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Appropriate and extensive taxon sampling is one of the most important 

determinants of accurate phylogenetic estimation. In addition, accuracy of inferences 

about evolutionary processes obtained from phylogenetic analyses is improved 

significantly by thorough taxon sampling efforts. Much of the previous work examining 

the impact of taxon sampling on phylogenetic accuracy has focused on the effects of 

random taxon sampling or directed taxon addition/removal. Therefore, the effect of 

realistic, nonrandom taxon sampling strategies on the accuracy of large-scale 

phylogenetic reconstruction is not well understood. Typically, broad systematic studies of 

diverse clades select species according to current classification to span the diversity 

within the group of interest. I simulated phylogenies under a realistic model of 

cladogenesis and used these trees to generate sequence data. Using these simulations, I 
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explored the effect of taxonomy-based taxon sampling on the accuracy of maximum 

likelihood reconstruction. The results demonstrate that taxonomy-based sampling has a 

stronger, negative, effect on phylogenetic accuracy than random taxon sampling. 

Therefore, it is recommended that systematists conducting phylogenetic analyses of 

diverse clades concentrate on improving sampling density within their group of interest 

by selecting multiple representatives from each taxonomic level.  

Phylogenetic tree imbalance is often used to make inferences about 

macroevolutionary processes that generate patterns of tree shape. However these patterns 

may be obscured by non-biological factors that can bias tree shape. Using published trees 

inferred from biological data and trees simulated under a realistic branching model; I 

investigated the affect of random taxon omission on phylogenetic tree imbalance. My 

results indicate that incomplete taxon sampling in the presence of variable rates of 

speciation and extinction may be sufficient to explain much of the imbalance observed in 

empirical phylogenies.  

Previous research has indicated that some methods of phylogenetic inference can 

produce biased tree topologies and shapes. Using simulated model tree topologies and 

sequence data, I investigated the non-biological factors that lead to biases in phylogenetic 

tree imbalance. Based on my results, I concluded that phylogenetic noise is the primary 

cause of tree shape bias. Methods that account for unobserved substitutions, such as 

maximum likelihood, can overcome the systematic bias toward imbalanced topologies. 
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Chapter 1: Taxon Sampling and the Accuracy of Phylogenetic Analyses 

 

1.1 DENSE TAXON SAMPLING IMPROVES PHYLOGENETIC ACCURACY 

 

 Phylogeneticists have long acknowledged that data sets containing a large number 

of taxa create a more complex computational problem for phylogenetic analysis. As more 

taxa are added to a phylogenetic data set, the number of possible tree topologies increases 

very rapidly. In addition, the degree of homoplasy (convergent changes or reversals) 

increases with the number of taxa (Sanderson and Donoghue, 1989). Regardless, 

numerous studies on the importance of dense taxon sampling have indicated that 

introducing additional taxa into a phylogenetic analysis results (on average) in more 

accurate estimates of evolutionary relationships (Lecointre et al., 1993; Philippe and 

Douzery, 1994; Hillis, 1996, 1998; Graybeal, 1998; Rannala et al., 1998; Zwickl and 

Hillis, 2002; Pollock et al., 2002; Poe, 1998a, 1998b, 2003; DeBry, 2005; Hedtke et al., 

2006). These studies represent a broad range of approaches including simulations, 

examinations of well-studied biological groups, and comparisons to known phylogenies. 

Each of these approaches has distinct advantages and disadvantages (Hillis, 1995) and 

together they provide a strong and consistent message about the importance of dense 

taxon sampling. The benefits of denser taxon sampling are especially evident in 

conjunction with more thorough searches of solution space (Figure 1.1). Additionally, 

evaluations of phylogenetic analyses often attribute problematic reconstruction and low 

resolution to inadequate taxon sampling (e.g. Bremer et al., 1999; Johnson, 2001; Lin et 
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al., 2002; Braun and Kimball, 2002; Chen et al., 2003; Freudenstein et al., 2003; 

Sorenson et al., 2003; Albrecht et al., 2007). 

 

 Although the importance of taxonomic sampling has been intensely investigated, 

many studies have focused primarily on parsimony and distance methods. Felsenstein 

(1978) demonstrated that, under certain circumstances, parsimony methods are 

inconsistent, meaning they converge on an incorrect topology as more and more 

characters are added for a limited sample of taxa. When two non-adjacent taxa share 

many homoplastic character states along long branches, parsimony methods often 

interpret such similarity as homology. The resulting tree depicts the two taxa as sister to 

one another, attributing the shared changes to a branch joining them; this effect is termed 

long-branch attraction (LBA). Inconsistency is not restricted to parsimony, however, as 

all phylogenetic reconstruction methods can exhibit this behavior if their assumptions are 

seriously violated or if there are not enough taxa in the analysis to accurately estimate the 

parameters of the evolutionary model (Felsenstein, 1978; Hendy and Penny, 1989; 

DeBry, 1992; Huelsenbeck and Hillis, 1993; Yang, 1994; Huelsenbeck, 1995; Lockhart 

et al., 1996; Gascuel et al., 2001; Huelsenbeck and Lander, 2003; Susko et al., 2004; 

Philippe et al., 2005). For example, maximum likelihood estimation has been shown to be 

inconsistent in the presence of severe branch-length heterogeneity (heterotachy, a form of 

non-stationarity) if the substitution process is assumed to be homogeneous across all 

lineages (Kolaczkowski and Thornton, 2004; Spencer, et al., 2005; Philippe et al., 2005). 

This example emphasizes the need for probabilistic models that incorporate complex 

evolutionary processes, which may improve topology estimates by reducing method 
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inconsistency (Yang and Roberts, 1995; Galtier and Gouy; 1998; Foster, 2004; Blanquart 

and Lartillot, 2006; Gowri-Shankar and Rattray, 2007; Blanquart and Lartillot, 2008; 

Kolaczkowski and Thornton, 2008).   

 

 Including additional taxa in a phylogenetic analysis will increase the accuracy of 

the inferred topology by dispersing homoplasy across the tree and reducing the effect of 

long-branch attraction. Hillis (1996) analyzed data simulated on a 228-taxon tree and 

showed that simple parsimony and distance methods accurately reconstruct the true 

topology when provided with sequences 5,000 nucleotides in length. At the time, this 

result was surprising because it seemingly contradicted the common belief that accurate 

phylogenetic reconstruction from very large data sets was infeasible. Moreover, Hillis et 

al. (1994b) had previously shown that analyses of much smaller data sets, containing only 

4 taxa, required considerably longer sequences to attain the same level of accuracy. The 

results of Hillis’s (1996) large-scale simulation indicated that for phylogenies containing 

many taxa, convergent substitutions or reversals (homoplasy) are distributed among the 

many lineages in the tree and therefore such misleading information is less likely to 

overwhelm the true phylogenetic signal.  

 

 Because inadequate species sampling can result in trees containing relatively long 

terminal branches, sparsely sampled data sets are more likely to be affected by LBA. 

Rannala et al. (1998) simulated ultrametric trees under a simple model of cladogenesis to 

investigate the impact of removing ingroup taxa on the distribution of branch lengths. 

They demonstrated that decreasing the proportion of sampled taxa leads to an increase in 
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the average length of terminal branches and generates tree shapes that may be susceptible 

to long-branch attraction (Figure 1.2).   Huelsenbeck and Lander (2003) simulated 

sequences using simple substitution models on trees generated under a simple branching 

process and determined that the frequency that parsimony is inconsistent becomes greater 

as the proportion of taxa sampled decreases and substitution rates increase. Even under 

very simple models of evolution, unweighted parsimony underestimated the number of 

changes along branches and converged on an incorrect topology (Huelsenbeck and 

Lander, 2003).  

 

 In general, many studies have shown that adding taxa to bisect long branches can 

mitigate the effect of LBA (Hendy and Penny, 1989; Graybeal, 1998; Poe and Swofford, 

1999; Poe, 2003). However, taxon addition should be practiced judiciously to ensure that 

enough taxa are added to sufficiently partition multiple long branches (Graybeal, 1998; 

Poe, 2003) and that the new taxa do not result in a tree model that is difficult to estimate 

with long terminal branches and short internal branches (Kim, 1998). Prudent taxon 

addition is particularly important when conducting parsimony analyses since this method 

is especially liable to inconsistency due to long-branch attraction.  Because parametric 

methods, such as maximum likelihood, incorporate models that account for unobserved 

substitutions, these methods are less prone to the effects of long-branch attraction, as long 

as the models of evolution are adequate. However, enough taxa must be sampled to 

parameterize these models effectively (Pollock et al., 2002). In addition, longer branches 

require more accurate models of evolution (because more unobserved changes must be 
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inferred), so increased taxon sampling (which breaks up long branches) greatly benefits 

parametric methods as well as nonparametric methods.  

 

 Apart from its effect on topological accuracy, the density of taxon sampling also 

has an impact on branch-length estimation. Branch lengths provide important information 

about the amount of change that has occurred over the tree and are critical for 

applications using phylogenies to make inferences about evolution. Under the parsimony 

criterion, branch lengths are often underestimated in sparsely sampled regions of the tree 

because less information is available to infer the history of unobserved substitutions 

(Fitch and Bruschi, 1987; Fitch and Beintema, 1990). This artifact has been termed the 

node-density effect (NDE) and may mislead studies that investigate correlations between 

rates of molecular evolution and biodiversity (Webster et al., 2003; Venditti et al., 2006; 

Hugall and Lee, 2007). Maximum likelihood, Bayesian, and distance methods are also 

susceptible to node-density effects, particularly when the assumed model of sequence 

evolution is overly simple and substitution rates are high (Gojobori et al., 1982; Bruno 

and Halpern, 1999; Hugall and Lee, 2007). If the density of taxon sampling is increased, 

additional internal nodes can reveal undetected substitutions and improve estimates of 

branch lengths.  

 

 It has been shown that missestimation of branch lengths can, in turn, lead to 

biased tree topologies (Xia, 2006). Errors in estimates of genetic distance become greater 

as the amount of divergence between two sequences increases. Pairwise distance methods 

for phylogenetic reconstruction typically use log-transformed formulae to account for 
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unobserved substitutions (Swofford et al., 1996, Hoyle and Higgs, 2003). When using 

logarithmic formulae to calculate genetic distances, particularly at high levels of 

sequence divergence, there is a significant probability that the distance estimates will be 

undefined even if the “true” model of sequence evolution is assumed (Hoyle and Higgs, 

2003). Therefore, when conducting distance-based analyses, it is very important to 

consider how taxa are sampled and avoid inclusion of highly divergent sequences. 

 

 Many advances in phylogenetic analysis over the past two decades have involved 

model-based approaches, such as maximum likelihood and Bayesian analyses (Swofford 

et al., 1996; Ronquist and Huelsenbeck, 2003; Felsenstein, 2004). In general, these 

parametric methods outperform nonparametric methods in both simulations and 

experimental studies (Hillis et al., 1994a; Huelsenbeck, 1995; Cunningham et al., 1997). 

