The 

titers of the viral stocks used in Challenge I were FV3 at 2.3 x 107 pfu/ml, SSMe at 4.8 x 

107 pfu/ml, and LMBV at 2.0 x 107 pfu/ml.  The titers of the viral stocks used in 

Challenge II were FV3 at 5.3 x 106 pfu/ml and LMBV at 3.0 x 105 TCID50/ml.  Virus 
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stocks were stored at -80 °C until utilized to avoid repeat freeze/thaw cycles that could 

result in a lower viral concentration. 

 

Viral Challenges 

Challenge 1: Fish and Tadpole Susceptibility 

Tadpoles were housed in three 58 L circulating aquaria (mean temperature = 20.9 

°C, min-max temperature = 20.0-21.6 °C) that contained gravel and treated tap water, and 

23 individuals were held in each tank (Table 1.1).  Sterile 27-gauge needles were used to 

inject each animal intraperitoneally with 0.1 mL of FV3, LMBV, or a sham injection of 

Eagle’s minimum essential medium with Hank’s salts.  Tanks were monitored daily to 

identify and remove dead tadpoles, which were then stored at -80°C. Moribund tadpoles 

were euthanized via an overdose of tricaine-methylsulfate, and subsequently stored at -

80°C until processing. 

Fish were housed in four 58 L circulating aquaria (mean temperature = 21.0 °C, 

min-max temperature = 19.7-21.9 °C) that contained gravel and treated tap water, and 13 

individuals were held in each tank (Table 1.1).  Fish were sedated with tricaine-

methylsulfate prior to receiving a 0.1 mL intraperitoneal injection of FV3, SSMe, LMBV, 

or a sham injection of Eagle’s minimum essential medium with Hank’s salts. Tanks were 

monitored daily to identify and remove dead fish, which were then stored at -80°C. 

Moribund fish were euthanized via an overdose of tricaine-methylsulfate, and 

subsequently stored at -80°C until processing. 
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Challenge II: Susceptibility of Immunocompromised Fish 

Virus Challenge Only (No MGF treatment): Fish were housed in 58 L circulating 

aquaria (mean temperature = 20.4 °C, min-max temperature = 20.0-22.1 °C) that 

contained gravel and treated tap water. Three treatments were used (FV3, LMBV, and 

Control), and three replicate tanks with nine individuals each were used for each 

treatment (Table 1.1). Fish were sedated with tricaine-methylsulfate prior to receiving a 

0.1 mL intraperitoneal injection of FV3, LMBV, or a sham injection of Eagle’s minimum 

essential medium with Hank’s salts. Tanks were monitored daily to identify and remove 

dead fish, which were then stored at -80°C. Moribund fish were euthanized via an 

overdose of tricaine-methylsulfate, and subsequently stored at -80°C until processing. 

 

Virus Challenge Combined with MGF Treatment: Fish were housed in 58 L 

circulating aquaria (mean temperature = 20.0 °C, min-max temperature = 19.4-22.2 °C) 

that contained gravel and treated tap water. Three treatments were used (FV3, LMBV, 

and Control), and four replicate tanks with nine individuals each were used for each 

treatment (Table 1.1). Fish were sedated with tricaine-methylsulfate prior to receiving a 

0.1 mL intraperitoneal injection of FV3, LMBV, or a sham injection of Eagle’s minimum 

essential medium with Hank’s salts. All tanks were treated daily with an MGF solution 

containing a malachite green concentration of 0.05 ppm and a formalin concentration of 

15 ppm. A partial water change (approximately 25%) was performed prior to the addition 

of the MGF solution, and carbon filters were removed.  During treatment, fish were 

exposed to MGF solution for approximately 7 hours.  Carbon filters were replaced to 

absorb malachite green and formalin, and the water was filtered for approximately 17 

hours. Tanks were monitored daily to identify and remove dead fish, which were then 
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stored at -80°C. Moribund fish were euthanized via an overdose of tricaine-methylsulfate, 

and subsequently stored at -80°C until processing. 

 

Viral DNA Isolation, Polymerase Chain Reaction (PCR), and Sequencing 

Prior to dissection, the weight and length of each tadpole (total length) and fish 

(standard length) was measured and recorded.  A liver sample was taken from each 

individual tadpole using sterile techniques.  Liver, spleen, and trunk kidney samples were 

dissected from each fish using sterile techniques.  Cross-contamination was minimized by 

processing individuals from each treatment separately.  DNA was isolated from 

individual tissue samples using the standard protocol from the DNeasy Blood and Tissue 

Kit (Qiagen). PCR was performed using 25 µL reactions containing 0.2 µL AmpliTaq 

Gold DNA Polymerase (Invitrogen), 2.5 µL 10X buffer, 1.5 µL MgCl2, 2.5 µL dNTP 

mix, 1 µL of each 20 µM primer, 2 µL template DNA, and 14.3 µL H2O.  The hot-start 

thermocycler conditions were as follows: 95 °C for 9 min, 40 cycles of 94 °C for 30 sec., 

50 °C for 30 sec., 72 °C for 45 sec, and 72 °C for 7 min. Primers described in Mao et al. 

(1997) were used to amplify a 500 bp fragment of the ranavirus major capsid protein 

(MCP) gene.  The sequences of positive PCR products were obtained via Sanger 

sequencing, and the resulting sequence was compared to nucleotide sequences stored in 

the National Center for Biotechnology Information database using the BLASTN 

similarity search algorithm (http://blast.ncbi.nlm.nih.gov) to confirm the presence of 

ranavirus DNA. 

 

Statistical Analyses 

To determine if there were significant differences among the survivorship curves 

for each treatment, Mantel-Cox log-rank tests (α= 0.05, one-tailed test) were conducted 
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for each pair of curves.  Moreover, for Challenge II, the cumulative survivorship curves 

for pairs of virus only and virus combined with MGF treatment curves were tested. To 

assess whether the weight and length of the fish tested in Challenge II significantly 

affected death or survivorship, the median and mean values for both variables, for each 

treatment group, were compared using Kruskal-Wallis (median) and ANOVA (mean) 

tests. 

 

RESULTS 

Challenge 1: Tadpole and Fish Susceptibility 

No evidence of bullfrog tadpole susceptibility to LMBV 

In the bullfrog tadpole susceptibility trial, the highest mortality was seen in the 

FV3 treatment (Figure 1.1).  Although mortality was present in all treatments, no viral 

DNA was detected in sham- or LMBV-injected animals (Table 1.2).  In contrast, FV3 

DNA was detected in treated tadpoles by PCR and confirmed by sequencing a fragment 

of the MCP gene. Comparisons of the survivorship curves indicate significant differences 

between the control and FV3 treatments (p=0.0038) and the FV3 and LMBV treatments 

(p= 0.0396).  However, no significant difference was found between the control and 

LMBV treatments. These results indicate that the tadpoles used in this study are 

susceptible to FV3, but not LMBV. 

 

FV3, SSMe, and LMBV DNA isolated from juvenile largemouth bass 

In the largemouth bass susceptibility trial, mortality was observed in all 

treatments (Figure 1.2).  However, the presence and treatment of a visible fungal 

infection with the MGF solution confounds the interpretation of the results.  Prior to the 
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visual evidence and treatment of the fungal infection, the survivorship curves show early 

instances of death in the FV3 treatment; however, the fungal infection could have been 

present, but not apparent.  During the experiment (including the infection and treatment 

period) all tanks received the same treatment regimen, so comparisons of the survivorship 

curves to detect significant differences were performed. Significant differences were only 

found between control and FV3 treatments (p = 0.0233) and FV3 and LMBV treatments 

(p = 0.0077).  No viral DNA was isolated from the animals in the control treatment, but 

viral DNA was isolated from each viral treatment (Table 1.2).  The cause of death in the 

fish tested cannot be attributed to the viral infection because of the confounding effects of 

the fungal infection and MGF treatment.  However, the isolation and verification of viral 

DNA from fish (until Day 15 of the experiment), strongly suggests that the fish tested 

were susceptible to FV3, SSMe, and LMBV. 

 

Challenge II: Susceptibility of Immunocompromised Fish 

The isolation of ranavirus DNA from the fish tested in Challenge I supports the 

hypothesis that the largemouth bass population tested is susceptible to LMBV, FV3, and 

SSMe.  Therefore, we conducted further experiments to compare the susceptibility of 

juvenile largemouth bass (from the same population) to LMBV and FV3 under conditions 

where the fish were immunocompromised (via daily exposure to MGF treatments) and 

immunocompetent (no exposure to MGF treatments).  Although the isolation of DNA 

from infected fish was an ideal verification method for positive ranavirus infection, DNA 

extraction attempts yielded degraded genomic DNA that could not be used for viral DNA 

detection in subsequent applications.  
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Virus challenge only (no MGF treatment) indicates moderate susceptibility to FV3 in 

immunocompetent fish 

Mortality was detected in trials where fish were exposed to FV3 and LMBV in the 

absence of daily MGF treatments. The cumulative survivorship of fish exposed to LMBV 

was significantly lower than that of fish injected with a sham (p = <0.0001), and 

marginally significantly lower than those injected with FV3 (p = 0.457) (Figure 1.3A).  

DNA extraction attempts yielded degraded DNA, so verification of viral DNA was not 

possible.  However, previous evidence of largemouth bass susceptibility to FV3 and 

LMBV, in combination with these results, suggests that the immunocompetent fish are 

susceptible to LMBV and moderately susceptible to FV3 in the absence of daily MGF 

treatments.   

 

Virus challenge in combination with MGF treatment indicates susceptibility to FV3 

and LMBV in immunocompromised fish    

In the presence of daily MGF treatments, mortality was observed in control, 

LMBV, and FV3 trials (Figure 1.3B). Although the cumulative survival seen in the 

control group was significantly different from that of the immunocompetent control 

group (p = 0.0019), it differed significantly from the survivorship of FV3 (p = 0.0001) 

and LMBV (p = 0.0002) (Table 1.3).  The cumulative survivorship of fish exposed to 

FV3 was not significantly different from that of those exposed to LMBV.  These results 

suggest that the daily MGF treatment alone contributes to mortality in largemouth bass, 

but that the combination of the MGF treatment with viral infection significantly increases 

mortality. DNA extraction attempts yielded degraded DNA, so verification of viral DNA 

was not possible.   
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Significant differences between cumulative survival of immunocompetent and 

immunocompromised fish suggest heightened ranavirus susceptibility in 

immunocompromised fish 

Direct comparisons of the cumulative survival of immunocompetent fish (no daily 

MGF treatments) to those of immunocompromised fish (daily MGF treatments) yield 

interesting results.  For the LMBV trials, the cumulative survivorship of 

immunocompromised fish differed significantly from the immunocompetent fish (p = 

0.0031, Figure 1.3C).  In both trials, mortality was observed throughout the length of the 

experiment.  In contrast, the FV3 trials indicate early mortality (until Day 9) in the 

immunocompetent fish and continuous mortality in the immunocompromised fish.  

Comparisons of FV3 survivorship curves indicated a significant difference between the 

two trials (p = <0.0001, Figure 1.3D).  This suggests that daily exposure to the MGF 

treatment significantly increases the susceptibility of juvenile largemouth bass to 

Ranavirus infection, and that this effect is more pronounced in the FV3 treatments. 

 

DISCUSSION 

The data presented here represent the first experiment used to examine the 

susceptibility of an amphibian species to LMBV, and the first endeavor to determine the 

effects of a commonly used antiparasitic treatment (MGF) on the susceptibility of 

largemouth bass to ranaviruses. Although LMBV is a multihost pathogen known to infect 

at least seventeen species of fish (Plumb & Zilberg 1999; Iwanowicz et al. 2013), its 

inability to infect bullfrog tadpoles will likely be repeated when other amphibian species 

are tested.  Phylogenetic analyses of ranaviruses place LMBV between the grouper-like 

ranaviruses and the amphibian-like ranaviruses (including FV3 and SSMe), which 
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indicates that LMBV evolved before the initial host switch into amphibians (Mao et al. 

1999b; Mavian et al. 2012; Abrams unpublished data). LMBV may simply lack the 

genetic mechanisms needed to bypass the amphibian immune system.   

Unlike LMBV, FV3-like viruses are known to infect fish, amphibian, and reptile 

hosts (Mao et al. 1999a; Docherty et al. 2003; Huang et al. 2009; Miller et al. 2011); 

thus, suggesting that these viruses not only evolved the ability to infect amphibians, but 

also maintained the genetic capabilities to infect fish. The results of the Challenge I 

experiments indicate the ability of FV3-like viruses to infect juvenile bass, but any 

symptoms associated with the infection may have been masked by the concurrent fungal 

infection. A previous investigation into the susceptibility of largemouth bass to a 

Ranavirus isolated from salamander larvae (commonly used as bait) discovered evidence 

of asymptomatic infection (Picco et al. 2010).  Picco et al. (2010) suggested that 

largemouth bass may act as a reservoir or vector for this particular strain, and the same 

may be true with regard to the FV3-like viruses (FV3 and SSMe) that were tested in this 

study. Largemouth bass regularly come into contact with potentially infected salamander 

larvae (eaten as fishing bait) and bullfrog tadpoles (cohabitants of artificial ponds), which 

could provide opportunities for amphibian ranaviruses to adapt to a largemouth bass host.  

Likewise, in the wild, largemouth bass are known to consume several salamander and 

frog species that are naturally occurring Ranavirus hosts (Hodgson & Hansen 2005). 

However, in both challenge studies, the fish were infected via injections, which is 

obviously not a natural infection route.  Future studies should test the susceptibility of 

largemouth bass to FV3-like viruses (and the transmission of these viruses from fish back 

into amphibians) via natural routes such as exposure to virus-infected water and 

cohabitation with infected amphibians. 
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Results from Challenge II experiments where juvenile largemouth bass were 

exposed to a common antiparasitic treatment (MGF) suggest that exposure inhibits the 

ability of the fish to combat ranavirus infections (Figure 1.3).  Significant differences 

between the control groups of immunocompromised and immunocompetent fish 

indicated that exposure to MGF alone significantly affected fish survival. Furthermore, 

the mortality observed in LMBV and FV3 treatments suggests that exposure to MGF 

heightens susceptibility to both ranaviruses, but that the effect is more pronounced in 

FV3 treatments (Figure 1.3C-D). Viral reservoirs are often more resistant to the pathogen 

than the targeted host species (Brunner et al. 2004), and this characteristic is reflected in 

the significantly higher survival rate observed in immunocompetent fish exposed to FV3 

than that seen in immunocompromised fish (Figure 1.4D). The relatively high survival of 

immunocompetent fish exposed to FV3 suggests that they are only moderately affected 

by the virus. Consequently, juvenile largemouth bass that are exposed to MGF treatments 

are more likely to contract an FV3-like virus than their immunocompetent counterparts, 

and may possibly transmit the virus to new habitats and species if relocated.  