However, accurate phylogenetic results from model-based studies depend, at least in part, 

on reasonably accurate parameter estimates for the models of evolution (Goldman, 1993; 

Hillis et al., 1994b; Cunningham et al., 1998; Lemmon and Moriarty, 2004; Brown and 

Lemmon, 2007). One of the reasons that increased taxon sampling results in more 

accurate phylogenetic estimation for these model-based methods is that sampling 

additional taxa also improves parameter estimation (Pollock et al., 1999; Sullivan et al., 

1999; Pollock and Bruno, 2000; Pollock et al., 2002). In addition, as branch lengths are 

shortened, there are fewer unobserved changes that need to be inferred, so the accuracy of 

the inference becomes less dependent on the model of evolution. 
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 In addition to their effect on phylogenetic analyses, the parameters of 

evolutionary models are themselves of interest to biologists. These parameters are often 

gene-specific, so collecting genomic-scale data from many genes across only a few taxa 

does little to improve our estimates of the details of evolutionary models. Instead, a 

thorough taxon-sampling approach is needed for each gene. Of course, the evolutionary 

processes may not be static across the Tree of Life for any given gene, so models that 

account for non-stationarity in these processes can provide better descriptions of 

evolutionary history (Yang and Roberts, 1995; Galtier and Gouy; 1998; Foster, 2004; 

Blanquart and Lartillot, 2006; Boussau and Gouy, 2006; Gowri-Shankar and Rattray, 

2007; Blanquart and Lartillot, 2008; Kolaczkowski and Thornton, 2008). These models 

relax the assumption of time-homogeneity and can be used to detect signatures of 

complex evolutionary processes, such as base composition heterogeneity or heterotachy 

(branch-length heterogeneity), that exist in biological data (Lockhart et al. 1992; Foster et 

al., 1997; Mooers and Holmes, 2000; Lopez et al., 2002; Jermiin et al., 2004; Ane et al. 

2005). Non-stationary, parameter-rich models can greatly increase the need for even 

more thorough taxon sampling. It is important to note, however, that under non-stationary 

models, the number of parameters can increase as more sequences are added, thus 

increasing the computational difficulty of phylogenetic reconstruction from large data 

sets. Nonetheless, this obstacle may be mitigated by the use of carefully constructed 

priors in a Bayesian MCMC framework (Yang, 2006) and with the development of 

computational methods for calculating likelihoods from non-reversible models (Boussau 

and Gouy, 2006). 
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 Parameters that have been shown to be important for phylogenetic estimation 

include site-specific rates of evolutionary change; rates of change across first, second, 

and third positions of codons; rates of change relative to changes in functional groups of 

amino-acid residues; relative rates of the various classes of transitions and transversions 

between nucleotide states; branch-specific rates of evolutionary change; and taxon-

specific differences in base composition (Olsen, 1987; Steel et al., 1993; Hasegawa and 

Hashimoto, 1993; Hillis et al., 1993; Leipe et al., 1993; Goldman and Yang, 1994; Steel, 

1994; Swofford et al., 1996). The number of taxa that are needed to effectively estimate 

these parameters differ greatly across the parameters, but all of the estimates are 

improved by more thorough taxon sampling. For instance, Pollock and Bruno (2000) 

noted significant improvement in parameter estimation (and in turn, phylogenetic 

estimation) as their taxon samples increased from 4 to 8 to 16 to 24 taxa. They concluded 

that both phylogenetic reconstruction and estimation of unknown evolutionary processes 

show greater improvement through increasing taxon sampling than by increasing 

sequence length. In some cases, reasonable parameter estimates may be obtained from 

external data sources, such as the HIV database, and then applied to a more limited set of 

taxa in the phylogenetic analysis (Hillis, 1999). However, for most taxa, the appropriate 

comparative data must be obtained by the investigator for a specific group of species 

under study.  

 

1.2 DENSE TAXON SAMPLING IMPROVES INFERENCES OF EVOLUTIONARY PROCESSES 

FROM PHYLOGENETIC TREES 

 

8



 Beyond simply broadening our understanding of species relationships, 

phylogenetic trees are essential tools used in many areas of biology. Phylogenies are 

often used to explain broad evolutionary patterns and processes such as the evolution of 

adaptive traits, ancestral character states, the timing of species divergences, and variation 

in evolutionary rates. Many of the applications developed for these types of analyses 

require robust and accurate estimates of phylogeny (topology, branch lengths, and root 

position). This is an important consideration in and of itself; however, post-tree 

reconstruction applications are sensitive to reduced levels of data sampling, even when 

provided with an accurate phylogenetic tree. 

 

Comparative methods.—Comparative analyses are a fundamental component in the fields 

of evolutionary biology, behavior, and ecology. The development of statistical methods 

that incorporate phylogenetic trees (Felsenstein, 1985) have allowed for robust and 

reliable tests of the evolution of adaptive traits and the processes that might drive 

diversification. For example, these methods have been used to reveal patterns in the 

biodiversity of marine teleost fishes (Alfaro et al., 2007) and to show that independent 

origins of dietary specialization have been a major factor in the evolution of defensive 

mechanisms in neotropical poison frogs (Darst et al., 2005). Comparative analyses of 

character evolution using phylogenetic comparative methods require attention to 

adequate sampling at many levels. At the intraspecific level, poor sampling of organismal 

attributes can lead to measurement error, which may result in an underestimation of the 

variance of contrasts between sister taxa (Ricklefs and Starck, 1996). Generation of a 

robust phylogeny is extremely important since different comparative methods have 

9



different ways of dealing with topological uncertainty (Purvis et al., 1994). In addition, 

fewer taxa (and thus fewer internal nodes for calculating contrasts) can lead to increased 

variance and uncertainty in the results. Ackerly (2000) used simulated data to show that 

the statistical power of several comparative tests decreased as the sample size of taxa 

decreased, and that careful attention should be paid to how species are sampled for these 

analyses. Biased taxon sampling, particularly with respect to the characters of interest, 

can lead to systematic biases in the calculation of statistical correlations between 

characters. The results presented by Ackerly (2000) indicate that uniform, random 

sampling of taxa does not introduce error in phylogenetic comparative methods.   

 

Ancestral character states.—An integral component of phylogenetic comparative 

analyses and other evolutionary applications is the reconstruction of ancestral character 

states. These methods use phylogenetic trees and branch lengths to infer the states of 

discrete or continuous characters at ancestral nodes, and have been used to reconstruct 

such diverse ancestral characters as the advertisement calls of frogs in the genus 

Physalaemus (Ryan and Rand, 1995, 1998), the fruiting-body forms of 

homobasidiomycetes (Hibbett, 2004), and ancient bacterial protein sequences (Gaucher et 

al., 2003). Dense taxon sampling is also an important consideration for ancestral-state 

reconstruction methods. Salisbury and Kim’s (2001) analyses of simulated data and trees 

indicated that the accuracy of parsimony ancestral-state estimation decreases with 

reduced taxon sampling and increased rates of character evolution (Figure 1.3). Because 

parsimony methods do not account for unobserved changes, they usually underestimate 

the number of changes along a branch (Fitch and Bruschi, 1987; Fitch and Beintema, 
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1990; Huelsenbeck and Lander, 2003). Dense taxon sampling can reduce this effect and 

improve the accuracy of parsimony ancestral-state estimates. Maximum likelihood and 

Bayesian methods for reconstructing ancestral states have also been developed (Pagel, 

1994; Schluter et al., 1997; Pagel, 1999; Huelsenbeck and Bollback, 2001; Pagel et al., 

2004). These parametric ancestral-state reconstruction methods are also sensitive to high 

rates of character evolution. However, Schluter et al. (1997) showed that parsimony 

ancestral-state reconstruction methods often fail to identify ambiguous-node state 

estimates. Conversely, maximum likelihood and Bayesian methods are less likely to 

provide misleading results because these methods incorporate branch-length information 

and explicit models of character evolution and quantify uncertainty in ancestral-state 

estimates (provided that the model assumptions are adequate). Bayesian approaches, in 

particular, use Markov chain Monte Carlo sampling to accommodate and quantify 

uncertainty in the tree topology, branch lengths, ancestral states, and model parameters 

(Huelsenbeck and Bollback, 2001; Pagel et al., 2004). Denser taxon sampling reduces the 

number of unobserved evolutionary events, and so is also expected to simplify and 

improve the reconstruction of ancestral states in model-based analyses. 

 

Divergence time estimation.—A primary field of research in evolutionary biology 

involves estimation of the timing and rate of evolutionary processes. In these 

applications, phylogenetic trees are used to date speciation events and infer lineage-

specific substitution rates. Reliable estimates of species divergence times are fundamental 

components for understanding historical biogeography, testing hypotheses of adaptive 

character evolution, and estimating speciation and extinction rates. However, divergence 
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time estimation is hindered by the fact that the rate of evolution and time are intrinsically 

linked when inferring genetic distances between lineages. Several methods test for 

variation in the rates of molecular evolution or tease apart the rate of substitution and 

time by applying models for estimating lineage-specific substitution rates. These methods 

include strict molecular clock models (Zuckerkandl and Pauling, 1962; Langley and 

Fitch, 1974), local molecular clocks (Kishino and Hasegawa, 1990; Rambaut and 

Bromham, 1998; Yoder and Yang, 2000; Yang and Yoder, 2003), non-parametric and 

semi-parametric methods for estimating autocorrelated substitution rates (Sanderson, 

1997, 2002), and Bayesian methods for estimating autocorrelated and uncorrelated rates 

(Thorne et al, 1998; Huelsenbeck et al., 2000; Kishino et al., 2001; Thorne and Kishino, 

2002; Drummond et al., 2006; Lepage et al., 2006). These various approaches have been 

applied to a number of biological data sets (e.g., Yang and Yoder, 2003; Smith et al., 

2006; Bell, 2007; Hugall et al., 2007; Roelants et al., 2007; Zhou and Holmes, 2007). 

Current implementations of most of these methods require a fixed tree topology and 

sometimes fixed branch lengths (Thorne and Kishino, 2002; Sanderson, 2003; Lepage et 

al., 2007; for exceptions see Drummond et al., 2006). Because of their reliance on 

phylogenetic data, these methods can be sensitive to taxon sampling density. Robinson et 

al. (1998) evaluated the effect of reduced taxon sampling on the performance of the 

relative-rates test. The relative-rates test (Sarich and Wilson, 1973; Wu and Li, 1985) is 

used to compare the substitution rates between two species and has been extended for 

analyzing larger phylogenetic trees to detect rate variation (Li and Bousquet, 1992; 

Takezaki et al., 1995). The simulation study of Robinson et al. (1998) showed that 

increased proportions of taxon sampling improved the accuracy of the relative-rates test.  
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 Most of the work exploring the accuracy of molecular dating methods has 

revealed that these methods are very sensitive to the fossil calibrations used and little is 

known about the impact of taxon sampling on divergence time estimates (Yang and 

Rannala, 2006; Rutschmann et al., 2007; Hugall et al., 2007). A recent study by Hug and 

Roger (2007) used two biological data sets with low levels of taxon sampling (30 

metazoan taxa with two outgroup species, and a 36 taxon data set that spanned all 

eukaryotes) and concluded that, for these data sets, reduced taxon sampling was not an 

important factor in the estimation of node times. However, their analyses showed that the 

choice and application of fossil calibration points resulted in a significant impact on the 

estimates of node ages. From their results, Hug and Roger (2007) recommended that 

biologists should focus on improving the number and quality of their fossil calibrations 

and not on increasing taxon sampling, provided there are enough taxa to obtain a reliable 

estimate of phylogeny. However, because of the sparsely sampled data sets used in this 

study and the demonstrated extreme sensitivity of these data to fossil constraints, Hug 

and Roger’s (2007) results may not apply to a more general set of conditions and the 

importance of dense taxon sampling for estimating species divergence times is still an 

open question.  

 

 Node-density effects, as a result of uneven taxon sampling, may adversely affect 

molecular dating analyses (Hugall and Lee, 2007). Based on the studies demonstrating 

the sensitivity of divergence time estimation methods to fossil calibration choice (Near 

and Sanderson, 2004; Near et al., 2005; Roger and Hug, 2006; Yang and Rannala, 2006; 

13



Ho, 2007; Hugall et al., 2007; Rutschmann et al., 2007), together with studies 

emphasizing the importance of increased taxon sampling on phylogenetic reconstruction 

methods and the estimation of evolutionary parameters (Lecointre et al., 1993; Hillis, 

1996, 1998; Graybeal, 1998; Rannala et al., 1998; Pollock and Bruno, 2000; Zwickl and 

Hillis, 2002; Pollock et al., 2002; Poe, 2003; DeBry, 2005; Hedtke et al., 2006), it is  

recommended that biologists focus on increased collection of fossils and improved taxon 

sampling density for these types of analyses, whenever possible. Maximizing the number 

of fossil calibration points goes hand-in-hand with increasing taxon sampling because 

densely sampled trees provide a greater number of internal nodes on which an 

investigator can place a fossil calibration. Moreover, investigators are far more restricted 

by the availability of fossils and other types of information for calibrating divergences 

than by the availability of extant taxa. Further investigation using simulations and well-

sampled data sets of living and fossil taxa should help shed light on this issue. Because 

extensive taxon sampling (especially of fossil taxa) is sometimes impractical, Bayesian 

methods for divergence time estimation present promising opportunities to account for 

uncertainty in phylogenies by simultaneously estimating the tree topology and branching 

times (Drummond et al., 2006). These methods can also incorporate information on taxon 

sampling density in the form of priors on the distribution of divergence times (Yang and 

Rannala, 1997, 2006).  

 

Evaluating diversification rates.—Phylogenetic trees are fundamental for understanding 

variation in species diversity. Methods for elucidating patterns of speciation and 

extinction measure the shape of phylogenies to detect shifts in diversification rates or to 
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estimate global net diversification rates. Phylogenetic tree shape can be measured by 

quantifying how node ages are distributed over time or by calculating the degree of 

asymmetry among lineages in the tree. Measures of tree shape can be compared to a null 

model that assumes all lineages have experienced the same rate of diversification (Shao 

and Sokal, 1990; Kirkpatrick and Slatkin, 1993; Nee et al., 1994b; Pybus and Harvey, 

2000; Agapow and Purvis, 2002).  Analyses of the temporal distribution of diversification 

events use branch lengths obtained from time-adjusted phylogenies to estimate and detect 

large shifts in speciation and extinction rates (Nee et al., 1994b; Pybus and Harvey, 

2000). For example, Becerra (2005) applied these methods to investigate temporal and 

biogeographic processes that may have shaped the diversity of the plant genus Bursera. 

The results of this study indicate that the radiation of this group is associated with the 

establishment of tropical dry forest habitat in Mexico. However, inadequate taxon 

sampling has a significant impact on these methods. Nee et al. (1994a) used lineages-by-

time plots to show that incomplete taxon sampling can result in an apparent reduction in 

the rate of diversification over time, even when the tree evolved under constant rates of 

speciation and extinction.  

 

 Analyses based on topology measure asymmetry in the distribution of lineages 

over a tree to test for changes in diversification rates. These methods evaluate the balance 

either at a single node or over the entire tree (Shao and Sokal, 1990; Kirkpatrick and 

Slatkin, 1993; Agapow and Purvis, 2002) and are often used to detect patterns 

characteristic of rapid radiations in phylogenetic trees (Guyer and Slowinski, 1993; Chan 

and Moore, 1999, 2002). The degree of taxon sampling is an important consideration 
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when conducting these analyses. Several studies have shown that published phylogenies 

are (on average) much more imbalanced than expected under a model assuming constant 

diversification rates (Guyer and Slowinski, 1991; Heard, 1992; Mooers, 1995; Purvis and 

Agapow, 2002; Holman, 2005; Blum and François, 2006; and see chapter 3). Mooers 

(1995) compared the level of tree imbalance in a collection of published phylogenies and 

found that incomplete trees are more imbalanced than completely sampled phylogenies. 

The bias caused by incomplete species sampling must be considered when using 

phylogenies to test hypotheses about species diversity. 

 

 Notwithstanding the results of numerous studies demonstrating the importance of 

dense taxon sampling, some researchers have argued that increasing the number of taxa 

does not have a large impact on the accuracy of phylogenetic analyses. For example, 

some contend that large character data sets are sufficient to get an accurate phylogeny. 

Rosenberg and Kumar (2001) conducted a simulation study indicating that adding taxa to 

a problematic phylogeny is less effective than adding additional characters. This paper 

led to a debate in the literature and a reanalysis of the Rosenberg and Kumar (2001) data 

(Zwickl and Hillis, 2002; Pollock et al., 2002, Rosenberg and Kumar, 2003; Hillis et al., 

2003). Pollock et al. (2002) reanalyzed the Rosenberg and Kumar (2001) data using a 

different approach to summarizing results (measurement of error), and Zwickl and Hillis 

(2002) re-conducted the Rosenberg and Kumar (2001) study with a different approach to 

study design that examined a fuller spectrum of taxon sampling strategies.  Both studies 

concluded that taxon sampling has a very strong and positive effect on the accuracy of 

phylogenetic reconstruction. However, because of the increasing availability and 
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accumulation of genomic data and the difficulty of obtaining sequence data for many 

taxa, the debate about the relative importance of taxon sampling versus character 

sampling continues in the literature (Hillis et al., 2003; Rosenberg and Kumar, 2003; 

Rokas et al., 2003; Cummings and Meyer, 2005; Rokas and Carroll, 2005; Hedtke et al., 

2006; Gatesy et al., 2007) and the importance of dense taxon sampling for large-scale tree 

inference using parametric methods requires further investigation.   
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FIGURE 1.1. Error in phylogenetic reconstruction typically decreases with increased taxon 
sampling of a given taxonomic group. The benefits of increased taxon sampling are 
particularly evident when searches of the solution space are more thorough. In this graph 
(adapted from Zwickl and Hillis, 2002: fig. 6), phylogenetic error decreases with 
increased taxon sampling across all analyses. However, the benefits of adding additional 
taxa are smaller if only the stepwise-addition algorithm (SA) is used to find an 
approximate solution, compared to the more thorough searches provided by stepwise-
addition plus nearest-neighbor-interchanges branch-swapping (SA + NNI) or tree-
bisection-reconnection branch-swapping (SA + TBR). Analyses of larger data sets 
generally require more thorough search algorithms (and thus more computational effort), 
but result in greatly decreased phylogenetic error. 
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FIGURE 1.2. Two simulations of a birth-death process to model cladogenesis. The 
speciation rate (λ) and extinction rate (μ) were fixed throughout the simulation and 
arbitrarily set to λ /μ = 2. (A) Phylogenetic tree with complete (100%) taxon sampling 
(20 taxa total). (B) Phylogenetic tree with 10% taxon sampling (20 taxa sampled from 
200 taxa total). Adapted from Rannala et al. (1998: figs. 1 and 2). 
 
A B

 
 

20



Figure 1.3: The mean probabilities, Pr(Correct), of correctly estimating the root state of a 
binary character evolving at 3 different rates (r) on subsamples of 512-taxon, pure-birth 
model tree topologies. Each point is the mean for a sample of 100 trees and the error bars 
represent the ± 1 standard deviation. Adapted from Salisbury and Kim (2001: fig. 1). 
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Chapter 2: Phylogenetic Reconstruction of Diverse Clades and the 

Importance of Dense Taxonomic Sampling 

 

2.1 INTRODUCTION 

 

 Recent advances in computational resources and innovations in phylogenetic 

algorithms have made it feasible to reconstruct robust phylogenies from large-scale, 

multi-locus data sets. Furthermore, because of the rapid accumulation of genomic data, 

and funding initiatives for elucidating the phylogenies of large taxonomic groups – and 

ultimately the Tree of Life – it is critical to understand how phylogenetic methods 

perform on large data sets and how phylogenetic inference may be affected by non-

biological factors.  

 

 Appropriate and thorough taxon sampling is an important consideration for any 

broad investigation of phylogenetic relationships. Numerous studies have investigated the 

impact of reduced taxon sampling on the accuracy of phylogenetic reconstruction. The 

results of these studies, which used simulated data, biological data, and data from known 

phylogenies, have demonstrated that, on average, increased taxon sampling from within 

the clade of interest can improve the accuracy of estimates of tree topology (Lecointre et 

al., 1993; Philippe and Douzery, 1994; Hillis, 1996, 1998; Graybeal, 1998; Rannala et al., 

1998; Zwickl and Hillis, 2002; Pollock et al., 2002; Poe, 1998a, 1998b, 2003; DeBry, 

2005; Hedtke et al., 2006), branch lengths (Gojobori et al., 1982; Fitch and Bruschi, 
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1987; Fitch and Beintema, 1990; Bruno and Halpern, 1999; Hugall and Lee, 2007), and 

model parameter values (Pollock et al., 1999; Sullivan et al., 1999; Pollock and Bruno, 

2000; Pollock et al., 2002); as well as inferences of evolutionary processes based on 

phylogenetic relationships (Nee et al., 1994a; Mooers, 1995; Robinson et al., 1998; 

Ackerly, 2000; Salisbury and Kim, 2001; and see chapter 3).  

 

 The effect of realistic, non-random taxon sampling strategies on the accuracy of 

large-scale phylogenetic reconstruction is still unclear, however. Previous simulation 

studies have investigated the importance of taxon sampling density by assessing random 

taxon sampling (Kim, 1998; Rannala et al., 1998; Zwickl and Hillis, 2002) or directed 

taxon addition/removal (Graybeal, 1998; Poe and Swofford, 1999; Poe, 2003). These 

studies have also primarily evaluated smaller data sets compared to recent large-scale 

analyses of diverse taxonomic groups. Consequently, the results of these studies do not 

necessarily extrapolate to broad systematic studies of diverse clades. It is unlikely that 

analyses of large taxonomic groups employ random sampling as a strategy for assembling 

a phylogenetic data set (Hillis, 1998). Many factors play a role in determining if a species 

is sampled, such as difficulty in amplifying genetic material, inaccessibility due to 

geographic distribution, or limited resource availability. Typically, species are sampled 

according to their taxonomic ranking so as to cover much of the perceived diversity 

within the group of interest (Hillis, 1998). For example, Freitas and Brown (2004) 

conducted a phylogenetic analysis of the higher-level relationships within the butterfly 

family Nymphalidae. They included representatives from all 13 subfamilies by selecting 

95 species based on taxonomy, which represented 94 of the 542 different genera 
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identified in this species-rich group. This non-random sampling is likely to have a 

different effect on the shape of the tree (in terms of the distribution of branch lengths as 

well as topological asymmetry) than sampling uniformly from all species in the group. 

However, there are no published studies exploring this type of non-random sampling and 

its effect on phylogenetic accuracy. Additionally, very few studies have evaluated the 

effect of reduced taxon sampling on the performance of model-based methods, such as 

maximum likelihood or Bayesian inference. In this study, I use simulated phylogenies 

(generated under a realistic model of cladogenesis) and sequence data to explore the 

relative effects of taxonomy-based and random species sampling on the accuracy of 

large-scale phylogenetic reconstruction under the maximum likelihood optimality 

criterion.  