The heightened susceptibility of immunocompromised fish reared in contact with 

potentially infected tadpoles is not only a concern with regard to the use of MGF 

treatments, but also other stress factors that can negatively affect fish immune function.  

Artificial stress factors that are common in aquaculture such as chemical exposure, poor 

handling, and confinement are associated with suppressed immune systems in fish, which 

may predispose fish in these environments to infectious diseases (Ellaesser & Clem 1986; 

Bly et al. 1997; Harris & Bird 2000).  In fact, the confinement of largemouth bass during 

fishing tournaments corresponds to increased prevalence of LMBV in largemouth bass 

populations (Schramm et al. 2006).  Further investigations into the susceptibility of 



 18 

largemouth bass to FV3-like viruses should evaluate the effects of artificial stressors on 

fish susceptibility. 

The use of non-chemical artificial stressors may prove more useful in studies of 

fish susceptibility to ranaviruses than the chemicals utilized here.  The exposure of fish to 

MGF treatments resulted in the extensive degradation of genomic DNA, so detection of 

ranavirus DNA in Challenge II fish was not possible.  The digestion of tissues extracted 

from fish that received daily MGF treatments resulted in greenish-blue homogenates due 

to the high concentration of malachite green that is often stored in the liver, kidneys, and 

spleen (Culp & Beland 1996).  It is also likely that formalin was also concentrated in 

these organs, and both malachite green and formalin are known to degrade nucleic acids 

(Ma & Harris 1988; Culp & Beland 1996). The inability to isolate DNA from the tissues 

of fish that were not regularly exposed to MGF treatments was unexpected considering 

DNA was extracted from Challenge I fish, which were exposed to the treatment for seven 

consecutive days. The most feasible explanation for this discrepancy is the length of time 

that the fish were frozen.  Fish from Challenge I were processed within a week after the 

end of the experiment, while fish from Challenge II (no MGF exposure) were frozen for 

over a month before processing. Repeat extractions from Challenge I fish more than a 

year after the original extraction also yielded highly degraded DNA. Several chemical 

processes occur during freezing, including the oxidation of leucomalachite green to 

malachite green and interactions between aldehydes and fish proteins (Culp & Beland 

1996; Chaijan et al. 2007); therefore, it is possible that the length of the freezing process 

may have resulted in conditions that enhanced the degradation of fish tissues and DNA.  

Based on these results, the use of non-chemical immunosuppressant factors would greatly 

increase our ability to isolate and quantify ranavirus DNA in challenged fish.  
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Evidence of emerging infectious diseases associated with introduced North 

American aquatic species is compelling, with several bacterial, fungal, viral (including 

ranaviruses), and protozoan pathogens linked to European disease emergence alone 

(Peeler et al. 2011). Furthermore, the recent increase in the scale of aquaculture 

production has facilitated the emergence of diseases through pathogen exchange with 

wild populations (Murray & Peeler 2005). The largemouth bass has been named one of 

the world’s 100 worst invaders, and it is considered an alien species in over 80 countries 

(Global Invasive Species Database 2013). Consequently, the susceptibility of juvenile 

largemouth bass to FV3-like viruses is of particular concern when the introduction of the 

species to new habitats is considered. The open pond designs utilized by many 

aquaculture facilities worldwide may inevitably allow the contact between cultured fish 

and wild amphibian populations.  The introduction of infected stocks to naïve localities 

may facilitate ranavirus emergence and host switching (Keisecker et al. 2001; Murray et 

al. 2005).  The spread of ranaviruses to new amphibian populations has been linked to 

anthropogenic activities including the bait, pet, and food trade, and largemouth bass have 

already been considered potential ranavirus vectors (Picco et al. 2010).  The added 

complication of heightened susceptibility to ranaviruses when exposed to commonly used 

antiparasitic treatments (MGF) signifies the urgent need to better understand the role that 

cultured largemouth bass may play in the spread of ranaviruses to amphibian populations. 

Considering the extensive introduction of largemouth bass worldwide, precautions should 

be taken to limit contact between cultured largemouth bass and wild amphibian 

populations. Furthermore, management strategies (i.e. selective screening for ranaviruses) 

should be developed to prevent the introduction of infected fish to naïve habitats where 

native amphibian populations may be at risk. 
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Table 1.1: Experimental setup for Challenge I and Challenge II. 

 * One control tank housed eight fish instead of nine. 

 

 

 

 

 

 

 

 

 

Experiment Virus Number 
of 

Tanks 

Number of 
Individuals 
per Tank 

Total 
Number of 

Fish Injected 
Challenge I: Tadpole Susceptibility     
 FV3 1 23 23 
 LMBV 1 23 23 
 Control  1 23 23 
Challenge I: Fish Susceptibility     
 FV3 1 13 13 
 SSMe 1 13 13 
 LMBV 1 13 13 
 Control  1 13 13 
Challenge II: Virus Challenge Only 
(No MGF treatment) 

    

 FV3 3 9 27 
 LMBV 3 9 27 
 Control*  3 8-9 26 

Challenge II: Virus Challenge 
Combined with MGF Treatment 

    

 FV3 4 9 36 
 LMBV 4 9 36 
 Control  4 9 36 
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Table 1.2: Challenge I: Detection of viral DNA in bullfrog tadpoles and largemouth 
bass challenged with various ranaviruses. 
 

* Number of animals dead or euthanized during the specified week. 
† Amplification of ranavirus major capsid protein (MCP). 

 

 

 

 
 
 

Test Organism Ranavirus 
Isolate 

Weeks Post 
Infection 

Number of 
Animals 
Tested* 

Number 
Positive 
Animals 
by PCR† 

Proportion  
Ranavirus- 

Positive 

R. catesbeiana FV3 Week 1 9 5 0.56 
  Week 2 2 1 0.50 
  Week 3 12 7 0.58 
  Total 23 13 0.56 
 LMBV Week 1 1 0 0.00 
  Week 2 2 0 0.00 
  Week 3 20 0 0.00 
  Total 23 0 0.00 
M. salmoides FV3 Week 1 5 4 0.80 
  Week 2 6 4 0.67 
  Week 3 2 2 1.00 
  Total 13 10 0.77 
 SSMe Week 1 3 3 1.00 
  Week 2 4 4 1.00 
  Week 3 6 4 0.67 
  Total 13 11 0.84 
 LMBV Week 1 0 0 0.00 
  Week 2 7 7 1.00 
  Week 3 6 1 0.17 
  Total 13 8 0.62 
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Table 1.3: Challenge II:  Results of survival curve comparisons based on Mantel-Cox 
log-rank test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Survival Curves Tested p-value for Viral 
Challenge Only 

p-value for Viral 
Challenge Combined 
with MGF treatment 

Control vs. LMBV vs. FV3 <0.0001 
 

0.0001 
 

Control vs. LMBV <0.0001 
 

0.0002 
 

Control vs. FV3 0.0433 
 

0.0001 
 

LMBV vs. FV3 0.0157 
 

0.8630 
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Figure 1.1: Challenge I: Percent cumulative survival of R. catesbeiana tadpoles 
infected with FV3 and LMBV. Cumulative survival for the negative controls is shown as 
a solid line.  Significant differences in the survival curves were calculated using a 
Mantel-Cox log-rank test.  No significant difference was found between the control and 
LMBV treatments (p = 0.2287).  Significant differences were found between the control 
and FV3 treatments (p = 0.0038) and the FV3 and LMBV treatments (p = 0.0396). 
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Figure 1.2 Challenge I: Percent cumulative survival of M. salmoides juveniles 
infected with FV3, SSMe, and LMBV. Survival for the negative controls is shown as a 
solid line.  The gray box highlights the period when visible signs of a fungal infection 
were present in all tanks.  During this time, fish received daily doses of the antiparasitic 
MGF treatment.  Significant differences in the survival curves were calculated using a 
Mantel-Cox log-rank test.  No significant difference was found between control and 
LMBV treatments (p= 0.6259), control and SSMe treatments (p = 0.9271), FV3 and 
SSMe treatments (p = 0.0917), and LMBV and SSMe treatments (p = 0.5516).  
Significant differences were found between control and FV3 treatments (p = 0.0233) and 
FV3 and LMBV treatments (p = 0.0077). 
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Figure 1.3: Challenge II: Percent cumulative survival of M. salmoides juveniles 
exposed to virus only and those exposed to virus in combination with MGF treatment. 
See Table 1.3 for survival curve comparison results based on Mantel-Cox log-rank tests. 
Panel A) Cumulative survival for fish infected with LMBV and FV3 in the absence of 
antiparasitic MGF treatment.  Cumulative survival for the negative controls is shown as a 
solid line. Panel B) Cumulative survival for fish infected with LMBV and FV3 in the 
presence of daily antiparasitic MGF treatment. Cumulative survival for the negative 
controls is shown as a solid line. Panels C and D) Cumulative survival for LMBV and 
FV3 treatments under both virus challenge only and virus challenge combined with MGF 
treatment, respectively.  Significant differences were detected between LMBV treatment 
curves (panel C, p = 0.0031) and between FV3 treatment curves (panel D, p < 0.0001). 
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Figure 1.4: Length and weight distributions for dead/moribund and surviving M. 
salmoides juveniles exposed to virus only and those exposed to virus in combination with 
MGF treatment.  Panels A and C) Standard length and weight distributions for 
dead/moribund and surviving fish infected with virus only.  All fish in the control 
treatment survived until the end of the experiment, so the data was excluded from the 
analysis. Kruskal-Wallis (medians) and ANOVA tests (means) were performed, and no 
significant differences in the length and mass values were detected between 
dead/moribund fish and those that survived. Panels B and D) Length and weight 
distributions for dead/moribund and surviving fish exposed to virus in combination with 
MGF treatment. Kruskal-Wallis (medians) and ANOVA tests (means) were performed, 
and no significant differences in the length and mass values were detected between 
dead/moribund fish and those that survived. 
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Chapter 2:  Recent host-shifts in ranaviruses: signatures of positive selection 

in the viral genome 

 

ABSTRACT 

Ranaviruses have been implicated in recent declines in global amphibian 

populations. Compared to the larger Iridoviridae family to which they belong, 

ranaviruses have a wide host range in that species/strains are known to infect fish, 

amphibians, and reptiles, presumably due to recent host switching events. We used eight 

sequenced ranavirus genomes and two selection-detection methods (site-based and 

branch-based) to identify genes that exhibited signatures of positive selection, potentially 

due to the selective pressures at play during host switching. We found evidence of 

positive selection acting on four genes via the site-based method, three of which are 

newly-acquired genes unique to ranavirus genomes. Using the branch-based method, we 

identified eight additional candidate genes that exhibited signatures of dN/dS greater than 

one in the clade where intense host switching has occurred. We find that these branch-

specific patterns of elevated dN/dS are enriched in a small group of viral genes that have 

been most recently acquired in the ranavirus genome, compared to core genes that are 

shared among all Iridoviridae. Our results suggest that the group of newly acquired genes 

in the ranavirus genome may have undergone recent adaptive changes that have 

facilitated interspecies and interclass host switching. 

 

INTRODUCTION 

Since the 1980s, amphibian populations have increasingly declined on a global 

scale, and by 2004, at least 32% of all amphibian species were categorized as threatened 
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by the International Union for Conservation of Nature (Collins & Storfer 2003; Stuart et 

al. 2004). In addition to several biotic and abiotic factors, two emerging pathogens, a 

chytrid fungus (Batrachochytrium dendrobatidis) and a virus (ranavirus), have been 

implicated in this ecological crisis (Daszak et al. 1999). Ranavirus is a member of the 

Iridoviridae family, which consists of large dsDNA viruses that are currently divided into 

five genera (Williams et al. 2005). Two of these infect invertebrates (Iridovirus and 

Chloriridovirus), and three infect heterothermic vertebrates (Lymphocystivirus, 

Megalocytivirus, and Ranavirus).   Lymphocystivirus and Megalocytivirus solely infect 

fish, but ranaviruses infect fish, amphibians, and reptiles, presumably due to recent host 

switching events (Jancovich et al. 2010). Direct contact and ingestion of contaminated 

water are known transmission modes, and infection leads to necrosis of the liver, spleen, 

skin, and haematopoietic tissue (Lesbarreres et al. 2012).  The bait, pet, and food 

industries are major factors in the spread of these pathogens geographically to naïve 

localities and species (Jancovich et al. 2005; Picco & Collins 2008). Although both 

pathogens pose a lethal threat to amphibians, ranaviruses tend to cause recurrent 

population die-offs that target larval stage amphibians (Chinchar 2002).  Numerous 

ranavirus species/strains have contributed significantly to amphibian die-offs on five 

continents, and are known to infect over 70 amphibian species (Daszak et al. 1999; Miller 

et al. 2011).  

Ranaviruses are emerging pathogens, meaning amphibian populations have only 

recently been affected due to increased incidence, geography, or host range (Rachowicz 

et al. 2005).  There is significant evidence for host switching of ranaviruses between 

vertebrate classes (Jancovich et al. 2005, 2010; Bandin & Dopazo 2011) as well as 

documented instances of simultaneous infections of sympatric fish and frogs with the 

same viral isolate (Mao et al. 1999; Bayley et al. 2013). In viral host switching, the virus 
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of one species evolves such that it can replicate and spread in a new species. There is 

great interest in understanding this process, not just for conservation reasons, but also 

because it underlies the emergence of new human diseases (Wain et al. 2007; Parrish et 

al. 2008; Choe et al. 2011; Demogines et al. 2012a, 2012b, 2013). In general, host 

switching is thought to occur via a series of steps that involve both geographic movement 

of viruses (leading to exposure to new hosts), and in most cases, the evolution of viral 

genomes for compatibility with new host species (Herfst et al. 2012; Kaelber et al. 2012).  

With regard to host switching in ranaviruses, the process probably began with the 

exposure of a novel amphibian host to a viral strain that originated in a fish host (Figure 

2.1).  New mutations, including point mutations, insertions, deletions, and even the 

acquisition or loss of whole genes, may have made a certain strain of the fish virus 

compatible with the new amphibian host species.  Following initial infection, additional 

mutations or gene acquisitions may have increased viral fitness in a new host, thus 

allowing local transmission within species and between classes.  Indeed, ranavirus 

genomes have diverged in sequence, and are known to have acquired several new genes 

that are not found in the broader Iridoviridae family (Eaton et al. 2007).  These new 

genes may have been acquired via the processes of horizontal gene transfer or 

recombination. The presence of several virus-encoded cellular homologs in ranavirus 

genomes supports the acquisition of new viral genes by horizontal transfer from host 

genomes (Tidona & Darai 2000). In addition, the presence of several ranavirus genes 

without corresponding cellular homologs, coupled with the high rate of recombination 

seen in these viruses, suggests that recombination is also a significant source of new 

genes (Eaton et al. 2007, Chinchar et al. 2011). The situation with ranaviruses may be 

analogous to the evolution of simian immunodeficiency viruses, where the continued 
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acquisition and evolution of new viral genes led to expansion of these viruses to new 

primate hosts and ultimately to humans, giving rise to HIV (Gifford 2011). 