 

2.2 METHODS 

 

2.2.1 Tree Simulation 

 

 Model tree topologies and branching times were simulated under a simple model 

of exponential waiting time for speciation/extinction events with variable lineage-specific 

speciation and extinction rates. Each tree started with a single root lineage and initial 

values for speciation and extinction rates. The time to the next event (lineage splitting or 

extinction) was drawn from an exponential distribution based on the sum of the rates for 

all extant lineages. The type and location of each event was chosen in proportion to the 

speciation and extinction rates for each of the extant lineages. When the next event 
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resulted in extinction, the lineage was removed and a new waiting time was drawn. At a 

speciation event, the parent lineage bifurcated into two daughter lineages. The 

speciation/extinction rates of each daughter lineage were obtained by multiplying the 

parent rate by a random number (m). The value of m was drawn from a gamma 

distribution with a shape parameter (α) and scale parameter (β), where β = α so that E(m) 

= 1 and the rates were autocorrelated.  A gamma-distributed prior on speciation and 

extinction rates was enforced to discourage the rates from going to infinity or zero. 

Therefore when the rate of a new daughter lineage was drawn, that rate was accepted in 

proportion to the gamma-distributed prior. The prior distributions on the rates were also 

assigned shape and scale parameters. These parameters were responsible for regulating 

much of the rate variation. I show by simulation that increasing the shape parameters 

results in a decrease in the diversification-rate variation and produces more balanced 

topologies (Figure 2.1). This model is a biologically motivated method for generating 

variable and autocorrelated speciation/extinction rates. Trees generated under this model 

should produce more biologically realistic tree topologies than models assuming constant 

rates of diversification (the equal rates Markov model; ERM model), since it is an 

empirical observation that speciation and extinction rates do vary across groups, and 

these rates are correlated among related species (Dial and Marzluff, 1989; Guyer and 

Slowinski, 1991; Heard, 1992; Sanderson and Donoghue, 1994; Savolainen et al., 2002; 

Holman, 2005). This model for generating variable speciation/extinction rates is 

analogous to probabilistic models of the rate of molecular evolution implemented in 

methods used to estimate divergence times (e.g. Thorne et al., 1998; Huelsenbeck et al., 
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2000; Kishino et al., 2001). This method for simulating tree topologies was implemented 

by modifying code from the program Phyl-o-gen (Rambaut, 2002).  

 

 Three sets of model tree topologies were generated under the variable-rate model 

of cladogenesis with the gamma-shape parameter set to 3.0. Figure 2.2 shows an example 

from each model tree set: (A) 50, 500-taxon trees with a tree depth of 1.0 

substitutions/site, (B) 50, 1,000-taxon trees with a tree depth of 1.0 substitutions/site, and 

(C) 50, 500-taxon trees with a tree depth of 0.5 substitutions/site. 

 

2.2.2 Data Simulation 

 

 The trees simulated with 500 taxa and scaled to 1.0 substitutions/site (tree set A: 

Figure 2.2A) were used to generate sequence data sets under a number of substitution 

models (Table 2.1). For each tree in this collection, three data sets were simulated under 

the HKY model varying in the total number of characters: 500, 1000, and 2000 

nucleotides. Additionally, sequence data were generated on this set of trees under the JC 

model and the GTR+I model, each 1000 nucleotides in length. The remaining sets of 

model trees (tree sets B and C; Figure 2.2B and 2.2C) were used as model topologies to 

generate sequence data sets under the HKY model (each 1000 nucleotides in length). 

 

2.2.3 Taxon Sampling 
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 In this study, the effect of clade-based sampling (also referred to as taxonomy-

based sampling) on phylogenetic accuracy was compared to the accuracy of estimates 

from randomly sampled data sets. Taxonomic classification was simulated by identifying 

the sub-trees in each of the simulated phylogenies. Figure 2.3 illustrates how taxa were 

sampled according to their taxonomic rank. If the target data set size was 10 taxa, then 

sub-clades were defined by first identifying the 10 basal nodes in the complete phylogeny 

that formed distinct sub-trees. The descendants of each node made up a single taxonomic 

group. Each sub-clade contained a fraction of the total taxa and no terminal taxon was 

excluded from classification. As a result, some taxonomic groups were very diverse, 

whereas others only contained one or two species. A single representative of each sub-

clade was selected randomly from each group. Therefore, this sampling strategy mimics a 

situation where the species are classified according to their phylogenetic position and a 

single exemplar species is chosen to represent each taxonomic group. Because the 

taxonomy of a particular biological group is rarely in perfect accord with the true species 

phylogeny, this sampling scheme is an ideal case. However, this strategy more closely 

mimics the sampling procedure practiced in many systematic studies, which attempt to 

cover the taxonomic diversity of a group of interest. Clade-based taxon sampling is 

similar in theory to phylogenetic diversity measures for prioritizing conservation efforts. 

Measures of phylogenetic diversity (PD) quantify the overall biodiversity of a sub-set of 

taxa based on a larger phylogenetic tree and can be used to determine the set of taxa that 

maximizes PD for biodiversity management (Faith, 1992; Barker, 2002; Mooeres et al., 

2005; Crozier et al., 2005).  
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 The randomly sampled data sets were assembled by selecting taxa from a uniform 

distribution spanning all of the species in the complete tree until the target data set size 

was reached. When a data set is comprised of taxa selected based on taxonomy, the total 

tree depth is always the same as that of the full tree. For example if the complete 

phylogeny had a root-to-tip length of 1.0 substitutions/site, then a clade-based sample of 

that tree would also have a tree depth of 1.0. However, when taxa are randomly selected, 

the sub-sample does not necessarily span the total diversity of the complete tree and may 

have a shorter tree depth than a clade-based sample. If the two sampling strategies are to 

be compared, it is important to ensure that the sub-sampled data sets are within the same 

scope. Therefore, when taxa were sampled at random, reduced data sets that did not span 

the entire depth of the full phylogeny were discarded and the tree was resampled. A range 

of target data set sizes were sampled from each complete, simulated data set ranging from 

2 – 100% sampling density. For every target sample size, 100 iterations of each sampling 

strategy were performed on each simulated tree.  

 

2.2.4 Phylogenetic Reconstruction 

 

 The sub-sampled and complete data sets were analyzed under the maximum 

likelihood criterion using GARLI version 0.951 (Zwickl, 2006). The serial GARLI 

algorithm uses a type of evolutionary algorithm to heuristically explore the possible set of 

tree topologies, branch lengths, and model parameters and find the solution that 

maximizes the likelihood. The phylogenetic reconstruction algorithm implemented in 

GARLI allows for rapid estimation of phylogenetic relationships from very large data 
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sets. All analyses were run on the Lonestar Dell Dual-Core Linux Cluster (5,200 

compute-node processors) at the Texas Advanced Computing Center (TACC: 

http://www.tacc.utexas.edu/). Each data set was analyzed under the true simulation model 

or an intentionally misspecified model (see Table 2.1) and with all other program specific 

settings set to their default values. This procedure was followed to produce base-line 

results. It is important to note, however, that when conducting analyses using GARLI, 

multiple replicate runs should be conducted for each data set, and alternate program 

settings should be explored. 

 

2.2.5 Measuring Phylogenetic Error 

 

 Each estimated tree topology was compared to the true topology used to generate 

the sequences after pruning unsampled taxa. The accuracy of a phylogenetic estimate was 

quantified using the absolute error. This measure of error uses the Robinson-Foulds (RF) 

distance (also called the symmetric difference; Robinson and Foulds, 1981) which is the 

total number of branches in the estimated topology that must be collapsed and/or 

expanded to reproduce the topology of the true tree. For trees with n taxa, the minimum 

RF distance is 0 (identical topologies) and the maximum RF distance is equal to twice the 

number of internal edges in the true tree (for an unrooted tree there are n – 3 internal 

edges):  

)3(2 −= nRFMAX  

An RF value equal to the maximum distance indicates that no correct bipartitions were 

reconstructed in the estimated topology. Because RF distances are dependent on the 
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number of taxa in the tree, they cannot be used to compare the accuracy of trees 

estimated from data sets of varying sizes. Therefore the error must be normalized by 

calculating the proportion of error (or absolute error; Zwickl and Hillis, 2002). The 

proportion error (E) is calculated by dividing the observed RF distance by the maximum 

RF distance. The value of this measure ranges from 0 for identical topologies, to 1 for 

topologies that do not share any bipartitions.  

  

 An alternative measurement of error (adjusted error) has been used in previous 

studies (Zwickl and Hillis, 2002; Pollack et al., 2002) and avoids a major disadvantage of 

the absolute error. When comparing the accuracy of reconstructions from very small data 

sets (fewer than 10 taxa) with the accuracy of trees estimated from larger data sets, the 

absolute error does not provide a consistent measure. This is because the expectation of 

the absolute error (E) asymptotically approaches 1 as the number of taxa increases 

(Zwickl and Hillis, 2002). To correct this problem, the adjusted error uses the expected 

RF distance rather than the maximum RF distance to normalize the observed value 

(Zwickl and Hillis, 2002). In their investigation of the different measures of error, Zwickl 

and Hillis (2002) found that for sufficiently large data sets (10 taxa or greater), the 

absolute error and adjusted error are equivalent. Because the sample sizes considered in 

the present study range from 10 taxa to 1000 taxa, I chose the absolute error to determine 

accuracy. 
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 The absolute error was calculated for each replicate data set. Then the proportion 

of error was averaged across every estimated topology of a given sampling density and 

taxon-sampling strategy.  

 

2.3 RESULTS AND DISCUSSION 

 

 Increasing the density of sampled species greatly improves the accuracy of tree 

topology estimates (Figure 2.4): as the proportion of species sampling increases, the 

proportion of error decreases. This holds for data sets with both 500 and 1000 total taxa. 

In general, these results are consistent with previous studies using trees simulated under 

birth-death branching processes; demonstrating that the proportion of taxa sampled from 

a monophyletic group – rather than the total number of taxa – strongly influences the 

accuracy of the estimated phylogeny (Rannala et al., 1998). 

 

 Clade-based sub-sampling has a stronger, negative, effect on phylogenetic 

accuracy than random taxon sampling for all of the simulation conditions considered in 

this study (Figures 2.4, 2.7, 2.8, 2.9, 2.10). For data sets sampled based on taxonomy, the 

estimated topologies are significantly less accurate than analyses of random data sets 

(Figure 2.4). Reduced taxon sampling generally results in trees that are more star-like, 

with longer terminal branch lengths relative to internal branch lengths (Kim, 1998; 

Rannala et al., 1998). Kim (1998) showed that such trees are more difficult to reconstruct 

under the parsimony criterion. My results demonstrate that the type of sampling strategy 

has a strong effect on the distribution of branch lengths in the tree. When a clade-based 
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sampling strategy is used to compile a phylogenetic data set, the average terminal branch 

length of the true (sampled) tree is greater than when the taxa are sampled at random 

(Figure 2.5). This is illustrated by the example in figure 2.6. Uniform, random sampling 

of terminal taxa (Figure 2.6B) produces a tree that contains a greater number of recent 

bifurcations than when taxa are sampled based on their taxonomic rank (Figure 2.6C). 

Clade-based sampling introduces many long terminal branches, which can produce a data 

set with more homoplasy, which can mislead phylogenetic reconstruction methods. This 

increase in phylogenetic noise can lead to missestimation of model parameter values and 

branch lengths which can, in turn, lead to decreased topological accuracy. As the density 

of sampling within the group of interest increases, the distribution of branch lengths 

becomes less skewed and accuracy is increased (Kim, 1998). The high error rates 

resulting from the taxonomy-based sampling strategy are independent of the depth of the 

initial, complete phylogeny (Figure 2.7). When the simulated topologies have a total 

depth of 0.5 substitutions/site, the general pattern of improved accuracy with increasing 

sampling density remains for these trees.  

 

 Because of the increasing availability of genomic data for a limited number of 

organisms, some researchers continue to reconstruct phylogenies with very few taxa (e.g. 

Cannarozzi et al., 2007), despite the conclusions reached by many studies indicating the 

importance of dense species sampling for accurate phylogenetic analysis. Moreover, 

biologists are often less restricted by their ability to collect more genes for a given set of 

species than by their ability to sample additional taxa. This conflict has led to continued 

debate focused on the relative importance of increased taxonomic sampling versus 
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increased character sampling (Rosenberg and Kumar, 2001; Zwickl and Hillis, 2002; 

Pollack et al., 2002; Hillis et al., 2003; Rosenberg and Kumar, 2003; Rokas et al., 2003; 

Cummings and Meyer, 2005; Rokas and Carroll, 2005; Hedtke et al., 2006; Gatesy et al., 

2007). In this study, I show that both increased taxon sampling and increased character 

sampling have a strong effect on phylogenetic accuracy (Figure 2.8). In contrast, some 

studies have found that increased taxon sampling (compared to genomic sampling) has 

little impact on the accuracy of phylogenetic reconstruction (Rosenberg and Kumar, 

2001; Rokas et al., 2003; Rokas and Carroll, 2005). My results emphasize that increasing 

the amount of data in a phylogenetic analysis, both in terms of the number of characters 

and the density of taxa sampled, is important for accurate topological reconstruction. 

However, unlike the simple simulations in this study, it is not always safe to assume that, 

for biological data, additional genes or characters were generated under the same model 

of evolution. Increasing the number of characters in phylogenetic data sets can also 

introduce greater heterogeneity. Thus, with multi-locus data, it may be necessary to apply 

complex, parameter-rich models of sequence evolution (Bull et al., 1993; Nylander et al., 

2004; Brandley et al., 2005; Brown and Lemmon, 2007). These models may require 

denser taxon sampling to improve the estimates of the many parameters. Moreover, 

different genes do not always share the same evolutionary history due to incomplete 

lineage sorting or hybridization (Maddison, 1997; Degnan and Salter, 2005; Degnan and 

Rosenberg, 2006; Maddison and Knowles, 2006; Edwards et al., 2007) and, in some 

cases in which the gene tree does not mach the species tree, it may be best to analyze 

these loci separately (Ane and Sanderson, 2005). Therefore, data sampling for 

phylogenetic analysis is not a matter of sequencing many genes or many taxa. Instead, it 
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is important to adequately sample in both dimensions and to consider complex gene-

histories to get a reliable estimate of phylogenetic relationships. 

 

 As the generating model becomes more complex, the difficulty of phylogenetic 

reconstruction increases (Figure 2.9). Estimates from data sets simulated and analyzed 

under the GTR+I model are less accurate than estimates of data generated under simpler 

models. However, for very small data sets with fewer than 20% of taxa sampled, analyses 

of data generated under the simplest model, JC, are less accurate than analyses of HKY 

data sets. In this case, misinformation in the JC data sets overwhelms the phylogenetic 

signal of the true tree. Furthermore, my results also underscore the importance of proper 

model specification (Figure 2.10). For data generated under the HKY model and analyzed 

under an under-parameterized model (JC), the true model (HKY), and an over-

parameterized model (GTR), my results are consistent with other studies demonstrating 

that assuming an overly simple substitution model leads to a reduction in topological 

accuracy (Kuhner and Felsenstein, 1994; Lockhart et al., 1996; Sullivan and Swofford, 

2001; Lemmon and Moriarty, 2003; Huelsenbeck and Rannala, 2004; Brown and 

Lemmon, 2007). When the data are analyzed under an over-parameterized model, 

however, the error rates are not significantly different from analyses under the true model 

because, in this case, HKY is a sub-model of the more general GTR model. 

 

2.4 CONCLUSIONS 
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 The results of this study stress the importance of dense taxon sampling for 

accurate phylogenetic inference. This is particularly significant for studies seeking to 

understand the relationships of higher-level taxonomic groups. Clade-based sampling 

introduces more long terminal branches than random sampling and increases the 

difficulty of phylogenetic analysis. However, these results should not be taken as an 

endorsement for random taxon sampling, because such a strategy is unrealistic. 

Additionally, assembling a phylogenetic data set by randomly sampling from all of the 

species within a clade will not necessarily address questions that may be of interest to the 

investigator. Sampling taxa using a taxonomy-guided strategy, however, is a practical 

approach for systematists seeking to determine the resolution of particular nodes, such as 

the relationships among genera within a family. Since it is typically impossible to obtain 

samples for every member of a given taxonomic group, it is recommended that 

systematists conducting large-scale phylogenetic analyses should focus on improving the 

density of sampling within their group of interest by selecting multiple representatives 

from each taxonomic level. Furthermore, within some clades there may be species rich 

groups that will require denser sampling than groups with fewer taxa. Such sampling 

may, in turn, help to reveal polyphyletic or paraphyletic taxonomic groups. For example, 

Wiens et al. (2005) conducted a phylogenetic analysis of hylid frogs and sampled species 

based on the current classification of the family. Although many genera in their study 

were only represented by a single species, they included multiple samples from several of 

the larger genera. They also heavily sampled the largest genus, Hyla, which contained 

337 described species (at that time). Their coverage of this species-rich genus included 86 

samples, spanning the geographic range of the group. Based on their results, which 
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indicated that the diverse Hyla genus was polyphyletic, Wiens et al. (2005) proposed a 

new taxonomic classification of hylid frog species. 

 

 Although the results of this simulation study can be generalized to some extent to 

empirical phylogenetic analyses, these simulations are simple and may not emulate all of 

the complex processes responsible for generating biological sequence data. Assembling a 

phylogenetic data set from biological data requires an understanding of the group of 

interest and a clear definition of the scope of the relationships that the systematist wishes 

to infer. Appropriate taxon selection of a group of organisms is typically data-set 

dependent and, therefore, simulation studies cannot produce a general “rule of thumb” for 

the number of taxa or genes that must be sequenced to obtain a robust phylogenetic 

estimate. Nevertheless, this study and many others have indicated that improving 

sampling density within the taxonomic group of interest will, on average, result in 

improved inferences of phylogenetic relationships. Moreover, my results indicate that the 

way in which taxa are sampled has a significant impact on the accuracy of tree 

reconstruction and that systematic studies of large groups should consider appropriate 

strategies for representing species diversity.  
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TABLE 2.1: Conditions for simulation and analysis of sequence data sets. Three different 
sets of model trees were used that differed in their total tree depth or in the number of 
total taxa. Sequence data sets were generated under three different substitution models. 
Data sets generated on tree set A under the HKY model varied in sequence length. Most 
of the simulated data sets were analyzed under their true (T) simulation model. Model 
misspecification was assessed by analyzing data sets generated under HKY (with 1000 
nucleotide length sequences on model tree set A) under an over-parameterized model 
(GTR) and an under-parameterized model (JC). 
 

Model Trees 

Name Total 
Taxa 

Tree 
Depth 

Simulation 
Model 

Sequence 
Length 

Analysis 
Model 

T = true 
500 T 

T 
JC 1000 

GTR 
HKY 

2000 T 
JC 1000 T 

A 500 1 

GTR+I 1000 T 
B 1000 1 HKY 1000 T 
C 500 0.5 HKY 1000 T 
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FIGURE 2.1. The functional relationship between the nodal weighted mean imbalance and 
ln(node size) for four sets of trees simulated under a range of variance parameters. 
Imbalance was calculated using weighted mean imbalance (Fusco and Cronk, 1995; 
Purvis et al., 2002) which has an expected value of 0.5 under constant 
speciation/extinction rates (the equal rates Markov model – ERM; dashed line). Higher 
values of weighted mean imbalance indicate nodes with greater asymmetry. The 
parameter, alpha, of the gamma-distributed rate prior was changed for each set of 
simulations to 1, 3, 5, and 10 (for both the speciation rate and extinction rate). Increasing 
alpha decreases the amount of rate variation and, as a result, it also decreases the amount 
of nodal imbalance. In the case where alpha = infinity, the tree shapes should be identical 
to what is expected under the ERM model (dashed line). 
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FIGURE 2.2: Examples from each of the sets of model trees. All model tree sets were 
simulated under variable speciation and extinction rates and consisted of 50 trees. The 
trees in set A contained 500 taxa and had a total tree depth of 1.0 substitutions/site. Set B 
trees all had 1000 taxa and were scaled to 1.0 substitutions/site. Set C contained 500-
taxon trees scaled to a depth of 0.5 substitutions/site. 
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FIGURE 2.3: Clade-based sampling of terminal taxa. Taxa are assigned to a particular 
taxonomic group based on which of the n major sub-clades they belong. A single lineage 
is chosen from a uniform distribution on all taxa within a clade so that a single sequence 
represents each major group. In this example, there are a total of 100 taxa in the full tree 
(A) and 10% are sampled in the reduced tree (B). Thus, the target data set size is n = 10.  
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FIGURE 2.4: Absolute error of trees reconstructed from data sets with different taxon 
sampling densities. Results for data sets simulated on 500 taxon trees (black) and 1000 
taxon trees (red). Randomly sampled data sets are represented with filled circles. 
Taxonomic-based samples are represented with open triangles. Increasing the proportion 
of taxa sampled improves the accuracy of the reconstructed topology. When taxa are 
sampled based on taxonomic classification, the overall accuracy of the phylogenetic 
estimates is significantly lower than when species are randomly sub-sampled. 
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FIGURE 2.5: The average length of terminal branches when extant taxa are sampled 
randomly or selected based on taxonomic rank from the true trees. The complete trees 
have a tree depth of 1.0 substitutions/site. Random sampling is represented by solid lines 
and clade-based sampling is shown with dotted lines for trees with 500 (tree set A; black) 
and 1000 (tree set B; red) total taxa. Reduced taxon sampling results in an increase in the 
average terminal branch length, which contributes to the overall decrease in phylogenetic 
accuracy. 
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FIGURE 2.6: An example of the effect of different taxon-sampling strategies on terminal 
branch length. The full phylogeny (A) contains 500 taxa. 50 taxa are sampled randomly 
(B) and 50 taxa are sampled based on their taxonomic group (C). On average, randomly 
sampled trees contain shorter terminal branches relative to trees from clade-based 
samples. 
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FIGURE 2.7: The proportion of error found in tree topologies reconstructed from 
subsampled data sets with different tree depths. Two tree depths were considered, the 
black lines represent TD = 1.0 substitutions/site and the red lines represent TD = 0.5 
substitutions/site. The accuracy of trees reconstructed from data with a higher rate of 
substitution (TD = 1.0) are not significantly less accurate than the trees estimated from 
the slower evolving sequences. The observed patterns of error for both tree depths 
indicate that the importance of dense taxon sampling holds for a range of substitution 
rates. 
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F
IG

U
R

E 2.8: The effect of increased sequence length on the accuracy of trees reconstructed from
 data sets sam

pled using different 
strategies. D

ata sets generated on tree set A
 (500 total taxa, TD

 = 1.0) w
ith 500, 1000, and 2000 nucleotides w

ere exam
ined. 