The main factor limiting our ability to understand the broad host range of 

ranaviruses is the paucity of information regarding the viral genes that govern host-

specificity. Ranavirus genomes encode approximately 100-140 putative gene products, 

most of which have unknown functions (Grayfer et al. 2012).  Computational tools that 

can detect episodes of rapid adaptation of specific genes, in conjunction with the 

increased availability of genomic data, have provided new avenues for identifying 

candidate genes potentially involved in dynamic processes such as host switching 

(Sawyer & Elde 2012).  In many cases, genes that are involved in host-pathogen 

interactions exhibit episodes of intense positive selection during the process of 

establishing a new host species (Shackleton et al. 2005; Hoelzer et al. 2008; Meyerson & 

Sawyer 2011; Bhatt et al. 2013). Genes identified via these methods are often involved in 

immune evasion, replication, reproduction, gene expression, host-pathogen coevolution, 

and host defenses (Endo et al. 1996; Yang et al. 2000; McLysaght et al. 2003; Harrison 

& Bonning 2004; Shackleton et al. 2005; Sabeti et al. 2006; Kosiol et al. 2008; Elde et 

al. 2012).  However, the absence of positive selection does not necessarily mean that 

genes are not key factors in host range and immune evasion, just as the presence of 

positive selection does not automatically assign genes to these roles. 

Methods used to study adaptive molecular evolution typically involve the 

identification of gene regions or specific codons where the nonsynonymous substitution 

rate (dN) exceeds the synonymous substitution rate (dS).  This is expected only when 

nonsynonymous mutations offer a selective advantage and become fixed at a higher rate 

than expected under neutral theory (Goldman & Yang 1994). In practice, dN/dS >1, 

dN/dS=1, dN/dS <1 are inferred to reflect positive selection, neutral evolution, and 
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purifying selection respectively. Two widely used selection-detection methods identify 

individual codon sites (site-based model) and specific branches along a phylogeny 

(branch-based model) that exhibit signatures of positive selection (Yang 1998; Nielsen & 

Yang 1998). The availability of several complete Iridoviridae genomes from viruses 

infecting vertebrates provides the opportunity to assess the prevalence of positive 

selection within specific genes and across the ranavirus phylogeny. 

Here, we describe a genomic-scale characterization of ranavirus evolution.  The 

goals of this study were to detect viral genes that are under positive selection, particularly 

on branches in the phylogeny where potential host switching events have occurred. Using 

eight fully sequenced ranavirus genomes, we analyzed 46 genes for evolutionary 

signatures. We found evidence of positive selection acting on four genes via the site-

based method, three of which are newly acquired genes unique to ranavirus. Using the 

branch-based method, we identified eight additional candidate genes that exhibited 

signatures of dN/dS >1 along at least one branch in the clade where intense host 

switching has occurred. We also found evidence of significantly higher dN/dS values for 

ranavirus-specific genes along individual branches when compared to core genes shared 

among all Iridoviridae. We conclude that adaptive evolution is occurring in newly 

acquired viral genes, and propose that both the acquisition and the subsequent evolution 

of these genes has been key to facilitating host switching of these viruses. 

 

METHODS 

Data Collection and Recombination Analyses 

Sequences for 75 open reading frames (ORFs) from the fifteen complete 

vertebrate Iridoviridae genomes were downloaded from Genbank (Table 2.1).  These 
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ORFs were placed into specific gene groups based on the genomic analysis of Eaton et al. 

(2007), which identified orthologous genes throughout the family using a combination of 

BLAST searches and Viral Orthologous Clusters software (Eaton et al. 2007). Genes 

from viral genomes not analyzed in Eaton et al. (2007) were identified via BLAST 

searches and analyses conducted by the authors of the published genome sequences 

(Huang et al. 2009; Jancovich et al. 2010; Lei et al. 2012; Mavian et al. 2012a; Mavian et 

al. 2012b). The first group, the Core gene group, included 26 ORFs that have orthologs in 

all members of the Iridovirdae family (including the two invertebrate genera Iridovirus 

and Chlorididovirus).  The second group, the RV gene group, included 23 ORFs that 

have orthologs only found in Ranavirus.  The third group, the F/A/R gene group, 

included 6 ORFs that have orthologs only found in the Target Clade that includes the 

FV3, STIV, RGV, TFV, CMTV, ATV, ESV, and EHNV species/strains. The remaining 

ORFs were identified as “Other” and included 20 ORFs that are shared between ranavirus 

species/strains and at least one other genus (including those that infect invertebrates).  

The sequences for each ORF were aligned using Clustal W (Larkin et al. 2007). 

Four ORFs with alignments that were judged to be unreliable were excluded from further 

analyses (Supplementary Table S1).  CodonTest (Delport et al. 2010) was then used to 

determine the best nucleotide substitution model for the remaining 71 alignments.  The 

nucleotide substitution models were then used to calibrate the program GARD (Genetic 

Algorithm for Recombination Detection) (Pond et al. 2006) that was used to test for the 

presence of recombination in each ORF. A total of 25 ORFs with significant evidence of 

recombination were split based on the location of the recombination breakpoints, and 

each component was individually tested in subsequent analyses. 
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Phylogenetic Reconstruction 

Phylogenetic trees were reconstructed for individual ORF alignments using the 

rapid bootstrap command in RAxML, which automatically applies the GTR + Γ model 

(500 bootstrap replicates were used to assess node support).  Preliminary analyses of 

alignments that included sequences from the fifteen Iridoviridae and ten ranavirus 

species/strains resulted in highly divergent phylogenies that fell outside of the ideal range 

for the selection analyses (with some divergences greater than 20 nucleotide substitutions 

per codon). To analyze divergences closer to one nucleotide substitution per codon, 

which is a commonly used standard (Anisomova 2001), only alignments using the eight 

sequences from the Target Clade were used in subsequent analyses. Please note that the 

apparent topological differences in the 15-taxon tree and the 8-taxon trees are due to the 

inclusion of additional data and the placement of the root.  Supplemental Figure S2.4 

illustrates that the relationship between (ATV, (EHNV, ESV)) is consistent between the 

unrooted topologies.  Moreover, the rooted topology seen in Supplemental Figure S2.4b 

can be recovered in Supplemental Figure S2.4a when the root of the 15-taxon tree is 

moved to match that of the 8-taxon tree. Thus, the phylogenetic relationships are 

consistent among the phylogenies.   

 The resulting eight-taxon phylogenies were accepted based on the criteria of a 

fully resolved topology and bootstrap support values that were greater than or equal to 50 

for the following clades: (FV3, STIV, RGV), (FV3,STIV,RGV,TFV,CMTV), and (ATV, 

EHNV, ESV).  A total of 25 ORFs that did not meet these requirements were excluded 

from the analyses, and the remaining Core (18), RV (11), F/A/R (6), and Other (11) 

ORFs were further analyzed. The resulting topologies for each ORF, without the 

inclusion of branch lengths, were then used as input topologies for the selection detection 
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analyses in the PAML4 (Phylogenetic Analysis by Maximum Likelihood) software 

package (Yang 2007).  

To determine the overall phylogenetic relationships of the vertebrate Iridoviridae 

viruses, a phylogenetic tree was reconstructed via maximum likelihood using a 

concatenated dataset of the 26 Core group genes (Figure 2.1; Supplemental Figure S2.1). 

The phylogeny was reconstructed using RAxML (Stamatakis 2006) under the GTR + Γ 

model with the data partitioned by gene, and 500 bootstrap replicates were used to assess 

node support. 

 

Detection of Positive Selection 

Identifying Selection at Specific Sites 

Site-based models were used to identify specific sites (codons) under positive 

selection via the NSsites models implemented in PAML4. The NSsites models allow 

dN/dS to vary among sites, and they use likelihood ratio tests (LRT) and Bayesian 

analyses to identify positively-selected sites. Each test involves the comparison of a null 

model (M8a) to a model that incorporates positive selection (M8). M8a versus M8 

models were run for each ORF, and the significance of the likelihood-ratio scores was 

determined via the use of a chi-square distribution (α = 0.05).  The models were run 

under the f61 codon frequency models. Sites that fell into positively-selected classes were 

then subjected to a Bayes empirical Bayes (BEB) analysis, which calculates a posterior 

probability of a site fitting into a dN/dS>1 class. The sites detected were reported as under 

positive selection if they had a posterior probability of greater than 0.80 under the BEB 

method.  
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Identifying Selection along Branches 

Branch-based models seek to identify specific branches along a phylogeny that 

exhibit signatures of positive selection. To test for positive selection along specific 

branches in the phylogeny, the free-ratio model that is implemented in PAML4 was used 

to estimate branch-specific dN/dS ratios. The free-ratio model allows a unique dN/dS 

value to be calculated for each branch in the phylogeny. The free-ratio model was run for 

each ORF under the f61 codon frequency model to account for codon usage bias. To 

maximize topological consistency in our analyses, we constrained the topology of gene 

trees with alternate topologies to the topology supported by Figure 2.2 (accepted 

topology).  We then ran the branch-based analysis and used likelihood ratio tests to 

determine if the results were significantly different between the two trees.  The accepted 

topology is presented in cases where no significant difference was detected. Likelihood-

ratio tests were performed to determine if the likelihood value for each branch that was 

assigned dN/dS >1 was statistically significant when compared to the likelihood value of 

the same branch when fixed at dN/dS=1.  The dN/dS of the target branch was fixed at 1, 

and the likelihood was calculated (null model).  The null model was then compared to the 

alternative model, which fixed the target branch at the dN/dS value calculated under the 

free-ratio model.   

To determine if there were significant differences in dN/dS values among the 

Core, RV, and F/A/R gene groups, we compared both the median and mean dN/dS values 

for each group for each branch using Kruskal-Wallis and ANOVA tests, respectively. 

The dN/dS values of several branches were undefined due to zero observed synonymous 

changes along the branch (dN/0). However, branches with S = 0 are not uninformative 

with respect to selection; they are likely to be evolving near neutral if N is small, and 

under positive selection if N is large. Therefore, to include these branches in our analyses, 
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we assigned a value of dN/dS= 0.95 (near neutral) for branches with observed N:S ratios 

greater than 1:0 and less than 4:0.  Likewise, we assigned a value of dN/dS= 2.0 to 

branches with observed N:S values greater than 4:0 to account for likely positive 

selection. We also obtain consistent results where a dN/dS value of 1.5 is assigned, 

instead of 2.0, to this latter class.  These assignments were consistent among all gene 

groups to keep the relative differences of the median and mean dN/dS values consistent 

for each data set.  

 

Protein Structure Prediction Analyses 

The secondary protein structure for each of the ORFs found to be under positive 

selection under the NSsites method was determined using the Phyre2 server (Kelley and 

Sternberg 2009).  The full-length FV3 amino acid sequence for each ORF was used as the 

input sequence for the analysis.  The predicted domains, secondary structure, and 

disorder were determined and a relative confidence value for each component was 

calculated.  The positively selected sites identified by the NSsites methods were then 

mapped onto the predicted secondary structure of the protein.  

 

RESULTS 

In previous studies the full genome sequences of 15 vertebrate Iridoviridae 

viruses have been determined (Table 2.1).  Ten of these are ranaviruses, and represent 

viruses isolated from bony fish, salamander, frog, and turtle species (Figure 2.2, 

Supplemental Figure S2.1). These viral genomes vary somewhat in length and gene 

content, and contain approximately 100-140 genes. The genes examined in this analysis 

were identified previously as orthologs via a whole-genome comparative analysis (Eaton 
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et al. 2007; Methods). In total, we were able to align 75 orthologs from these genomes, 

and assigned each of these 75 genes to four groups depending on when each gene was 

acquired in the phylogenetic history of these viruses (Figure 2.2).  The “Core” gene group 

includes 26 genes found in all 15 sequenced Iridoviridae genomes.  The “RV” (ranavirus) 

gene group comprises 23 genes specific to the 10 ranavirus genomes, but not found in the 

other 5 genomes. This group of genes was gained prior to the initial host switch from fish 

to amphibians (Jancovich et al. 2010). The “F/A/R” (fish/amphibian/reptile) gene group 

includes 6 genes found exclusively in the Target Clade, which is the monophyletic group 

of ranaviruses, excluding Singapore Grouper Iridovirus (SGIV) and Grouper Iridovirus 

(GIV).  The Target clade includes the group of viruses that has been newly transmitted 

beyond fish. This F/A/R gene group is particularly interesting, because these genes are 

specific to the clade of viruses that has experienced the most recent host switching. 

Lastly, the remaining 20 genes were assigned to the “Other” gene group, which included 

genes found in ranaviruses and at least one other Iridoviridae genus (i.e., Ranavirus and 

Chloriridovirus but no other genera).   

 

Four Genes Under Positive Selection Identified Using Site-based Tests 

We next analyzed a subset (46/75 genes) of the individual gene alignments for 

patterns of non-synonymous and synonymous substitution using the NSsites codon 

models in PAML (Yang 1997). The 29 genes excluded from the analysis failed to meet 

the outlined criteria based on sequence alignment and phylogenetic reconstruction 

(Methods; Supplemental Table S2.1). Of the 46 analyzed, we identified four genes that 

exhibited signatures of positive selection under the NSsites models (Table 2.2). This 

group of genes includes a single member of the Core gene group (ORF53R), one gene 

from the RV gene group (ORF79R), and two genes from the F/A/R gene group (ORF40R 
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and ORF71R). Evidence of selection acting on RV and F/A/R genes might be explained 

by the fact that these genes are recently acquired and unique to a single genus where host 

switching is evident.  Relative to the newly acquired RV and F/A/R genes, evidence of 

selection acting on Core genes is unexpected due to the highly conserved nature of this 

group of genes within Iridoviridae. The conservation of Core genes may indicate that, in 

general, these genes are essential to the viral life cycle and that they are subject to 

purifying selection pressures.  

In addition to identifying individual genes that have experienced positive 

selection, specific codons under positive selection were also identified (Table 2.2). At 

least one codon with a posterior probability of >0.80 was identified for each gene. To 

determine whether the positively-selected sites fell into structurally flexible regions of the 

protein, we utilized the Phyre2 server to predict the secondary structure of the proteins 

encoded by the four genes that exhibited signatures of positive selection under the 

NSsites model. We then mapped the amino acid sites onto the secondary structure to 

determine if any of the residues resided in areas of conformational flexibility, described 

as unstructured regions with high disorder (Supplemental Figure S2.2).  We found that 

1/1 site for ORF53R, 10/10 sites for ORF79R, 3/8 sites ORF40R, and 1/4 sites for 

ORF71R fell into unstructured (neither α-helix nor β-strand) regions of the protein. 