Increasing the num
ber of characters greatly im

proves the accuracy for both taxon-sam
pling strategies w

hen the sequences are very 
short (500 bases). This illustrates the im

portance of increasing both the proportion of taxon sam
pling as w

ell as the am
ount of data per 

taxon. 
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F
IG

U
R

E 2.9: The effect of substitution m
odel com

plexity on the accuracy of phylogenetic reconstruction. D
ata sets w

ere generated 
using tree set A

 (500 total taxa, TD
 = 1.0) under three different substitution m

odels (see Table 2.1). Trees estim
ated from

 data 
generated and analyzed under the H

K
Y

 m
odel are represented w

ith black lines, G
TR

+I data sets are indicated w
ith blue lines, and JC

 
data sets are show

n w
ith red lines. A

s the m
odel used to generate the sequences becom

es m
ore com

plex, accuracy is reduced w
hen the 

sam
pling density is greater than 40%

. H
ow

ever, if the data set contains very few
 taxa (few

er than 20%
), reconstruction from

 data 
generated under a very sim

ple m
odel (JC

) can be less accurate than estim
ates using data generated under a m

ore heterogeneous m
odel 

(H
K

Y
). 
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E 2.10: The effect of m
odel m

isspecification on the accuracy of trees reconstructed from
 sub-sam

pled data sets. A
ll of the data 

sets w
ere sim

ulated under the H
K

Y
 m

odel then analyzed under the true m
odel (H

K
Y

; black), an over-param
eterized m

odel (G
TR

; 
blue), 

and 
an 

under-param
eterized 

m
odel 

(JC
; 

red). 
The 

error 
of 

trees 
estim

ated 
using 

an 
over-param

eterized 
m

odel 
is 

indistinguishable from
 the pattern observed w

hen the true m
odel is used. This is due to the fact that H

K
Y

 is a sub-m
odel of the G

TR
 

m
odel. W

hen the data are analyzed under an overly sim
ple m

odel, how
ever, the reconstructed trees are less accurate. 
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Chapter 3: Taxon Sampling Affects Inferences of Macroevolutionary 

Processes from Phylogenetic Trees 

 

3.1 INTRODUCTION 

 

 Phylogenetic relationships across the Tree of Life form the basis for comparing 

and organizing the Earth's biodiversity. In addition to providing information about the 

evolution of individual genes, populations, or species, phylogenetic trees are often used 

to study broader evolutionary patterns. In particular, the shape of phylogenetic trees (e.g., 

the distribution of cladogenic events across the tree) has been used to understand broad 

speciation and extinction patterns (Raup et al., 1973; Gould et al., 1977; Rosen, 1978; 

Savage, 1983; Mitter et al., 1988; Heard, 1992; Guyer and Slowinski, 1993; Mooers and 

Heard, 1997; Dodd et al., 1999; Good-Avila et al., 2006; Ricklefs, 2006). The results of 

many studies on phylogenetic tree shape suggest that variation in the rates of speciation 

and extinction has played an important role in shaping the Tree of Life. However, it 

remains to be determined to what extent biologists can detect the patterns resulting from 

the evolutionary processes that shape trees. These patterns can be obscured by non-

biological factors that can bias tree shape, such as incomplete taxon sampling (Mooers, 

1995; Rannala et al., 1998; Pybus and Harvey, 2000; Purvis and Agapow, 2002; 

Huelsenbeck and Lander, 2003), phylogenetic reconstruction methods (Heard and 

Mooers, 1996; Huelsenbeck and Kirkpatrick, 1996), or phylogenetic noise (Mooers et al., 
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1995; Heard and Mooers, 1996; Stam, 2002). Therefore it is important to understand how 

estimates of tree shapes might be biased as a result of non-biological factors. 

 

 Tree shape often refers to either the distribution of branching times over the tree 

(using measures such as the γ-statistic, Pybus and Harvey, 2000), or tree imbalance (Shao 

and Sokal, 1990; Kirkpatrick and Slatkin, 1993; Agapow and Purvis, 2002). Measures of 

tree imbalance (the focus of this study) assess the distribution of lineages over a tree 

topology and quantify the degree of asymmetry among the branches. These measures are 

often compared to the values expected under a null model of equal speciation/extinction 

rates over all lineages (the equal-rates Markov model or ERM model).  Using a wide 

range of tree imbalance measures, many studies have found that published phylogenies 

reconstructed from empirical data are more imbalanced than predicted under the ERM 

model (Guyer and Slowinski, 1991; Heard, 1992; Mooers, 1995; Purvis and Agapow, 

2002; Holman, 2005; Blum and François, 2006).  An alternative to the ERM null model 

is the proportional-to-distinguishable arrangements (PDA) model (or uniform model). 

Under this model, every labeled tree topology is equally likely (Rosen, 1978). Trees 

generated under this model are on average more imbalanced than those generated under 

the ERM model, and studies have shown that the PDA model predicts more tree 

imbalance than what is observed in empirical phylogenies (Cunningham, 1995; Holman, 

2005; Blum and François, 2006). 

 

 Numerous researchers have found that taxon sampling has a strong influence on 

the accuracy of phylogenetic reconstruction methods (Hendy and Penny, 1989; Hillis, 
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1996, 1998; Graybeal, 1998; Kim, 1998; Rannala, et al. 1998; Poe and Swofford, 1999; 

Pollack et al., 2002; Zwickl and Hillis, 2002; Hillis et al., 2003; Poe, 2003; DeBry, 2005; 

Hedtke et al., 2006).  Taxon sampling also has an impact on the distribution of branching 

times and phylogenetic tree imbalance.  Removing ingroup taxa creates longer terminal 

and/or internal branches compared to a phylogeny containing all extant lineages (Rannala 

et al., 1998; Huelsenbeck and Lander, 2003).  In addition to the problems this effect 

produces for phylogenetic inference, it also can confound estimates of diversification 

rates, divergence times, rates of molecular evolution, and ancestral state reconstruction 

(Nee et al., 1994a; Robinson et al., 1998; Ackerly, 2000; Pybus and Harvey, 2000; 

Salisbury and Kim, 2001; Pybus et al., 2002).  

 

 Studies investigating the influence of taxon sampling on tree imbalance have 

primarily surveyed published phylogenies. Mooers (1995) compiled 39 “full” 

phylogenies (e.g. trees missing no more than one taxon, where the taxa could be species 

or higher taxonomic groups) each consisting of 8 to 14 terminal taxa. He compared the 

imbalance of the full trees to the imbalance in a collection of 82 incomplete phylogenies 

obtained from a study by Heard (1992). This comparison showed that incomplete trees 

are more imbalanced than trees comprised of almost all of the members of the group in 

question.  In another study, Purvis and Agapow (2002) collected 61 phylogenies of 

superspecific taxa and showed that tree imbalance is, on average, greater when the 

terminal taxa are higher-level taxonomic units than when they are species. It has been 

suggested that the change in tree imbalance that results from sparse taxon sampling might 

be due in part to the non-random way in which systematists sample taxa, and that a truly 
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random selection of taxa may not bias tree imbalance (Guyer and Slowinski, 1991; 

Kirkpatrick and Slatkin, 1993; Mooers, 1995; Purvis and Agapow, 2002). Heard and 

Mooers (2002), however, used simulated tree topologies to show that random mass 

extinctions caused an increase in tree imbalance after a period of recovery if the 

speciation and extinction rates were allowed to vary.   

 

 In this study I investigated the influence of varying levels of random taxon 

sampling on phylogenetic tree imbalance. I compared the patterns of imbalance found in 

recently published phylogenies with very low taxon sampling to the expectations of tree 

imbalance under different branching models and sampling levels. I show that the 

observed levels of tree imbalance in empirical studies are consistent with the expectations 

from simulations that include variable and autocorrelated rates of speciation and 

extinction combined with low levels of taxon sampling.  

 

3.2 METHODS 

 

3.2.1 Simulations 

 

 Tree topologies were generated under the model incorporating variable and 

autocorrelated speciation and extinction rates described in chapter 2.2.1. I simulated sets 

of 500 trees each consisting of 10,000 terminal taxa under a range of parameters for the 

amount of rate variation.  Sets of trees simulated across the range of parameter values 

showed very similar patterns of imbalance (see chapter 2, Figure 2.1). I also generated 
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trees under constant speciation and extinction rates (ERM model) and the proportional-

to-distinguishable arrangements (PDA) model.  

 

3.2.2 Empirical Phylogenies 

 

 The set of biological trees was assembled from recently published studies of 

empirical data (Appendix A). When surveying the literature, I selected trees from studies 

if their analyses included molecular data and used maximum likelihood, Bayesian, and/or 

maximum parsimony methods to infer the tree. When a study presented trees estimated 

using more than one data partition, I selected the tree based on the combined analysis. 

When I encountered more than one study on a particular taxonomic group, I selected the 

most recently published tree.  The trees in the collection of published phylogenies were 

then pruned of redundant species, and outgroups were removed so as not to increase the 

tree imbalance, but retain the root position. Unlike previous studies using published 

phylogenies (Mooers, 1995; Purvis and Agapow, 2002; Holman, 2005), I only used trees 

with species as terminal taxa so that I could directly calculate the amount of species-level 

sampling and avoid subjective aspects of higher-level taxonomic grouping. I determined 

the proportion of taxon sampling based on the number of described species in the group. 

These estimates of the proportions of taxon sampling are necessarily dependent on the 

monophyly of the sampled groups and undiscovered biodiversity, but the overall results 

do not depend on the exact value of the sampled proportions. Empirical phylogenies were 

then sorted based on the proportion of taxon sampling and the method used to reconstruct 

the tree.  In this study, I only present the imbalance of phylogenies with sampling 
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densities lower than 10% because the collection of published studies contained relatively 

few trees with more complete species sampling. 

 

3.2.3 Measure of Imbalance 

 

 I calculated the imbalance of simulated and empirical topologies using the 

imbalance measure first introduced by Fusco and Cronk (1995) and later modified by 

Purvis et al. (2002). Fusco and Cronk (1995) imbalance is calculated for an individual 

node such that: 

1−−
−

=
mS

mBI  

 

where for a given node with S extant descendants, B is the number of terminal taxa 

descended from the larger daughter lineage and m = S/2 (rounded up to the next integer if 

S is odd). For any node with more than three descendants, I has a maximum value of 1 for 

a node that is completely imbalanced (B = S – 1), and a minimum value of 0 for a node 

where each daughter lineage has the same number of descendants (or differing by 1 if S is 

odd). One property of this imbalance measure is that the expected value of I under the 

ERM model depends on whether S is even or odd (Purvis et al., 2002).  Therefore, Purvis 

et al. (2002) introduced a set of weights (w) to calculate an expected weighted mean of I 

(Iw) so that the measure has an expected value of 0.5 for all node sizes under equal rates:  

 

if S is odd, w = 1, 

if S is even, and I > 0, w = (S – 1) / S, 
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if S is even, and I = 0, w = 2(S – 1) / S. 

 

For a single node, Iw is the product of I and w divided by the mean of the node weights 

across the entire tree (Purvis et al., 2002 and Purvis and Agapow, 2002). Using these 

weights, the imbalance for a collection of nodes can also be measured by calculating the 

weighted mean of I (Purvis et al., 2002 and Holman, 2005). 

 

 Unlike many other measures of tree imbalance (for examples see Agapow and 

Purvis, 2002), Iw does not require fully resolved topologies (because the imbalance at 

multi-furcating nodes is not measured), nor is it dependent on the size of the tree. 

Additionally, Iw can be used to evaluate the imbalance of a collection of trees to assess 

the relationship between imbalance and node size (Holman, 2005), and compare unique 

sets of trees to detect differences in macroevolutionary patterns (assuming that there is 

homogeneity across a set of trees). For each set of trees, the bifurcating nodes with more 

than three descendants were binned according to the natural log of node size, ln(S) in 

intervals of 0.5, and the weighted mean imbalance for the nodes in each bin was 

calculated (see Holman, 2005). Although this measure of imbalance was developed for 

complete trees, or phylogenies of higher level taxonomic groups incorporating species 

richness data, in this study, I use Iw to determine the impact of reduced species sampling 

by comparing the imbalance of complete trees with that of incomplete trees. 

 

3.3 RESULTS AND DISCUSSION 
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3.3.1 The Effect of Node Size on Tree Imbalance 

 

 The nodal weighted mean imbalance for the empirical trees is summarized in 

Figure 3.1. I observed a pattern of imbalance in empirical trees similar to that reported by 

Holman (2005), with imbalance increasing as node size increases. A recent study by 

McPeek and Brown (2007) offers a plausible biological explanation for this positive 

correlation between node size and imbalance. They observed that clade size increases 

with clade age, therefore larger nodes are typically older nodes and their descendant 

lineages have had more time to experience the pressures that may cause shifts in 

diversification rates. This implies that there is also a positive association between node 

age and imbalance.  

 

 For nodes with fewer than 140 descendants, I did not detect a significant 

difference in the pattern of imbalance between trees reconstructed under maximum 

parsimony versus those reconstructed using parametric methods (Figure 3.1). Although 

there appears to be somewhat greater differences in the imbalance at larger nodes, these 

differences are largely attributable to the smaller number of observations in those 

categories.  Therefore, I combined the trees into a single set of empirical phylogenies for 

subsequent analyses. When combining the trees, if a single paper presented both a 

parsimony tree and a maximum likelihood or Bayesian tree, I selected the tree at random. 

This combined collection of trees consisted of 77 parsimony trees and 78 maximum 

likelihood/Bayesian trees. 
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 Figure 3.2 shows the weighted mean imbalance of the combined collection of 

empirical trees and a set of trees simulated under the model for varying speciation and 

extinction rates (where α = 2 for the gamma-distributed rate priors for both speciation 

and extinction rates). I also show the imbalance expected under the ERM and PDA 

models. Although I used a different collection of empirical trees than used in previous 

studies (Purvis and Agapow, 2002; Holman, 2005; Blum and François, 2006), my results 

are similar to those found by Holman (2005) and Blum and François (2006). Specifically, 

the PDA and ERM models do not adequately represent the imbalance found in empirical 

phylogenies (Figure 3.2). The trees simulated under speciation and extinction rate 

variation, however, have nodal imbalance that is more representative of empirical 

phylogenies than the ERM model and are much less imbalanced than trees generated 

under the PDA model. As with the empirical observations of McPeek and Brown (2007), 

trees generated under the model developed for this study show a positive association 

between node size and node age, as well as a positive correlation between node age and 

imbalance. 

 

3.3.2 The Effect of Reduced Taxon Sampling on Tree Imbalance 

 

 Unlike some of the previous surveys of tree imbalance (Mooers, 1995; Purvis and 

Agapow, 2002; Holman, 2005), my collection of empirical trees all had low percentages 

of sampled taxa because I treated the tips as individual species instead of considering 

higher taxonomic rank with species richness information. The empirical trees presented 

in this study all had less than 10% of the described species represented in the phylogeny 
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(with a median of ~2%). When I randomly pruned taxa from the trees simulated with 

variable and autocorrelated speciation/extinction rates, I observe an increase in nodal 

imbalance and a very good approximation of the imbalance found in the empirical trees 

(Figure 3.3). In contrast, I show that for trees simulated under the ERM and PDA models, 

random taxon sampling does not alter the functional relationship between imbalance and 

node size (Figure 3.4). This result was also demonstrated by Heard and Mooers (2002) 

who showed that random mass extinctions of ERM topologies did not affect tree 

imbalance after a period of recovery under constant diversification rates.  

 

 I randomly pruned 50% of the taxa from trees in the combined set of empirical 

phylogenies to determine whether or not an additional reduction in taxon sampling would 

increase the imbalance in empirical phylogenies (Figure 3.5). The results shown in Figure 

3.5 are from 100 replicates of randomized pruning and suggest that, on average, random 

reduced taxon sampling does indeed increase the imbalance in these trees. 

 

 These results indicate that incomplete taxon sampling in the presence of 

diversification-rate variation may be sufficient to explain much of the imbalance 

observed in the collection of empirical trees, because as species are removed from a 

phylogeny, the apparent variation in the rates of diversification is increased. My 

simulations show that older nodes are, on average, more imbalanced than younger nodes. 

Therefore, pruning taxa from these trees results in an increase in the average age of the 

internal nodes, and additionally, removal of terminal branches increases the average 

imbalance for nodes of a given size. However, it remains unclear exactly how much 
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reduced taxon sampling biases tree imbalance. The published phylogenies used in this 

study most likely do not contain random samples of taxa, so it is difficult to determine the 

relative influence of biased taxon sampling versus random sampling on tree imbalance. 

Because so many factors influence whether or not a species is included, it is difficult to 

emulate the way in which systematists sample taxa. Using a simple model of biased taxon 

sampling, however, Mooers (1995) was able to show that nonrandom exclusion of 

terminal lineages can increase the imbalance of ERM trees. More investigation into the 

impact of biased taxon omission on phylogenetic tree shape and tree reconstruction is 

required. 

 

 When incomplete species sampling is taken into account, the model for varying 

speciation and extinction rates presented in this paper is a better representation of the tree 

shapes observed in published phylogenies than the ERM model or the PDA model. 

However, it is a parametric, stochastic model and not based on detailed biological 

processes. The described model does not attempt to capture all of the biological and 

environmental factors by which diversification rates vary over the course of evolution. 

Although the specific values of parameters in the heterogeneous-rate model can be 

adjusted to produce varying levels of tree imbalance (see chapter 2, Figure 2.1), the 

general conclusions of the simulations remain consistent across a wide range of 

parameter values. These simulations demonstrate that it is important to consider the 

interaction between diversification-rate variation and reduced taxon sampling when 

assessing the shapes of empirical phylogenies (Figure 3.3). Inferences of 

macroevolutionary processes based on incomplete phylogenies should be interpreted with 
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caution, and, when available, information on species diversity should be included in the 

calculation of Iw (Fusco and Cronk, 1995). This may result in a less biased estimate of 

tree imbalance even without relatively complete taxon sampling.  

  

3.4 CONCLUSIONS 

 

 Variation in the relative rates of speciation and extinction produces tree 

topologies with greater imbalance than trees generated under the equal rates model 

(Figure 3.2). Removal of taxa from trees generated under variable and autocorrelated 

rates results in a disproportionate representation of older divergences and increases the 

apparent variation in diversification rates among the lineages on the tree. Consequently, 

reduced taxon sampling causes an increase in tree imbalance (Figure 3.3), which, in turn, 

may mislead analyses using tree shape to detect shifts in diversification rates. 

 

 It is also important to note that there are other non-biological factors that can 

contribute to imbalance in empirical phylogenies. Methods of phylogenetic 

reconstruction have been shown to be biased toward imbalanced trees (Huelsenbeck and 

Kirkpatrick, 1996), at least for trees of few taxa. Additionally, incorrect rooting of the 

tree can result in a more imbalanced topology.  These factors may make it very difficult 

to tease apart the biological processes that contribute to tree imbalance. 

 

 It will be important to understand and account for these non-biological 

contributors to tree imbalance if tree shape is to be used to study large-scale patterns of 
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diversification. However, it is clear that in addition to producing more accurate estimates 

of phylogenetic relationships, increased taxon sampling also improves inferences about 

macroevolutionary events based on phylogenetic tree shape. As more complex and 

realistic models of diversification-rate variation are developed, we will improve our 

understanding of the macroevolutionary forces that shape the Tree of Life. In addition, as 

phylogenetic reconstruction programs become capable of handling larger data sets (e.g., 

Stamatakis, 2006; Zwickl, 2006), models of complex branching processes can be used to 

generate model tree topologies for large-scale simulation studies on these new 

algorithms. 
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FIGURE 3.1. The weighted mean imbalance of empirical trees plotted as a function of the 
natural log of the node size (S). The dashed line at 0.5 indicates the imbalance expected 
under the ERM model. 124 trees reconstructed using maximum parsimony (MP) are 
indicated by the dotted line with black triangles and 107 trees reconstructed by maximum 
likelihood or Bayesian methods (ML/B) are represented by the solid line and white 
triangles. 
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FIGURE 3.2. The nodal imbalance for the combined collection of empirical trees 
(triangles; 157 total trees) and the collection of trees simulated under varying rates of 
speciation and extinction (circles). The upper dotted line represents the imbalance 
expected for trees generated under the PDA model and the dashed line at 0.5 indicates the 
imbalance expected under the ERM model. 
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FIGURE 3.3. Weighted mean imbalance for empirical trees (dotted line/triangles) and trees 
simulated under varying rates with different levels of taxon sampling (solid line/circles). 
The simulated trees were reduced to 3% and 1% taxon sampling. The dashed line at 0.5 
indicates the imbalance expected for trees generated under the ERM model. 
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FIGURE 3.4. Weighted mean imbalance as a function of the natural log of the node size 
for trees simulated under the PDA model (black), the ERM model (black), and variable 
rates model (gray). The sets of trees with 100% taxon sampling are indicated by dashed 
lines. Sets of trees with 3% taxon sampling are represented by the solid lines. These 
simulations indicate that random taxon sampling of trees generated either by the PDA 
model or the ERM model does not result in a change in the relationship between 
imbalance and node size, whereas there is a strong taxon-sampling effect for the variable 
rates model. 
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FIGURE 3.5. The weighted mean imbalance of empirical trees with reduced taxon 
sampling. The imbalance of the published phylogenies without a reduction in taxon 
sampling is represented by the solid line. The dotted line indicates the same set of trees 
with a 50% reduction in taxa averaged over 100 replicates with standard error bars. The 
dashed line at 0.5 indicates the imbalance expected under the ERM model. 
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Chapter 4: Factors Contributing to Systematic Biases in Phylogenetic 

Tree Imbalance 

 

4.1 INTRODUCTION 

 

 Phylogenetic trees are fundamental components of studies that seek to broaden 

our understanding of evolutionary processes and are widely used throughout biology. 

Because of their important role, it is critical that the methods for estimating phylogenies 

are thoroughly understood and developed. Extensive investigation has revealed 

conditions under which the available methods produce accurate or inaccurate estimates of 

topology, branch lengths, or parameter values (Felsenstein, 1978; Hendy and Penny, 

1989; Huelsenbeck and Hillis, 1993; Zharkikh and Li, 1993; Yang, 1994; Huelsenbeck, 

1995; Hoyle and Higgs, 2003; Huelsenbeck and Lander, 2003). Notwithstanding all of 

these valuable studies, it is still not well understood whether phylogenetic reconstruction 

methods are biased toward particular trees when estimating phylogenies from large data 

sets. The goal of this study is to explore the range of conditions under which methods for 

reconstructing phylogenetic trees can be biased toward certain tree shapes. 

 

 Estimates of phylogenetic relationships reveal patterns of diversity that can be 

used to elucidate the evolutionary processes acting on lineages in the Tree of Life. 