Unstructured regions of proteins may be more tolerant to conformational and adaptive 

changes (Nilsson et al. 2011).  

 

Eleven Genes with dN/dS >1 Identified Using Branch-Based Tests 

Based on the evolutionary relationships of the viral strains and the species from 

which they were isolated, we can support hypotheses about where host switching events 

occurred in the ranavirus phylogeny (Jancovich et al. 2010). For instance, we can support 
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the hypothesis that the original host switch involved a jump from fish to salamanders 

(Figure 2.2, point A).  Moreover, we can also support a host switch from fish to frogs or 

from fish to frogs and turtles on the lineage leading to the (FV3,STIV,RGV,TFV,CMTV) 

clade (Figure 2, point B).  To examine evidence for accelerated gene evolution of any 

genes on these lineages, we next analyzed branch-specific patterns of dN/dS for each of 

our 46 genes.  Whereas the previous test for selection identified specific codons that have 

dN/dS >1, in this analysis each gene was assigned a global dN/dS value along every 

branch of the tree.  

We identified 11 genes that exhibited signatures of dN/dS >1 along at least one 

branch under the free-ratio test. These included 3 genes from the RV and Core gene 

groups (Figure 2.3), 4 genes from the F/A/R gene group (Figure 2.4), and 4 genes from 

the Other gene group  (Supplemental Figure S2.3). In some cases, dN/dS values were >> 

1, as for gene ORF40R on the branch leading to Tiger Frog Virus (TFV), where dN/dS = 

3.7 (Figure 2.4b). In other cases, dN/dS values were closer to one, and may reflect neutral 

evolution rather than positive selection. Likelihood-ratio tests were performed to 

determine if the likelihood values obtained with individual branches assigned dN/dS >1 

are statistically greater than likelihood values obtained when the same branch is fixed at 

dN/dS=1.  Based on this analysis, on no branch is dN/dS significantly greater than one; 

however, the identification of genes with elevated dN/dS signatures is notable considering 

dN/dS is averaged across the entire gene. There is reason to believe that some of these 

signatures could still be meaningful, because three of these same genes (ORF79R, 

ORF40R, and ORF71R) were also previously identified as evolving under positive 

selection in the site-based analysis described above (Table 2). 

Despite the fact that F/A/R represents the smallest gene group analyzed, four of 

the six F/A/R genes analyzed (ORF39R, ORF40R, ORF71R, and ORF93L) exhibited 
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dN/dS >1 on at least one branch (Figure 2.4a-d). When compared to the percentage of 

genes with dN/dS >1 branches for the Core (5%), RV (18%), and “Other” (36%) groups, 

genes from the F/A/R group (67%) exhibit a relatively higher percentage of genes with 

elevated dN/dS values.  Based on this result and the identification of two out of the six 

F/A/R genes via the site-based method (Table 2.2), we conducted an enrichment analysis 

to determine the probability that four randomly selected genes would belong to the F/A/R 

gene group.  We calculated probabilities of p = 0.00009 when 46 genes were included 

and p = 0.00001 when 75 genes were included in the analysis. These results are 

consistent with selection in ranaviruses having been biased towards viral genes that are 

new to this clade. 

 

Significant Differences in Median and Mean dN/dS Values of Core, RV, and F/A/R 

Gene Groups Detected Using Branch-Based Tests   

We wished to further examine whether there are significant differences in branch 

dN/dS values among the Core, RV, and F/A/R gene groups. For each of the 13 branches 

in the Target Clade (the clade where host switching is pervasive; Figure 2.2), median and 

mean dN/dS values for each gene group were compared. For each branch, we performed a 

Kruskal-Wallis (K-W) test (α = 0.05) to compare the median dN/dS values for each gene 

group, and a one-way ANOVA (α=0.05) to compare the mean values. On 4 of the 13 

branches, significant differences were noted (Figure 2.5).  We detected significant 

differences in the medians and means for Branch B (K-W p = 0.001 and ANOVA: p = 

0.0001) and the ATV branch (K-W: p = 0.0037 and ANOVA: p = 0.0005) (Figure 2.5b, 

d).  In both cases, the median and mean dN/dS values were highest for the F/A/R gene 

group.  However, while F/A/R dN/dS values were significantly different from the Core 

gene group values, they did not differ significantly from the RV gene group based on 
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post-hoc tests.  We also detected a significant difference in the medians for the TFV 

branch (p = 0.0381) using the K-W test (Figure 2.5c); however, the ANOVA was not 

significant (p > 0.05).  Lastly, Branch A was marginally significantly different in the 

ANOVA analysis (p = 0.0446), but there was no significant difference in the medians 

based on the K-W test (p > 0.05).  Higher dN/dS values for the ranavirus-specific gene 

groups along Branch A and Branch B could indicate selection acting prior to a potential 

host switch between amphibians and reptiles, which is the most recent putative host 

switching event examined in this study.  Moreover, this interpretation might also apply to 

the ATV branch, which corresponds to selection following a host switch from fish to 

amphibians.  The trend of higher mean and median values for the F/A/R gene group for 

three of the branches (Figure 2.5b-d) is consistent with the idea that F/A/R genes are 

involved in ranavirus host switching. 

 

DISCUSSION 

The phylogeny of Iridoviridae viruses, particularly in the ranavirus clade, is 

consistent with extensive host switching by these viruses (Figure 2.2). The adaptation of 

a virus to a novel host species is often paired with intense episodes of positive selection 

acting on genes that increase the compatibility between the virus and host. We conducted 

a genome-wide scan for genes and lineages under positive selection to gain further 

insights into ranavirus host switching. We identified a total of twelve genes exhibiting 

signatures of dN/dS >1, and six of these are in a special category of genes, which have 

been newly acquired by these viruses (RV and F/A/R gene groups). We expected that 

genes in the RV and F/A/R gene groups may play a fundamental role in the adaptation of 

ranaviruses to new hosts, because the acquisition of these genes appears to have been 



 42 

coincident with the onset of host switching in this virus family (Jancovich et al. 2010). In 

support of this hypothesis, several approaches show that dN/dS tends to be elevated in 

these gene families.  

Regarding the six ranavirus-specific genes that we identified as adaptively 

evolving, several aspects are notable. ORF79R (RV gene group) was the only gene to 

have dN/dS>1 on the branch that separates the two major ranavirus clades (Figure 2.3c,), 

which suggests gene evolution as the viruses spread to new frog species (Figure 2.2). 

Thus, ORF79R may represent a gene that was fundamental to the initial host switch from 

fish to salamanders and possibly subsequent jumps. The identification of four genes 

specific to the F/A/R gene group with dN/dS>1 on at least one branch supports the 

hypotheses of intensified positive selection acting on these newer genes. Three of the four 

identified F/A/R genes are of unknown function and have no known homologs.  It is 

possible that these genes encode novel virulence factors, which are typically proteins that 

counteract host-specific immune defenses.  For instance, examinations of Poxviridae and 

Herpesvirales genomes have revealed the presence of virus-encoded homologs of cellular 

cytokines that have evolved to modulate the host immune response (Slobedman et al. 

2009). In fact, the F/A/R gene ORF26R (alpha subunit of eukaryotic initiation factor 2) is 

a virus-encoded cellular homolog (Eaton et al. 2007).  Although no evidence of positive 

selection was detected in ORF26R, a recent study using a knockout approach showed that 

the impairment of the gene in FV3 resulted in decreased virulence in vivo (Chen et al. 

2011). We also found that mean and median dN/dS values for several branches in the 

ranavirus phylogeny were significantly higher for the F/A/R group when compared to the 

Core gene group (Figure 2.5).  Considering this result and the low probability (p = 

0.00009) of finding dN/dS >1 branches in four of the six F/A/R genes by random chance, 

we can conclude that F/A/R genes represent a group of newly acquired viral genes that 
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have undergone adaptive changes that may have facilitated interspecies and interclass 

host switching (Figure 2.1).  

There are other examples where adaptive evolution of virus genomes has 

accompanied host switching events. For instance, parvoviruses experienced adaptive 

evolution of the gene encoding the surface-exposed viral protein, capsid, after this virus 

first became established in dogs in the 1970s (Hoelzer et al. 2008). These evolutionary 

changes improved interaction between capsid and the dog-encoded cell surface receptor 

for virus entry, transferrin receptor. Also, a recent study of the adaptive evolution of 

influenza viruses showed that elevated adaptive evolution was associated with the 

establishment of avian influenza viruses in swine populations (Bhatt et al. 2013). In this 

case, signatures of selection were located across the genome and so the specific host-

virus interactions that drove this evolution are unknown. With regard to ranaviruses, this 

situation is unique from these other examples because the cross-species transmission of 

these viruses appears to have coincided with both the addition of new genes to the viral 

genome, as well as their evolutionary refinement for infection of new host species.  

Although we did not explicitly test the hypothetical model presented in Figure 

2.1, the relatively recent acquisition of new genes (RV and F/A/R genes) coupled with an 

excess of nonsynonymous mutations in these genes supports the idea that gene gain 

followed by gene-specific mutation may influence ranavirus host switching.  Moreover, 

evidence of simultaneous infections of sympatric fish and amphibian species with the 

same viral isolates (Mao et al. 1999) supports the idea that both interspecies and 

interclass transmission may be a common occurrence. However, additional studies of 

ranavirus spread in natural environments are needed to specifically test the model.  

Furthermore, estimates of viral divergence times and the timing of gene acquisitions are 

needed to fully understand the emergent nature of ranaviruses. Although humans have 
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influenced the movement of aquatic species for millennia, it is more likely that recent 

human activities (globalized food, bait, and pet trades) have enhanced the spread of these 

pathogens to naïve species. Unfortunately, since the rates of evolution in Iridoviridae are 

currently unknown, uses of molecular clock methods are not possible (Ridenhour & 

Storfer 2008). In the absence of this data, the genes identified in this study are prime 

candidates for knockout and site-directed mutagenesis analyses to determine gene 

function and the effect of the genes on viral host-range in this unique genus. 
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Table 2.1: Fifteen genomes utilized in the present study and their host species. 

 

 

 

Viral Species/Strain Genus Host Species Genbank Accession No. 

Frog virus 3 (FV3) Ranavirus Rana pipiens AY548484 (Tan et al. 
2004) 

Soft-shelled turtle 
iridovirus (STIV) 

Ranavirus Trionyx sinensis EU627010 (Huang et al. 
2009) 

Rana grylio virus 
(RGV) 

Ranavirus Rana grylio JQ654586 (Lei et al. 2012) 

Tiger frog virus (TFV) Ranavirus Rana tigrina  AF389451 (He et al. 2001) 

Common midwife toad 
virus (CMTV) 

Ranavirus Alytes obstetricans JQ231222 (Mavian et al. 
2012a) 

Ambystoma tigrinum 
virus (ATV) 

Ranavirus Ambystoma 
tigrinum 

AY150217 (Jancovich et 
al. 2003) 

Epizootic 
haematopoietic 
necrosis virus (EHNV) 

Ranavirus Oncorhynchus 
mykiss 

FJ433873 (Jancovich et al. 
2010) 

European sheatfish 
virus (ESV) 

Ranavirus Silurus glanis JQ724856 (Mavian et al. 
2012b) 

Singapore grouper 
iridovirus (SGIV) 

Ranavirus Epinephelus 
tauvina 

AY521625 (Song et al. 
2004) 

Grouper iridovirus 
(GIV) 

Ranavirus Epinephelus 
awoara 

AY666015 (Tsai et al. 
2005) 

Lymphocystis disease 
virus 1 (LCDV1) 

Lymphocystivirus Platichthys flesus L63545 (Tidona and Darai 
1997) 

Lymphocystis disease 
virus China (LCDVC) 

Lymphocystivirus Paralichthys 
olivaceus 

AY380826 (Zhang et al. 
2004) 

Infectious spleen and 
kidney necrosis virus 
(ISKNV) 

Megalocytivirus Siniperca chuatsi AF371960 (He et al. 2002) 

Orange-spotted 
grouper virus 
(OSGIV) 

Megalocytivirus Epinephelus 
coioides 

AY894343 (Lu et al. 2005) 

Rock bream iridovirus 
(RBIV) 

Megalocytivirus Oplegnathus 
fasciatus 

AY532606 (Do et al. 2004) 
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Table 2.2: Four genes under positive selection identified using site-based tests. 

 

 

 

 

 

 

 

Gene Name Gene 
Group 

M8a-M8 
2Δl 

p-value 
( α=0.05) 

Tree 
Length 

*,§AA Positions of 
dN/dS>1 

*PP>0.95, **PP>0.99 

ORF53R/ 
Myristylate 
membrane protein 

Core 3.92 0.0478 0.16 387G (0.86) 

ORF79R/ Putative 
ATPase-dependent 
protease 

RV 5.19 
 

0.0227 1.06 81L (0.88), 82A*, 84Q 
(0.89), 86L (0.81), 87V 
(0.83), 91S (0.88), 
123L (0.85), 137R*, 
140N (0.87), 146L 
(0.83) 

ORF40R 
 

F/A/R 4.74 
 

0.0294 
 

0.82 29M (0.84), 131Q*, 
134A (0.88), 164T 
(0.83), 165V (0.81), 
168L (0.83), 191T 
(0.88), 192P (0.86)  

ORF71R 
 

F/A/R 12.9 
 

0.0003 
 

0.38 19T**, 50M (0.94), 
58I**, 70I* 
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Table S2.2: Inclusion/exclusion and recombination status of genes examined in study. 

 

Gene Group Gene Name 
FV3 

Designation Status Recombination 
Core Gene 
Group 

ATPase-like 
protein 15R 

Excluded based 
on phylogeny Yes 

Core Gene 
Group 

D5 family 
NTPase involved 
in DNA 
replication 22R 

Excluded based 
on phylogeny Yes 

Core Gene 
Group 

Deoxynucleoside 
kinase 85R Used in analysis N/A 

Core Gene 
Group 

DNA -dep RNA 
pol-II largest 
subunit 8R Used in analysis N/A 

Core Gene 
Group 

DNA polymerase 
Family b 
exonuclease 60R Used in analysis N/A 

Core Gene 
Group 

DNA-dep RNA 
pol-II second 
largest subunit 62L Used in analysis N/A 

Core Gene 
Group Erv1/Alr family 88R Used in analysis N/A 
Core Gene 
Group Helicase family 21L 

Excluded based 
on phylogeny Yes 

Core Gene 
Group 

Hypothetical 
protein-
Clostridium tetani 94L Used in analysis N/A 

Core Gene 
Group 

Immediate early 
protein ICP-46 91R Used in analysis Yes 

Core Gene 
Group 

Major capsid 
protein 90R Used in analysis N/A 

Core Gene 
Group 

Myristilated 
membrane protein  2L Used in analysis N/A 

Core Gene 
Group 

Myristilated 
membrane protein  53R Used in analysis N/A 

Core Gene 
Group 

NIF-NLI 
interacting factor 37R 

Excluded based 
on phylogeny Yes 

Core Gene 
Group 

Proliferating cell 
nuclear antigen 84R 

Excluded based 
on phylogeny N/A 

Core Gene 
Group Putative NTPase I 9L Used in analysis Yes 

Core Gene 
Group 

Putative 
replication factor 
and/or DNA 
binding-packing 1R Used in analysis N/A 

Core Gene 
Group 

Putative tyrosine 
kinase/lipopolysa 27R Used in analysis Yes 
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Table S2.2 (continued): Inclusion/exclusion and recombination status of genes 
examined in study. 
 

ccharide 
modifying 
enzyme 

Core Gene 
Group 

Putative XPPG-
RAD2-type 
nuclease 95R 

Excluded based 
on phylogeny N/A 

Core Gene 
Group Ribonuclease III 80L Used in analysis Yes 

Core Gene 
Group 

Ribonucleotide 
reductase small 
subunit 67L Used in analysis N/A 

Core Gene 
Group 

Serine-threonine 
protein kinase 57R 

Excluded based 
on phylogeny N/A 

Core Gene 
Group 

Serine-threonine 
protein kinase  19R 

Excluded based 
on phylogeny N/A 

Core Gene 
Group 

Transcription 
elongation factor 
TFIIS 81R Used in analysis N/A 

Core Gene 
Group Unknown 41R Used in analysis Yes 
Core Gene 
Group Unknown  12L Used in analysis N/A 

RV Gene 
Group 

ATPase-
dependent 
protease 79R Used in analysis Yes 

RV Gene 
Group ATV p-79 89R Used in analysis Yes 
RV Gene 
Group ATV-p78 48L Used in analysis Yes 
RV Gene 
Group 

CARD like 
capsase 64R 

Excluded based 
on phylogeny N/A 

RV Gene 
Group dUTPase 63R 

Excluded based 
on phylogeny N/A 

RV Gene 
Group FV-3 orf 76R 76R 

Excluded based 
on phylogeny N/A 

RV Gene 
Group ICP-46-18 82R Used in analysis Yes 
RV Gene 
Group SGIV 0RF043R 17L Used in analysis N/A 
RV Gene 
Group SGIV-ORF009L 34R Used in analysis N/A 
RV Gene 
Group Unknown  4R 

Excluded based 
on phylogeny N/A 

RV Gene 
Group Unknown  10R 

Excluded based 
on phylogeny N/A 

RV Gene Unknown  11R Excluded based N/A 



 49 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S2.2 (continued): Inclusion/exclusion and recombination status of genes 
examined in study. 
 

Group on phylogeny 
RV Gene 
Group Unknown  14R 

Excluded based 
on phylogeny N/A 

RV Gene 
Group Unknown  23R, 24R 

Excluded based 
on alignment N/A 

RV Gene 
Group Unknown  31R Used in analysis N/A 
RV Gene 
Group Unknown  43.5L 

Excluded based 
on alignment N/A 

RV Gene 
Group Unknown  46L 

Excluded based 
on phylogeny Yes 

RV Gene 
Group Unknown  47L 

Excluded based 
on phylogeny Yes 

RV Gene 
Group Unknown  59L Used in analysis N/A 
RV Gene 
Group Unknown  69R 

Excluded based 
on phylogeny N/A 

RV Gene 
Group Unknown  74L Used in analysis Yes 
RV Gene 
Group Unknown  75L Used in analysis N/A 
RV Gene 
Group Unknown  70R Used in analysis N/A 

F/A/R Gene 
Group 

Hydrolase of the 
metallo-beta-
lactamase 
superfamily 39R Used in analysis N/A 

F/A/R Gene 
Group 

Truncated eIF-2 
alpha-like protein 26R Used in analysis N/A 

F/A/R Gene 
Group Unknown  40R Used in analysis N/A 
F/A/R Gene 
Group Unknown  56R Used in analysis N/A 
F/A/R Gene 
Group Unknown  71R Used in analysis N/A 
F/A/R Gene 
Group Unknown 93L Used in analysis N/A 
Other Gene 
Group 

Acetly-CoA 
Hydrolase 51R Used in analysis N/A 

Other Gene 
Group ATV p-79B 49L, 50L 

Excluded based 
on alignment N/A 

Other Gene 
Group Collagen-like 65L, 66L 

Excluded based 
on alignment N/A 

Other Gene 
Group 

Cytosine DNA 
methyltransferase 
(DMTase) 83R Used in analysis N/A 
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Table S2.2 (continued): Inclusion/exclusion and recombination status of genes 
examined in study. 
 

Other Gene 
Group Helicase B 55L Used in analysis N/A 
Other Gene 
Group 

NTPase-helicase 
like 73L Used in analysis Yes 

Other Gene 
Group 

Putative myeloid 
cell leukemia 
protein 97R Used in analysis N/A 

Other Gene 
Group 

Ribonucleotide 
reductase alpha 
subunit 38R Used in analysis N/A 

Other Gene 
Group 

Serine-threonine 
protein kinase 2.5L 

Excluded based 
on phylogeny Yes 

Other Gene 
Group Unknown  87L Used in analysis Yes 
Other Gene 
Group Unknown  77L Used in analysis N/A 
     
Other Gene 
Group Unknown  58.5R 

Excluded based 
on phylogeny N/A 

Other Gene 
Group Unknown  3R Used in analysis Yes 
Other Gene 
Group Unknown  25R 

Excluded based 
on phylogeny N/A 

Other Gene 
Group Unknown  28R 

Excluded based 
on phylogeny N/A 

Other Gene 
Group Unknown  33R 

Excluded based 
on phylogeny N/A 

Other Gene 
Group Unknown  45L Used in analysis N/A 
Other Gene 
Group Unknown  32R 

Excluded based 
on phylogeny N/A 

Other Gene 
Group Unknown  20R 

Excluded based 
on phylogeny Yes 

Other Gene 
Group Unknown  96R Used in analysis N/A 

!
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Figure 2.1: A model for Ranavirus host switching within and between vertebrate 
classes.  During cross-species transmission, evolution of a viral genome makes the virus 
increasingly compatible with the genetic background of new host species, and may 
facilitate interclass transmission. Mutations (black bars) and the acquisition of new genes 
(white rectangles) may work to progressively increase the compatibility between the 
Ranavirus genome and new host species. Two separate scenarios that include point 
mutations occurring throughout the original and newly acquired regions of the genome 
can lead to transmission within species (2a) or between vertebrate classes (2b) over time.  
The acquisition of novel genes in the Ranavirus genome, and subsequent mutations 
within those genes, most likely plays a fundamental role in the Ranavirus host switching 
process. 
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Figure 2.2: Phylogenetic relationships among vertebrate Iridoviridae genomes 
included in the study.  A phylogenetic tree of viral species/strains isolated from fish, 
amphibians, and reptiles based on a maximum likelihood analysis of a concatenated data 
set of 26 core Iridoviridae genes. The Target Clade within Ranavirus is highlighted in 
black. Arrows indicate the origin of genes shared among all Iridoviridae genomes (Core 
gene group), among all ranavirus genomes (RV gene group), and among the Target Clade 
(F/A/R gene group). Tick marks indicate branches along which the initial host switch 
from fish to salamanders (point A) and the host switch to frogs and reptiles (point B) are 
thought to have occurred (Jancovich et al. 2010). Bootstrap values are shown. Note that 
each fish, amphibian, and reptile symbol denotes multiple species as indicated in Table 1. 
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Figure 2.3: Three Core and RV genes with elevated dN/dS identified using branch-
based tests. Phylogenies with free-ratio results for genes with branches exhibiting 
signatures of dN/dS>1 are presented.  Branch values of dN/dS are shown, along with the 
estimated numbers of non-synonymous and synonymous (N:S) mutations that are 
predicted to have occurred along each branch (in parentheses).  Branches with dN/dS 
values greater than 1 are shown in bold.  Branches with incalculable dN/dS values (due to 
S=0) are highlighted in bold if the ratio of N:S is greater than or equal to 4:0.  Genes with 
an asterisk were also found to exhibit signatures of positive selection under site-based 
tests (Table 2).  
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Figure 2.4: Four F/A/R genes with elevated dN/dS identified using branch-based tests. 
Phylogenies with free-ratio results for genes with branches exhibiting signatures of 
dN/dS>1 are presented.  Branch values of dN/dS are shown, along with the estimated 
numbers of non-synonymous and synonymous (N:S) mutations that are predicted to have 
occurred along each branch (in parentheses).  Branches with dN/dS values greater than 1 
are shown in bold.  Branches with incalculable dN/dS values (due to S=0) are highlighted 
in bold if the ratio of N:S is greater than or equal to 4:0.  Genes with an asterisk were also 
found to exhibit signatures of positive selection under site-based tests (Table 2).  Note 
variation in the topologies of ORF71R and ORF93L due to slightly different gene trees. 
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Figure 2.5: Significant differences in median and mean dN/dS values of Core, RV, 
and F/A/R gene groups detected using branch-based tests. The inset phylogenies show 
the significant branches in bold. Boxplots for statistically significant branches are shown 
(branches without significant support are not shown). Kruskal-Wallis tests (medians) 
were performed on the transformed data set (square root of dN/dS, raw data shown). One-
way ANOVA tests (means) were performed on the transformed data set (square root of 
dN/dS, raw data shown). An asterisk indicates that the mean of the F/A/R gene group was 
statistically different from the Core gene group based on Bonferroni post-tests.  
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Figure S2.1: Phylogenetic relationships among vertebrate Iridoviridae genomes 
included in the study.  A phylogenetic tree of viral species/strains isolated from fish, 
amphibians, and reptiles based on a maximum likelihood analysis of a concatenated data 
set of 26 core Iridoviridae genes. Bootstrap values less than 100 are shown. 
 
 
 
 
 
 
 
 
 
 
 

0.4
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Figure S2.2: Secondary structures for proteins encoded by genes under positive 
selection (site-based method) show that several positively selected sites lie in unordered 
regions of the protein. Predicted secondary structures for ORF79R/Putative ATPase-
dependent protease (a), ORF40R (b), and ORF71R (c), and ORF53R (d) are shown. α-
helices (cylinders), β-strands (horizontal arrows), and unstructured regions (solid lines) 
are illustrated.  Vertical gray arrows indicated sites with PP 0.80-0.90, and vertical black 
arrows indicated sites with PP> 0.90.  Vertical arrows with an asterisk indicate residues 
in areas of high disorder confidence.  
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Figure S2.3:   Four “Other” genes with elevated dN/dS identified using branch-based 
tests. Phylogenies with free-ratio results for genes with branches exhibiting signatures of 
dN/dS>1 are presented.  Branch values of dN/dS are shown, along with the estimated 
numbers of non-synonymous and synonymous (N:S) mutations that are predicted to have 
occurred along each branch (in parentheses).  Branches with dN/dS values greater than 1 
are shown in bold.  Branches with incalculable dN/dS values (due to dS=0) are, 
arbitrarily, highlighted in bold if the ratio of N:S  is greater than or equal to 4:0. Note 
variation in the topology of ORF38R due to slightly different gene trees. 
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Figure S2.4: Congruent topologies between 15-taxon and 8-taxon phylogenies.  a) 
Rooted and unrooted 15-taxon phylogenies. Branches in bold highlight the relationship 
between ATV, EHNV, and ESV when the root of the tree is matched to that of the 8-
taxon tree.  b) Rooted and unrooted 8-taxon phylogenies. Branches in bold highlight the 
relationship between ATV, EHNV, and ESV when the root of the tree is matched to that 
of the 15-taxon tree. Both unrooted and rooted trees illustrate that the (ATV, (EHNV, 
ESV)) relationship is consistent among the 15-taxon and 8-taxon trees. 
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Chapter 3:  Genomic characterization of Largemouth Bass Virus (LMBV) 

provides further insights into Ranavirus taxonomic and phylogenetic relationships 
 

ABSTRACT 

Largemouth Bass Virus (LMBV) is a ranavirus that was initially isolated from 

Micropterus salmoides, and it has been identified as the etiological agent responsible for 

die-off events affecting both wild and cultured largemouth bass throughout the 

southeastern United States.  Although LMBV and other closely related viruses are 

currently classified as ranaviruses, there has been some controversy regarding their 

placement within the Ranavirus genus.  To determine the phylogenetic relationships of 

LMBV, the nearly complete genomic sequence of the virus was sequenced, annotated, 

and analyzed using standard genomic and phylogenetic techniques.  The analysis of the 

LMBV genome suggests that it is more closely related to amphibian-like ranaviruses 

(ALRVs) than to grouper ranaviruses, and this is further supported by greater genomic 

collinearity between LMBV and ALRVs. The phylogenetic evidence supports the 

placement of LMBV as more closely related to grouper ranaviruses than to ALRVs.  

These data, in combination with other taxonomic evidence, suggest that the classification 

of LMBV as a ranavirus is warranted, and that LMBV and its close relatives should be 

considered one of three distinct Ranavirus subspecies. 

 

INTRODUCTION 

The Iridoviridae family consists of large dsDNA-containing nucleo-cytoplasmic 

viruses (160-200 nm) divided into five genera. These are known pathogens of a variety of 

invertebrate and vertebrate hosts. Three genera, Ranavirus, Lymphocystivirus, and 
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Megalocytivirus are pathogens of ectothermic vertebrates (Williams et al. 2005), and 

several of these viruses are recent emerging pathogens of commercially important 

cultured and wild bony fish (Whittington et al. 2010).  Ranaviruses have received 

significant attention due to their role as a major factor in amphibian epizootics and 

population declines (Miller et al. 2011), but they have also had detrimental effects on fish 

populations.  The discovery of epizootic haemotopoietic necrosis virus (EHNV) in 1985 

was the first instance of an epizootic in bony fish caused by a ranavirus (Langdon et al. 

1986). Since then, several ranavirus species and strains have been isolated from fish 

species worldwide (Whittington et al. 2010).  

Largemouth Bass Virus (LMBV) is a ranavirus that was initially isolated from 

largemouth bass (Micropterus salmoides) and black crappie (Pomoxis nigromaculatus) in 

Lake Weir, Florida, and was subsequently identified as the etiological agent responsible 

for a largemouth bass die-off at the Santee-Cooper Reservoir in South Carolina (Plumb et 

al. 1996; Grizzle et al. 2002).  Since the first reported cases, systematic surveys of wild 

and cultured populations of largemouth bass have identified the pathogen across the 

southeastern United States (Plumb et al. 1999; Hanson et al. 2001; Maceina and Grizzle 

2006; Neal et al. 2009; Southard et al. 2009; Blazer et al. 2010; National Wildlife Health 

Survey 2013).  Based on molecular characterizations, LMBV is currently grouped with 

two other viruses, Doctor Fish Virus (DFV) and Guppy Virus 6 (GV6), in a group 

collectively referred to as the Santee-Cooper ranaviruses.  Although DFV and GV6 are 

identical within the major capsid protein (MCP), the MCP sequence for LMBV differs 

slightly (Ohlemeyer et al. 2011).  Additionally, DFV infection in largemouth bass results 

in ulceration and hemorrhaging of the body surface (Deng et al. 2011), while LMBV 

infection of largemouth bass leads to over-inflation of the swim bladder but no external 

lesions (Plumb et al. 1999).  Both DFV and GV6 were isolated from the ornamental fish 
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Labriodes dimidatus and Poecilia reticulata, respectively, which were imported from 

Southeast Asia (Mao et al. 1999, Ohlemeyer et al. 2011), which suggests that 

geographically restricted LMBV may have evolved from a virus that was introduced to 

the United States through the pet trade.  This hypothesis is further supported by the 

isolation and characterization of a virus collected from cultured largemouth bass in China 

that was identical to DFV (based on the MCP sequence), which illustrates that 

largemouth bass are susceptible to DFV-like viruses (Deng et al. 2011).   

The International Committee on the Taxonomy of Viruses (ICTV) currently lists 

six Ranavirus species: Frog Virus 3 (FV3), Ambystoma tigrinum virus (ATV), Bohle 

Iridovirus (BIV), EHNV, European Catfish Virus (ECV), and Santee-Cooper Ranavirus.  

Ranavirus species are distinguished by unique restriction fragment length polymorphism 

profiles, distinct viral protein profiles, <95% sequence identity/similarity between select 

viral genes, and a distinctive range of susceptible host species (King et al. 2012).  Early 

examinations of molecular characteristics resulted in the classification of LMBV as a 

ranavirus (Mao et al. 1999).  However, a subsequent study of the Santee-Cooper 

ranaviruses DFV and GV6 led Hyatt et al. (2000) to conclude that these viruses were not 

members of Ranavirus based on low hybridization with FV3, but that they represented a 

separate but related group of viruses.  Subsequent genomic analyses suggested the 

formation of two Ranavirus subspecies, the “grouper” ranaviruses (which includes 

Singapore grouper iridovirus [SGIV] and Grouper iridovirus [GIV]), and “non-grouper 

ranaviruses,” also referred to as amphibian-like ranaviruses (ALRVs) (Eaton et al. 2007; 

Jancovich et al. 2010).  However, the genomic study did not include Santee-Cooper 

Ranavirus genomic data.  More recently, the complete MCP sequences of the three 

Santee-Cooper ranaviruses were obtained, and analyses showed a 70% identity to the 

MCP sequences of grouper ranaviruses and 78% identity to that of ALRVs (Ohlemeyer et 
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al. 2011).  Using this information, Ohlemeyer et al. (2011) suggested the breakdown of 

Ranavirus into three distinct subspecies: grouper ranaviruses, Santee-Cooper ranaviruses, 

and ALRVs.  However, these suggestions have not been addressed by the ICTV and the 

taxonomic position of Santee-Cooper Ranavirus is still in question. 

In addition to the taxonomy of ranaviruses, the occurrence of host switching 

within the genus is also of great interest.  Ranavirus is unique among the Iridoviridae 

viruses isolated from vertebrate hosts in that both Lymphocystivirus and Megalocytivirus 

solely infect fish species, while ranaviruses are known pathogens of fish, amphibians, and 

reptiles.  The extensive host range of ranaviruses is presumably due to recent host 

switching events.  Jancovich et al. (2010) used available genomic data to hypothesize two 

potential ranavirus host-switching patterns.  The first suggests two separate jumps from 

1) fish to salamanders and 2) fish to frogs, and a subsequent jump from frogs to turtles. 

The second scenario includes a single jump from fish to salamanders/frogs with a 

subsequent jump from frogs to turtles, and a secondary switch from salamanders back to 

fish. Abrams et al. (2013), using additional genomic data, supported a secondary jump 

from salamanders back to fish.  However, the genomic data did not include sequences 

from Santee-Cooper ranaviruses, which could aid the resolution of the moderately 

supported nodes.  

Here, we present the nearly complete de novo genomic sequence of the Santee-

Cooper Ranavirus, LMBV, which was attained via next-generation sequencing. The goals 

of this study were to obtain the gene complement of LMBV to determine its position in 

the Iridoviridae phylogeny, to provide insight into the contested phylogenetic position of 

LMBV within Ranavirus, and to clarify the sequence of ranavirus host switching events. 

The available genomic content suggests that LMBV is more closely related to ALRVs 

than grouper ranaviruses, and this is further supported by greater genomic collinearity 
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between LMBV and ALRVs. However, the limited genomic collinearity identified 

between LMBV and all other ranaviruses supports the intermediate position of LMBV 

within the genus.  The phylogenetic evidence also supports the placement of LMBV as 

more closely related to ALRVs than grouper ranaviruses.  The addition of LMBV 

sequence data provides strong support for two major host switches from fish to 

salamanders/frogs and frogs to turtles; thus eliminating the hypothesis of a secondary 

switch from salamanders back into fish.  These data, in combination with other 

taxonomic evidence, suggest that the classification of LMBV as a ranavirus is warranted, 

and that Santee-Cooper ranaviruses should be considered one of three distinct Ranavirus 

species. 

 

MATERIALS AND METHODS 

Sequencing and Assembly 

LMBV DNA was isolated from viral stocks that were originally collected from 

diseased M. salmoides from the Santee Cooper Reservoir in South Carolina, which is the 

site of one of the first LMBV-related die-off events (Grizzle et al. 2002).  The purified 

DNA sample was provided by Dr. James Jancovich of California State University at San 

Marcos.  Purified viral DNA (100 ng/µl) was then sheared to create a long-insert paired-

end library that was subsequently subjected to high-throughput sequencing on an 

Illumina HiSeq2000 instrument housed at the Genomic Sequencing and Analysis Facility 

at the University of Texas at Austin.  The paired-end output included approximately 12 

million sequences.   

The de novo assembly of the sequence data was generated using Velvet version 

1.2.03 (Zerbino and Birney 2008) with a hash length (k-mer value) of 73, a coverage 
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cutoff of 10, and an insert length of 700; the analysis yielded 171 contigs. The resulting 

assembly was then used as the input for Glimmer: Gene Locator and Interpolated Markov 

ModelER version 3.02 (Delcher et al. 1999), which was used to identify 183 predicted 

open reading frames (ORFs). Several other de novo assembly parameters were tested; 

however, the results from the parameters reported here were chosen because they 

provided the fewest and longest predicted ORFs.  

 

Genome Annotation  

The predicted ORFs were then manually compared to the protein sequences 

stored in the National Center for Biotechnology Information database using the BLASTX 

similarity search algorithm (http://blast.ncbi.nlm.nih.gov).  All predicted ORFs were 

analyzed regardless of length.  The predicted function, best BLASTX hit with 

corresponding accession number, percent identification, expect value, percent positive, 

and percent gap values were recorded. When applicable, each ORF was assigned to the 

“Core” gene group, the “RV” (ranavirus) gene group, the “F/A/R” 

(Fish/Amphibian/Reptile) gene group, or the “Other” gene group.  The “Core” gene 

group includes 26 genes found in all completely sequenced Iridoviridae genomes.  The 

“RV” gene group comprises 23 genes specific to all completely sequenced ranavirus 

genomes. The F/A/R gene group includes 6 genes found exclusively in the completely 

sequenced ALRVs, which is the monophyletic group of ranaviruses, excluding Singapore 

Grouper Iridovirus (SGIV) and Grouper Iridovirus (GIV). Lastly, the “Other” gene group 

is comprised of an additional 20 genes, which includes genes found in the completely 

sequenced genomes of ranavirus and at least one other Iridoviridae genus (i.e., Ranavirus 

and Chloriridovirus but no other genera). The gene groups are based on the genomic 

analysis of Eaton et al. (2007), which identified orthologous genes throughout the 
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Iridoviridae family using a combination of BLAST searches and Viral Orthologous 

Clusters software. 

In several cases, multiple predicted ORFs matched the same previously identified 

Iridoviridae gene or conserved domain.  Each predicted ORF sequence was aligned to the 

target sequence from the Iridoviridae genome with the best BLASTX expect value to 

determine the quality of the alignment and the placement along the target sequence.  In 

cases where multiple LMBV ORFs aligned to consecutive regions of the target sequence, 

the sequences were concatenated and reanalyzed as a single predicted ORF, and the 

BLASTX results were reported.  Predicted ORFs that were poorly aligned to the target 

sequence were excluded from further analyses. Twenty predicted ORFs did not match 

any known gene or conserved domain based on the BLASTX results, so the sequences 

were reanalyzed using BLASTN and TBLASTX similarity algorithms, yet no matches 

were identified.  Five predicted ORFs, exceeding a length of 200 bp, that were not 

matched to any known gene or conserved domain were considered putative unique 

LMBV ORFs; all sequences shorter than 200 bp were excluded.  Moreover, 44 predicted 

ORFs that only matched cellular sequences or conserved domains were considered 

cellular contamination and were also excluded.  Based on the known genome sizes of 

other ranaviruses, it was apparent that the 87 predicted LMBV ORFs that were identified 

did not represent the complete LMBV genome.  Therefore, mapping of the predicted 

ORFs to determine the gene overlap and transcriptional orientation was not conducted. 

 

Phylogenetic and Dot Plot Analyses 

To determine the phylogenetic placement of LMBV within the vertebrate 

Iridoviridae viruses, a phylogenetic tree was reconstructed via maximum likelihood using 

a concatenated dataset of the 26 Core group genes (Table 3.1).  The complete genomes 
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used in this analysis are listed in Table 3.2. The sequences for each gene were aligned 

using Clustal W (Larkin et al. 2007), and the 26 alignments were subsequently 

concatenated.  The phylogeny was reconstructed using RAxML (Stamatakis 2006) under 

the GTR + Γ model with the data partitioned by gene, and 500 bootstrap replicates were 

used to assess node support (Figure 3.3). 

Dot plot analyses were conducted using the JDotter program (Brodie et al. 2004) 

to identify regions of similarity between the LMBV genomic sequence and the complete 

genomic sequences of SGIV (isolated from a marine fish host), EHNV (isolated from a 

freshwater fish host), ATV (isolated from a salamander host), and FV3 (isolated from a 

frog host) ranaviruses.  Regions of similarity between the genomes are indicated by the 

presence of a straight line (Figure 3.2). 

 

RESULTS 

87 Predicted LMBV ORFs Identified Via De Novo Sequencing Analysis 

The de novo genome assembly using the Velvet and Glimmer programs identified 

a total of 183 predicted open reading frames (ORFs). Of the 183 predicted ORFs, several 

represented sections of the same gene, 44 ORFs were classified as cellular contamination, 

and an additional 20 ORFs were excluded based on the lack of matching homologues and 

short sequence length (<200 bp).  The BLASTX analyses of the predicted LMBV ORFs 

identified 26 of the 26 genes (100%) from the Core gene group, 19 of the 23 genes (83%) 

from the RV gene group, 2 of the 6 genes (33%) from the F/A/R gene group, and 19 of 

the 20 genes (95%) from the Other gene group (Table 3.3).  In addition, 15 predicted 

LMBV ORFs were not assigned to either of the above gene groups, but the ORFs did 

match previously identified ranavirus genes. The predicted LMBV ORF 126 was similar 
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to the K2R protein from poxviruses, which contain a tumor necrosis factor receptor 

(TNFR) domain.  The similarity to poxvirus genes is not unexpected since many of the 

known Iridoviridae homologs were first identified and characterized in poxviruses, which 

are also large dsDNA-containing nucleo-cytoplasmic viruses. Lastly, an additional 5 

predicted ORFs with lengths exceeding 200 bp were tentatively labeled as unique LMBV 

ORFs.  In total, 87 predicted LMBV ORFs ranging in size from 35.1 kDa to 1,215.5 kDa 

were annotated. 

The best matches for the BLASTX analyses returned hits for each of the 

completely sequenced ranavirus genomes (Figure 3.1A).  Moreover, a closer look at the 

LMBV ORFs that best-matched previously identified ranavirus genes indicted that the 

majority (80.25%) of the predicted ORFs more closely matched genes from ALRVs than 

those from grouper ranaviruses (Figures 3.1B and C).  This suggests a higher degree of 

similarity between LMBV and the ALRVs.  The number of genes found in completely 

sequenced ranavirus genomes averages around 100 genes for ALRVs and approximately 

140 genes for grouper ranaviruses.  Although the number of predicted ORFs identified 

here is lower than these expected values, the higher degree of similarity with ALRVs 

suggests that the size of the complete LMBV genome may exhibit an intermediate size.  

Moreover, since the LMBV genomic sequence is incomplete, it is possible that the 

predicted ORFs presented only represent a specific region of the genome.  To determine 

if the predicted LMBV ORFs were localized or evenly distributed across the genome, the 

genomic map of EHNV (Jancovich et al. 2010) was used as a template to map the 

location of the predicted LMBV ORFs.  The results of this mapping indicated that the 

predicted LMBV ORFs are evenly distributed across the EHNV genomic map (data not 

shown). 
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Dot plot analyses show limited regions of collinearity when compared to SGIV, 

EHNV, ATV, and FV3 genomes 

To further determine the relationship between LMBV and other ranaviruses, dot 

plot analyses were used to assess the levels of collinearity between the LMBV sequence 

and the complete genomic sequences of SGIV (isolated from a marine fish host), EHNV 

(isolated from a freshwater fish host), ATV (isolated from a salamander host), and FV3 

(isolated from a frog host). A -45° line is expected when two genomic sequences exhibit 

complete collinearity, and breaks in this line are representative of sequences found in one 

genome but not the other.  Previous dot plot analyses indicated high levels of collinearity 

between ALRV genomes; however limited areas of collinearity were detected when 

grouper ranavirus genomes were compared to those of ALRVs (Jancovich et al. 2010; 

Lei et al. 2012; Mavian et al. 2012a).  The dot plots comparing the LMBV sequence to 

the selected ranavirus genomes yielded limited regions of collinearity for all analyzed 

pairs (Figure 3.2). The regions of collinearity are more prevalent in comparisons of the 

LMBV sequence to ALRVs (29-30 identified regions) as compared to the grouper 

ranavirus, SGIV (19 regions of collinearity). This data supports the intermediate position 

of LMBV between the grouper ranaviruses and ALRVs, and suggests a closer 

relationship between LMBV and ALRVs.  However, the complete LMBV genomic 

sequence is needed to fully resolve the genomic similarity. 

 

Phylogenetic data supports a closer LMBV-ALRV relationship and identifies two 

major host-switches in Ranavirus 

To determine the phylogenetic position of LMBV within the Iridoviridae, the 

phylogeny was reconstructed using a concatenated sequence of the 26 Core genes from 

the available Iridoviridae genomes (Table 3.2) and the corresponding predicted LMBV 
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ORFs (Table 3.1).  The phylogenetic tree shows that LMBV holds an intermediate 

position between the grouper ranaviruses and ALRVs (Figure 3.3). Moreover, the branch 

leading from grouper ranaviruses to LMBV is slightly longer than the branch leading 

from LMBV to ALRVs; thus suggesting that LMBV is more closely related to ALRVs.  

The phylogeny also illustrates the relatively rapid evolution within the ALRV clade, 

where the most recent and extensive host switching has taken place.   

The addition of the LMBV sequence broke the long branch separating the grouper 

and ALRV clades, and added greater resolution to the ranavirus phylogeny.  As a result, 

the region of the phylogeny that previously supported a secondary switch from 

salamanders back to fish (Abrams et al. 2013) is now resolved to show a single, clear 

transition from fish to salamanders with strong bootstrap support (Figure 3.4).  Therefore, 

the phylogeny implies two major host switches: an initial jump from fish to 

salamanders/frogs and a more recent jump from frogs to turtles.  

 

DISCUSSION 

The identification and analysis of the 87 putative LMBV ORFs not only advance 

our understanding of Ranavirus taxonomy, but also refine our knowledge of host 

switching within the genus.  Initial studies of individual LMBV genes and other 

molecular characteristics highlighted the similarity of LMBV to other ranaviruses (Mao 

et al. 1999).   However, documentation of differences led to questioning of the taxonomic 

placement of LMBV and other Santee-Cooper ranaviruses within the genus (Hyatt et al. 

2000).  The identification of homologs of ranavirus-specific genes (83% of RV genes and 

33% of F/A/R genes) suggests that LMBV should be classified as a ranavirus.  The 

intermediate position of LMBV between the grouper ranaviruses and ALRVs is 
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supported by the limited regions of collinearity observed in the dot plots (Figure 3.2) and 

the position of LMBV in the Iridoviridae phylogeny (Figure 3.3).  These data, in 

conjunction with other molecular data (Mao et al. 1999; Hyatt et al. 2000; Ohlemeyer et 

al. 2011), support the recommendation of Ohlemyer et al. (2011) that Ranavirus species 

should be classified as one of three distinct subspecies: grouper ranaviruses, Santee-

Cooper ranaviruses, and ALRVs.   

The taxonomic classification of ranaviruses was originally based on biological 

properties of the viruses, but the more recent inclusion of sequence data has enhanced the 

ability to classify viral species and strains.  However, the high degree of genetic 

similarity in ALRVs combined with the haphazard naming of identical and nearly 

identical viruses based on geographical or host species information has hampered the 

process by increasing the number of unclassified isolates (Chinchar et al. 2009). The data 

presented here clearly show how the addition of genomic-scale data can resolve ranavirus 

phylogenetic relationships, and this highlights the need for further genomic sequencing. 

In addition to adopting the three distinct Ranavirus subspecies, the ICTV should also 

consider implementing taxonomic rules based on phylogenetic data as outlined in the 

PhyloCode (Cantino and de Queiroz 2010).  The combination of phylogeny-based 

taxonomy and traditional taxonomic data may act to simplify and expedite the viral 

classification process.  

The inclusion of LMBV sequence data provided a clear depiction of the major 

ranavirus host-switching events. The phylogeny shows two major transitions: fish to 

salamanders/frogs and frogs to turtles (Figure 3.4).  Abrams et al. (2013)  identified 

several ranavirus-specific genes that appear to have undergone adaptive evolution, which 

may have facilitated interspecies and interclass host switching, and two of these genes 

were recovered in the LMBV genomic sequence (Table 3.3).  The first gene, a putative 
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ATPase-dependent protease (FV3 ORF 79R) from the RV gene group, exhibited 

evidence of positive selection acting on several sites in an unstructured region (neither α-

helix nor β-strand) of the protein.  The alignment of the predicted homolog LMBV ORF 

85 to the sequences from all other ranaviruses indicated that the region where positive 

selection is acting (approximately 100 amino acids) is absent in LMBV and grouper 

ranaviruses (Figure S3.1).   Considering that viral proteases are thought to be essential to 

viral replication and infectivity (Babe & Craik 1997), the acquisition of this gene region 

by ALRVs may have contributed to viral ability to infect and replicate in naïve host 

species.  The second gene, FV3 ORF 71R (F/A/R gene group), was previously thought to 

only occur in ALRV genomes; therefore, the occurrence of this gene in LMBV is 

surprising.  The previous analysis of FV3 ORF 71R identified a signature of positive 

selection (an elevated dN/dS value) along the branch leading to the salamander virus 

ATV.  A reanalysis of the data following Abrams et al. (2013) and the addition of the 

predicted homolog LMBV ORF 147 recovered a consistent pattern (Supplemental Figure 

S3.2).  This suggests that even though the gene was present in ranaviruses prior to the 

evolution of ALRVs, positive selection may have acted on the gene after the initial jump 

from fish to salamanders. 

The identification of LMBV homologs of the immune evasion genes eif-2α 

homolog (LMBV ORF 82) and the K2R protein containing a TNFR domain from 

poxviruses (LMBV ORF 126) is particularly interesting considering the hypothesis that 

LMBV evolved from a virus that was possibly introduced to the United States via the pet 

trade.  A gene knockout study of eif-2α homolog showed that the impairment of the gene 

resulted in decreased viral growth and virulence (Chen et al. 2011); therefore, the 

presence of the gene significantly enhances viral fitness.  Moreover, the poxvirus K2R 

protein is thought to function as a mechanism for the evasion of the host immune 
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response (Shchelkunov 2003).  Considering that eif-2α homolog first appears in the 

LMBV genome (not present in grouper ranaviruses), and that a homolog for the K2R 

protein is absent in all other sequenced Iridoviridae genomes, it is reasonable to suggest 

that the genes may have played a role in the either the initial transition from marine to 

freshwater fish, or in the spread of Santee-Cooper-like viruses to naïve fish hosts. 

Goldberg et al. (2003) identified intraspecific strain variation in LMBV isolates that was 

associated with differences in virulence.  Further studies of LMBV should examine 

population-level variation in the eif2α homolog and K2R genes to further understand the 

roles that the genes play in LMBV evolution and spread. 

Although the complete LMBV genome sequence has not been obtained, the data 

presented here are a step forward in the resolution of ranavirus taxonomy and evolution. 

LMBV is a major pathogen of largemouth bass, which is considered an alien species in 

nearly 80 countries and has been named one of the world’s 100 worst invaders (Global 

Invasive Species Database 2013).  In addition to the negative impact on the ecology of 

the environments to which it is introduced, it is possible that largemouth bass are also 

vectors of LMBV or other ranaviruses (Picco et al. 2010). The Iridoviridae phylogeny 

indicates relatively rapid evolution in the ALRV clade where extensive interspecies and 

interclass host switching has taken place. LMBV represents a transitional point in the 

evolution of ranaviruses, and ecological and evolutionary studies of the virus may 

provide a unique opportunity to understand the mechanisms that contributed to the initial 

host switch from fish to amphibians. Therefore, it is imperative that we learn as much as 

possible about the evolution of these viruses and the genes that impact their fitness. 
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Core Gene Name Predicted 
LMBV ORF 

FV3 
Homolog 

ATPase-like protein ORF 74 ORF 15R 
Deoxynucleoside kinase  ORF 40 ORF 85R 
DNA polymerase ORF 131 ORF 60R 
DNA-dependent RNA polymerase II largest subunit ORF 113 ORF 8R 
DNA-dependent RNA polymerase II second largest subunit ORF 114 ORF 62L 
ErvlAlr/ thiol oxidoreductase ORF 35 ORF 88R 
Helicase family ORF 51 ORF 21L 
Hypothetical protein-Clostridium tetani ORF 95 ORF 94L 
Immediate early protein ICP-46 ORF 136 ORF 91R 
Major capsid protein ORF 138 ORF 90R 
Myristylated membrane protein ORF 12 ORF 53R 
NIF/NLI interacting factor ORF 107 ORF 37R 
Proliferating cell nuclear antigen ORF 38 ORF 84R 
Putative D5 family NTPase/ATPase ORF 48 ORF 22R 
Putative myristylated membrane protein ORF 142 ORF 2L 
Putative NTPase ORF 88 ORF 9L 
Putative replication factor and/or DNA binding-packing ORF 163 ORF 1R 
Putative tyrosine kinase ORF 86 ORF 27R 
Putative XPPG-RAD2-type nuclease ORF 94 ORF 95R 
Ribonuclease III ORF 117 ORF 80L 
Ribonucleotide reductase small subunit ORF 159 ORF 67L 
Serine-threonine protein kinase  ORF 6 ORF 19R 
Serine-threonine protein kinase  ORF 103 ORF 57R 
Transcription elongation factor TFIIS ORF 121 ORF 81R 
Unknown protein ORF 44 ORF 12L 
Unknown protein ORF 72 ORF 41R 
 
Table 3.1: Twenty-six core Iridoviridae genes and the corresponding predicted 
LMBV ORFs with FV3 homologs as a reference. 
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Table 3.2: Fifteen genomes utilized in the present study and their host species. 
 
 
 
 
 

Viral Species/Strain Genus Host Species Genbank Accession No. 

Frog virus 3 (FV3) Ranavirus Rana pipiens AY548484 (Tan et al. 
2004) 

Soft-shelled turtle 
iridovirus (STIV) 

Ranavirus Trionyx sinensis EU627010 (Huang et al. 
2009) 

Rana grylio virus 
(RGV) 

Ranavirus Rana grylio JQ654586 (Lei et al. 2012) 

Tiger frog virus (TFV) Ranavirus Rana tigrina  AF389451 (He et al. 2001) 

Common midwife toad 
virus (CMTV) 

Ranavirus Alytes obstetricans JQ231222 (Mavian et al. 
2012a) 

Ambystoma tigrinum 
virus (ATV) 

Ranavirus Ambystoma 
tigrinum 

AY150217 (Jancovich et 
al. 2003) 

Epizootic 
haematopoietic 
necrosis virus (EHNV) 

Ranavirus Oncorhynchus 
mykiss 

FJ433873 (Jancovich et al. 
2010) 

European sheatfish 
virus (ESV) 

Ranavirus Silurus glanis JQ724856 (Mavian et al. 
2012b) 

Singapore grouper 
iridovirus (SGIV) 

Ranavirus Epinephelus 
tauvina 

AY521625 (Song et al. 
2004) 

Grouper iridovirus 
(GIV) 

Ranavirus Epinephelus 
awoara 

AY666015 (Tsai et al. 
2005) 

Lymphocystis disease 
virus 1 (LCDV1) 

Lymphocystivirus Platichthys flesus L63545 (Tidona and Darai 
1997) 

Lymphocystis disease 
virus China (LCDVC) 

Lymphocystivirus Paralichthys 
olivaceus 

AY380826 (Zhang et al. 
2004) 

Infectious spleen and 
kidney necrosis virus 
(ISKNV) 

Megalocytivirus Siniperca chuatsi AF371960 (He et al. 2002) 

Orange-spotted 
grouper virus 
(OSGIV) 

Megalocytivirus Epinephelus 
coioides 

AY894343 (Lu et al. 2005) 

Rock bream iridovirus 
(RBIV) 

Megalocytivirus Oplegnathus 
fasciatus 

AY532606 (Do et al. 2004) 
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Table 3.3: Predicted LMBV open reading frames (ORFs). 
 

ORF Size 
(no. of 
amino 
acids) 

Mol. 
Weight 
(kDa) 

Predicted 
Function 

Gene 
Group 

Best-
matching 
iridovirus 

ORF 

Expect 
Score 

% 
Identity 

% 
Positiv

e 

Gap 
% 

GeneB
ank 

access. 
no. 

2 180 166,866 Unknown 
protein 

N/A N/A N/A N/A N/A N/A N/A 

4 566 524,163 Putative 
acetyl-CoA 
hydrolase 

Other ESV 109R 2e-174 46 66 1 AFJ52
394.1 

5 144 133,233 Unknown 
protein 

(membrane) 

Other ESV 116L 2e-53 62 74 4 AFJ52
401.1 

6i 898 834,259 Serine-
threonine 

protein kinase  

Core TFV 19R 0.0 42 54 12 ABB9
2284.1 

8 103 95,545 Putative 
acetyacetyl-

CoA 
reductase 

N/A ESV 119R 2e-16 43 58 10 AFJ52
405.1 

12 307 284,768 Myristylated 
membrane 

protein 

Core CMTV 
56L 

1e-113 69 82 0 AFA4
4962.1 

16ii 336 312,061 3-beta 
hydroxyl-

steroid 
dehydro-
genase/ 

isomerase 

Other CMTV 
57R 

2e-153 63 77 1 AFA4
4963.1 

18iii 364 337,597 Unknown 
protein 

RV SGIV 92L 8e-08 21 44 7 AAS1
8107.1 

19 262 243,396 p31K protein Other CMTV 
82L 

1e-132 77 89 0 AFA4
4988.1 

29 178 165,470 Unknown 
protein 

N/A CMTV 
45L 

8e-27 58 76 0 AFA4
4950.1 

34 260 242,859 Unknown 
protein 

RV CMTV 
17L 

8e-21 39 50 16 AFA4
4921.1 

35 128 118,734 ErvlAlr/ thiol 
oxido-

reductase 

Core TFV 94R 6e-60 66 82 0 ABB9
2342.1 

36 594 550,510 Unknown 
protein 

Other FV3 87L 2e-83 35 52 5 AAT0
9747.1 

38 254 235,669 Proliferating 
cell nuclear 

antigen 

Core TFV 90R 2e-91 60 74 1 ABB9
2338.1 

40iv 206 191,650 Deoxy-
nucleoside 

kinase  

Core GIV 40L 1e-33 65 74 1 AAV9
1061.1 

41 136 126,284 Unknown 
protein 

RV FV3 47L 2e-21 38 52 4 AAT0
9706.1 

43 189 175,938 Unknown 
protein 

Other FV3 49L 3e-52 64 83 0 AAT0
9708.1 

44v 228 211,573 Unknown 
protein 

Core ATV 87R 4e-56 69 84 0 AAP3
3268.1 

45 70 65,109 Unknown 
protein 

RV FV3 11R 3e-13 54 75 0 AAT0
9670.1 

48vi 954 886,483 Putative D5 
family 

NTPase/ 
ATPase 

Core FV3 22R 0.0 75 85 1 AAT0
9681.1 
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Table 3.3 (continued):      Predicted LMBV open reading frames (ORFs). 
 

50 539 499,901 Unknown 
protein 

N/A N/A N/A N/A N/A N/A N/A 

51 208 193,524 Helicase 
family 

Core STIV 24L 1e-90 72 80 3 ACF42
243.1 

53vii 416 386,057 Ribo-
nucleoside-
diphosphate 

reductase 
large subunit 

Other CMTV 
69L 

0.0 77 85 2 AFA4
4975.1 

55 154 143,030 Unknown 
protein 

N/A SGIV 
126R 

1e-31 44 56 3 AAS1
8141.1 

56 371 344,049 Unknown 
protein 

RV ATV 45L 1e-58 32 54 5 AAP3
3224.1 

57 208 192,753 Unknown 
protein 

N/A CMTV 
29R 

2e-45 40 55 1 AFA4
4933.1 

58 73 67,611 Unknown 
protein 

RV ESV 40L 2e-26 62 74 0 AFJ52
323.1 

59 85 78,432 Putative 
LITAF/PIG7 

possible 
membrane 
associated 

motif in LPS-
induced tumor 

necrosis 
factor alpha 

factor 

RV FV3 75L 2e-24 66 83 0 AAT0
9735.1 

61 377 349,952 Unknown 
protein 

RV CMTV 
33R 

1e-77 41 55 11 AFA4
4937.1 

64 324 300,659 NTPase/ 
helicase 

Other SGIV 
146L 

5e-98 47 62 0 AAS1
8161.1 

63viii 405 375,990 Unknown 
protein 

RV SGIV 
147L 

8e-17 25 42 17 AAS1
8162.1 

65 216 199,789 Unknown 
protein 

N/A EHNV 
37R 

7e-28 37 59 3 ACO2
5227.1 

66 79 73,398 Unknown 
protein 

RV SGIV 
143L 

4e-21 52 67 1 AAS1
8158.1 

67 181 167,316 Unknown 
protein 

RV EHNV 
35L 

0.17 35 49 9 ACO2
5225.1 

69 230 213,301 Unknown 
protein 

Other GIV 74R 1e-53 40 64 4 AAV9
1089.1 

70 168 155,868 Putative 
myeloid cell 

leukemia 
protein 

Other EHNV 
66R 

9e-05 45 59 0 ACO2
5256.1 

72ix 1,177 1,092,74
6 

Unknown 
protein 

Core EHNV 
77R 

0.0 60 75 1 ACO2
5267.1 

73 119 111,651 Unknown 
protein 

RV FV3 14R 6e-34 51 74 0 AAT0
9673.1 

74 300 278,701 ATPase-like 
protein 

Core EHNV 
92L 

4e-166 82 90 0 ACO2
5282.1 

78 154 142,889 Unknown 
protein 

RV CMTV 
77L 

3e-19 37 50 2 AFA4
4983.1 

82 270 251,834 eIF2a-like 
protein 

F/A/R EHNV 
61R 

2e-24 31 45 11 ACO2
5251.1 

85x 466 434,344 Putative 
ATPase-

dependent 
protease 

RV ATV 26L 4e-116 50 65 2 AAP3
3203.1 
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Table 3.3 (continued):      Predicted LMBV open reading frames (ORFs). 
 

86xi 957 888,216 Putative 
tyrosine 
kinase 

Core RGV 29R 0.0 50 60 6 AFG7
3071.1 

87 38 35,122 Unknown 
protein 

RV SGIV 59L 4e-04 61 79 0 AAS1
8074.1 

88xii 1,023 952,079 Putative 
NTPase 

Core FV3 9L 0.0 67 79 0 AAT0
9668.1 

94 356 330,967 Putative 
XPPG-

RAD2-type 
nuclease 

Core STIV 
100R 

5e-161 60 76 1 ACF42
318.1 

95 160 149,126 Hypothetical 
protein-

Clostridium 
tetani 

Core ESV 18R 3e-56 77 87 0 AFJ52
301.1 

96 267 246,002 Unknown 
protein 

Other SGIV 20L 2e-09 36 55 2 AAS1
8035.1 

97 136 127,051 Unknown 
protein 

Other CMTV 
63R 

1e-55 63 78 1 AFA4
4969.1 

 99xiii 445 413,066 Helicase-like 
protein 

Other TFV 56L 8e-131 50 64 10 AAK5
5107.1 

102 136 126,143 Unknown 
protein 

N/A SGIV 
151L 

4e-24 39 59 4 AAS1
8166.1 

103 431 400,293 Serine-
threonine 

protein kinase 

Core EHNV 
48L 

1e-104 47 63 2 ACO2
5238.1 

105 79 73,565 Unknown 
protein 

N/A GIV 38R 1e-07 42 66 8 AAV9
1059.1 

107 205 191,050 NIF/NLI 
interacting 

factor 

Core TFV 40R 8e-82 61 74 0 ABB9
2302.1 

113xiv 1,307 1,215,48
5 

DNA-
dependent 

RNA 
polymerase II 

largest 
subunit 

Core ESV 11R 0.0 64 75 4 AFJ52
294.1 

114xv 1,094 1,016,50
3 

DNA-
dependent 

RNA 
polymerase II 
second largest 

subunit 

Core ATV 43R 0.0 71 80 3 AAP3
3221.1 

117 340 316,480 Ribonuclease 
III 

Core FV3 80L 2e-130 62 76 1 AAT0
9740.1 

121 91 84,433 Transcription 
elongation 

factor TFIIS 

Core STIV 88R 3e-24 56 67 2 ACF42
306.1 

122 147 136,251 Immediate 
early protein 

ICP-18 

RV SGIV 86R 2e-
4149 

49 64 5 AAS1
8101.1 

123xvi 196 181,514 Unknown 
protein 

N/A ESV 81L 6e-25 35 52 4 AFJ52
365.1 

125 220 204,685 Cytosine 
DNA methyl-

transferase 

Other TFV 89R 1e-93 67 84 0 AAL7
7813.1 

126
xvii 

191 177,153 K2R protein 
from Cowpox 

N/A N/A 8e-06 40 51 1 CAD9
0750.1 

131
xviii 

1,004 934,455 DNA 
polymerase 

Core STIV 63R 0.0 76 86 1 ACF42
281.1 
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Table 3.3 (continued):      Predicted LMBV open reading frames (ORFs). 
 

132 72 67,559 Unknown 
protein 

N/A N/A N/A N/A N/A N/A N/A 

134 74 67,398 Unknown 
protein 

N/A N/A N/A N/A N/A N/A N/A 

136 382 354,406 Immediate 
early protein 

ICP-46 

Core EHNV 
13L 

7e-167 58 74 0 ACO2
5203.1 

138 463 427,236 Major capsid 
protein 

Core ESV 22L 0.0 85 91 0 ACO9
0017.1 

139xix 364 338,633 
 

Unknown 
protein 

Other FV3 3R 1e-29 53 70 1 AAT0
9662.1 

141 290 269,134 Unknown 
protein 

N/A ESV 2L 1e-79 46 61 4 AFJ52
285.1 

142 359 332,295 Putative 
myristylated 
membrane 

protein 

Core ESV 1L 1e-146 76 87 0 AFJ52
284.1 

145 50 46,562 Unknown 
protein 

N/A SGIV 
138L 

0.15 34 63 0 AAS1
8153.1 

147 66 61,216 Unknown 
protein 

F/A/R EHNV 
34L 

4e-06 43 57 14 ACO2
5224.1 

150 89 82,783 Unknown 
protein 

N/A N/A N/A N/A N/A N/A N/A 

153 200 186,314 Neuro-
filament 

triplet H1-like 
protein 

Other STIV 35R 2e-24 51 72 4 ACF42
253.1 

155 62 57,470 Unknown 
protein 

Other FV3 33R 4e-12 64 79 0 AAT0
9692.1 

156 99 92,117 Unknown 
protein 

RV EHNV 
70R 

1e-08 49 57 21 ACO2
5260.1 

157 204 190,773 Collagen-like Other EHNV 
39R 

2e-07 76 90 0 ACO2
5229.1 

159 407 378,594 Ribo-
nucleotide 
reductase 

small subunit 

Core RGV 73L 0.0 79 86 0 AAS6
7856.1 

163 253 234,896 Putative 
replication 

factor and/or 
DNA binding-

packing 

Core EHNV 
100R 

1e-106 63 78 1 ACO2
5290.1 

168 235 218,683 Putative 
integrase-like 

protein 

N/A CMTV 
92R 

9e-45 50 61 3 AFA4
4998.1 

169 132 123,689 Unknown 
protein 

N/A SGIV 45L 2e-04 60 65 0 AAS1
8060.1 

174 75 70,263 Unknown 
protein 

N/A STIV 77R 1e-21 59 68 0 ACF42
295.1 

177 91 84,785 CARD-like 
capsase 

RV ATV 40L 1e-15 41 64 0 ACB1
1347.1 

196xx 532 494,940 Methyl-
accepting 

chemotaxis 
sensory 

transducer 

RV STIV 18L 4e-178 52 73 6 AFG7
3061.1 

198 274 254,496 Tumor 
necrosis 
factor 

receptor 

N/A SGIV 51L 1e-36 37 54 1 AAS1
8066.1 
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Table 3.3 (continued):      Predicted LMBV open reading frames (ORFs). 
 
 
 
 
 
 
 
 
 
 
 
 
 

224xxi 74 47,323 
 

Unknown 
protein 

Other ESV 64L 3e-17 74 91 0 AFJ52
348.1 

425 92 85,448 Unknown 
protein 

N/A SGIV 
158L 

0.001 36 49 16 AAS1
8173.1 

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
i ORFs 6+115 aligned; values from blastx for combined sequence 
ii ORF 16 +17 aligned; values from blastx for combined sequence 
iii ORF 18 + 63 not aligned, correspond to Eaton FV3 23R, 24R; values from individual blastx 
results 
iv ORFs 40+211 aligned; values from blastx for combined sequence 
v ORFs 44+164 aligned; values from blastx for combined sequence 
vi ORFs 48+49 aligned; values from blastx for combined sequence 
vii ORFs 53+192 combined; values from blastx for combined sequences 
viii ORF 18 + 63 not aligned, correspond to Eaton FV3 23R, 24R; values from individual blastx 
results 
ix ORFs 72+241+171 aligned;  values from blastx for combined sequence 
x ORFs 85+181+116 aligned; values from blastx for combined sequence 
xi ORFs 86+80+25+152 aligned; values from blastx for combined sequence 
xii ORFs 88+109 aligned; values from blastx for combined sequence 
xiii ORFs 99 + 23 aligned; values from blastx for combined sequence 
xiv ORFs 113+26 aligned; values from blastx for combined sequence 
xv ORFs 114+173+92+30 aligned; values from blastx for combined sequence 
xvi ORFs 123+124 came back as ESV 81L; used ORF123 because of lower expect value; 
however, this ORF and the ESV 81L ORF may be two instances of cellular contamination. 
xvii Blast to cowpox gene 
xviii ORFs 131+54 aligned; values from blastx for combined sequence 
xix ORFs 139 + 75 aligned; values from blastx for combined sequence 
xx ORF 196+11 aligned; values from blastx for combined sequence  
xxi ORFs 252+234 aligned; values from blastx for combined sequence!
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Figure 3.1: Best BLASTX matches for predicted LMBV ORFs illustrate a higher 
similarity to ALRVs.  The pie chart in panel A illustrates the percentage of predicted 
LMBV ORFs that best matched genes in complete Ranavirus genomes, complete 
poxvirus genomes, and those with no identified match.  Panel B shows the percentage of 
predicted LMBV ORFs that best matched the grouper ranaviruses and two separate 
clades of ALRVs (EHNV, ATV, ESV) and (FV3, STIV, RGV, TFV, CMTV).  Panel C 
displays the percentage of predicted LMBV ORFs that best matched the grouper 
ranaviruses and all ALRVs. 
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Figure 3.2: Dot plot analyses of the LMBV sequence compared to the complete 
genomic sequences from grouper and ALRVs indicate limited collinearity.  Dot plots 
were generated comparing the LMBV sequence to SGIV (A), EHNV (B), ATV (C), and 
FV3 (D).  Segments of collinearity, indicated by a straight line, were sequentially 
numbered along the non-LMBV genomic sequences. 
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Figure 3.3: Phylogenetic relationships among vertebrate Iridoviridae based on the 26 
core Iridoviridae genes indicate a closer LMBV-ALRV relationship.  A phylogenetic tree 
of viral species/strains isolated from fish, amphibians, and reptiles based on a maximum 
likelihood analysis of a concatenated data set of 26 Core Iridoviridae genes. The LMBV 
branch is highlighted in bold. Bootstrap values < 100 are shown. Note that each fish, 
amphibian, and reptile symbol denotes multiple species as indicated in Table 3.2. 
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Figure 3.4: Phylogenetic relationships among vertebrate Iridoviridae suggests two 
major host switches within Ranavirus.  A phylogenetic tree of viral species/strains 
isolated from fish, amphibians, and reptiles based on a maximum likelihood analysis of a 
concatenated data set of 26 Core Iridoviridae genes. Arrow A shows a clear transition 
from fish hosts to salamander/frog hosts and arrow B indicates a transition from frog 
hosts to turtle hosts.  Bootstrap values are shown. Note that each fish, amphibian, and 
reptile symbol denotes multiple species as indicated in Table 3.2. 
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Figure S3.1: Secondary protein structure for FV3 ORF79R/Putative ATPase-dependent 
protease shows the region with positively selected sites is only present in ALRVs. 
Predicted secondary structures for FV3 ORF 79R/Putative ATPase-dependent protease is 
shown. α-helices (cylinders), β-strands (horizontal arrows), and unstructured regions 
(solid lines) are illustrated.  Vertical arrows indicated sites under positive selection 
(Abrams et al. 2013). The region of the protein absent in LMBV and grouper ranaviruses 
is highlighted with a gray box. This figure is adapted from Abrams et al. (2013) with 
permission. 
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Figure S3.2: Elevated dN/dS identified along the ATV branch for the F/A/R gene ORF 
71R.  A phylogeny for FV3 ORF 71R with the addition of the predicted LMBV sequence 
is presented. Branch values of dN/dS are shown, along with the estimated numbers of 
non-synonymous and synonymous (N:S) mutations that are predicted to have occurred 
along each branch (in parentheses).  Branches with incalculable dN/dS values (due to 
S=0) are highlighted in bold if the ratio of N:S is greater than or equal to 4:0; therefore 
the ATV branch is highlighted in bold due to an estimated dN/dS value greater than 1. 
Note variation in the topology of FV3 ORF 71R due to a slightly different gene tree. 
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