Differential rates of speciation and extinction or extrinsic environmental factors, such as 

those that cause mass extinction, can leave signatures on species phylogenies. Methods 
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used to detect these signature patterns often measure asymmetry in the branching pattern 

of a rooted phylogeny (tree imbalance) and compare the observed values of imbalance to 

the values expected under a null model that assumes constant rates of speciation and 

extinction (equal rates Markov model, ERM). As I discussed in chapter 3, variation in 

diversification rates results in tree topologies that are less balanced than expected under 

the ERM model. Additionally, many studies have observed greater imbalance (on 

average) in empirical phylogenies (see chapter 3; Guyer and Slowinski, 1991; Heard, 

1992; Mooers, 1995; Aldous, 2001; Purvis and Agapow, 2002; Holman, 2005; Blum and 

François, 2006). Therefore, it is important to determine whether the degree of tree 

imbalance detected in published, empirical phylogenies results from biases in the 

methods used to reconstruct the trees. 

 

 A study by Heard (1992) examined empirical phylogenies to test the prediction 

that trees reconstructed by parsimony methods would be more imbalanced than those 

estimated using distance methods (Colless, 1982; Shao and Sokal, 1990). However, 

Heard (1992) was unable to detect a difference in the imbalance of trees produced by 

either method. Mooers et al. (1995) collected empirical phylogenies estimated using 

parsimony and found that trees with low support (as measured by nonparametric 

bootstrapping or jackknifing) were less balanced than those that were well supported. A 

second component of the Mooers et al. (1995) study evaluated the imbalance of trees 

estimated from simulated data and their results indicated that incorrectly inferred trees 

were generally more imbalanced than true trees (Mooers et al., 1995). Based on their 

results, Mooers et al. (1995) concluded that inaccurate reconstructions of phylogenetic 
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trees, due to conflicting information in the data, may contribute to the levels of imbalance 

observed in published phylogenies. 

 

 Huelsenbeck and Kirkpatrick (1996) simulated phylogenetic trees and data sets 

under simple models to investigate whether certain reconstruction methods were biased 

toward particular tree shapes. They simulated 8-taxon data sets under the Jukes-Cantor 

model, and demonstrated that maximum parsimony, maximum likelihood, and distance 

methods were all biased toward imbalanced topologies. This bias became more 

exaggerated as substitution rates increased, and at high rates of evolution, maximum 

likelihood was the most biased method. Although they simulated small data sets under a 

simple substitution model, Huelsenbeck and Kirkpatrick (1996) predicted that their 

results would hold for more complex simulations. 

 

 Advances in computational resources and recent developments in phylogenetic 

reconstruction algorithms have allowed us to analyze larger data sets under more 

complex models. Therefore, it is important to determine if phylogenetic methods are 

biased under a broader range of conditions. In this study, I used simulated 100-taxon 

phylogenies and data sets to examine the non-biological factors contributing to tree shape 

bias. Specifically, I examined the effects of substitution rate, reconstruction method, 

model misspecification, sequence length, and outgroup branch length. All of these factors 

are important considerations for phylogenetic analysis and can lead to inaccurate 

topological reconstruction. 
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4.2 METHODS 

 

4.2.1 Simulations 

 

 Model tree topologies and branch lengths were simulated under a constant-rate 

birth/death process (see Figure 4.1 for examples). Phylogenies generated under this 

model of cladogenesis are consistent with the equal rates Markov (ERM) model. This 

null model of diversification assumes that speciation and extinction rates remained 

unchanged over the course of evolution. Under this model, tree topologies are much more 

balanced than trees generated in the presence of diversification rate variation (see chapter 

3). For this study, 1000 tree topologies, each with 100 terminal taxa, were generated 

using the program Phylogen (Rambaut, 2002). Birth and death rates were arbitrarily set to 

0.4 and 0.3, respectively. Simulating tree topologies under this random branching process 

produces ultrametric trees, where branch lengths are proportional to time. Because the 

trees were simulated until a specified number of terminal taxa (100) had been generated, 

the model trees varied in tree depth (TD = distance from the root to tips). After the trees 

were simulated, every tree was rescaled to twelve different tree depths, producing 12 sets 

of 1000 trees. The trees were rescaled to 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1.0, 1.25, 

1.5, 1.75, and 2.0 (in units of expected substitutions/site). Because all of the simulated 

phylogenies were ultrametric, the depth of each tree corresponds to the substitution rate. 

 

 Although identifying the root of a tree is an important consideration when using 

phylogenies as tools for understanding evolutionary processes, rooting can be a very 
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difficult problem for phylogenetic inference. Measures of tree imbalance and other 

applications that use tree shape to detect shifts in diversification rates require rooted trees. 

To examine the effect of outgroup selection on tree shape bias, I added three different 

outgroup taxa to each of the simulated phylogenies (Figure 4.2). The outgroup lineages 

were attached to each tree in a basal polytomy, each differing in their distance to the root 

(d). The outgroup taxon used in the simulation study by Huelsenbeck and Kirkpatrick 

(1996) was contemporary with the ingroup taxa. This is outgroup taxon A in this study 

(Figure 4.2), where the length of the outgroup branch is equal to the total tree depth (d = 

TD). In contrast, outgroup taxon B was the ancestral sequence of the ingroup (d = 0). The 

length of the third outgroup lineage (outgroup C) was half the total tree depth (d = 0.5 * 

TD). 

 

 Each of the 12,000 trees was used to generate sequence data under a range of 

substitution models. The simplest model considered was the Jukes-Cantor (JC) model 

(Jukes and Cantor, 1969). Data were also simulated under JC with gamma-distributed 

rate-heterogeneity (JC+G), the Kimura 2-parameter model (K2P; Kimura, 1980) which 

includes differential rates of substitution for transitions and transversions, the Hasegawa-

Kishino-Yano model (HKY; Hasegawa, Kishino, and Yano, 1985), and the general-time-

reversible model (GTR; Tavare, 1986). Model parameters (Appendix A) were chosen 

from values estimated using empirical sequence data (Murphy et al., 2001). For each 

simulated data set, the total number of nucleotides was set to 1000. Additional data sets 

of 500 and 2000 nucleotides were simulated under the JC and HKY models. Generating 
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sequence data that varied in the number of characters provided a way to investigate the 

impact of sequence length on tree shape bias.  

 

 An additional set of 1000, 100-taxon trees was simulated under a model for 

varying rates of speciation and extinction. These non-ERM trees were generated under 

the model described in chapter 2 (see Figure 4.3 for examples of the non-ERM trees). 

Trees generated under a model of cladogenesis that incorporates variation in 

diversification rates are more imbalanced than expected under the ERM model (see 

chapter 3). The variable rates trees were scaled to different substitution rates ranging 

from 0.5 to 2.0 substitutions/site. Sequence data sets were simulated on the imbalanced 

trees under the JC model, with outgroup A.  

 

 The goal of this study was to determine the non-biological factors that contribute 

to tree shape bias and inaccurate phylogenetic reconstruction. In total, 276,000 data sets 

were constructed so as to best test a range of properties: substitution rate, complexity of 

the simulation model, model misspecification, sequence length, outgroup branch length, 

and model of cladogenesis (Table 4.1).   

 

4.2.2 Phylogenetic Reconstruction Methods 

 

 Phylogenetic trees for each simulated data set were reconstructed using three 

commonly applied methods: neighbor joining (NJ), maximum parsimony (MP), and 

maximum likelihood (ML). Although Bayesian inference methods are frequently used by 
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systematists and known to produce robust estimates of evolutionary relationships, the 

trees produced by these methods are summaries of the posterior distribution of 

topologies, rather than point estimates. As a result, Bayesian methods were not 

considered in this study. 

 

 Neighbor joining (NJ; Saitou and Nei, 1987) analyses were conducted using 

maximum likelihood corrected distances under the true simulation model in PAUP* 

version 4.0b10 (Swofford, 1998). Distance-based phylogenetic reconstruction is often 

conducted using logarithmic formulae to correct for unobserved substitutions according 

to a model of sequence evolution. However, Hoyle and Higgs (2003) showed that 

distance methods using logarithmic formulae are error-prone at high rates of substitution. 

This problem can be alleviated if maximum likelihood distances are used. For each data 

set, a NJ tree was constructed using uncorrected p-distances. This initial tree was then 

used to estimate model parameters under maximum likelihood. The parameter values 

were set to equal the maximum likelihood estimates and the final tree was generated 

using NJ with distances calculated based on the fixed ML parameter estimates. 

 

 Maximum parsimony (MP) reconstruction from each simulated data set was 

carried out using a heuristic search in PAUP* version 4.0b10 (Swofford, 1998) with 10 

replicates, each using a random step-wise addition sequence starting tree and tree-

bisection and reconnection (TBR) branch swapping with no collapsing of zero-length 

branches. For each analysis, tree statistics were averaged across all of the most-

parsimonious trees retained by the search. Because they considered data sets with only 
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eight taxa, Huelsenbeck and Kirkpatrick (1996) used the branch-and-bound search 

strategy to find the optimal topology under parsimony, an algorithm that is guaranteed to 

locate the best tree. With much larger data sets (100 sequences), I was restricted to using 

a heuristic search, which may not have found the optimal tree for every data set. 

 

 Maximum likelihood (ML) estimates of phylogeny were reconstructed using the 

program GARLI v0.951 (serial version; Zwickl, 2006). Each data set was analyzed under 

the true simulation model (or in some cases, an intentionally misspecified model) with all 

other program-specific settings set to default values. GARLI uses an evolutionary 

algorithm to search through tree space and find the optimal tree topology, branch lengths, 

and model parameters under maximum likelihood. The GARLI algorithm is very efficient 

and capable of analyzing large data sets in a reasonable amount of time, making it 

feasible to conduct robust, parametric reconstruction of thousands of data sets. All 

GARLI analyses were run on the Lonestar Dell Dual-Core Linux Cluster (configured 

with 5,200 compute-node processors) at the Texas Advanced Computing Center (TACC: 

http://www.tacc.utexas.edu/). 

 

 Following reconstruction, each estimated tree was rooted using the outgroup 

taxon. Then, the outgroup was removed so that the shape of the ingroup topology could 

be measured. 

 

4.2.3 Measures of Tree Imbalance 
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 Tree shape was calculated using six different tree imbalance/balance measures: IC, 

mean Iw, N-bar, σ2, B1, and B2 (Agapow and Purvis, 2002). Because the results are very 

similar across all tree statistics, I will focus the discussion on the analyses from Colless’s 

imbalance (IC; Colless, 1982; Heard, 1992) and mean Iw imbalance (mean Iw; Purvis et 

al., 2002). 

 

 Colless’s imbalance statistic (IC) is commonly used to evaluate tree asymmetry. 

This measure was first introduced by Colless (1982) and later corrected by Heard (1992). 

For every internal node (for rooted trees, the number of internal nodes is equal to the 

number of taxa, n, minus 1), the number of descendants from each of the daughter 

lineages is compared, where r is the number of taxa in the larger daughter clade and s is 

the number of taxa in the smaller daughter clade (r ≥ s). 
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A perfectly symmetrical tree (with an even number of taxa) will have a value of 0 for this 

measure, and a completely pectinate tree will have a value of 1. IC requires a rooted and 

bifurcating tree topology. Heard (1992) and Rogers (1994) gave formulas for calculating 

the expected value of IC under the assumption of constant speciation and extinction rates 

(for 100 taxa: ERM IC = 0.072). This tree shape measure (like many others) is dependent 

on the size of the tree and gives high weight to the imbalance at the root of the tree 

(Kirkpatrick and Slatkin, 1993; Mooers et al., 1995). 
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 Imbalance at a single node can be measured using a statistic introduced by Fusco 

and Cronk (1995) and later modified by Purvis et al (2002). This measure of imbalance 

(described in chapter 3.2.3) can be calculated for the whole tree by averaging the 

weighted imbalance (Iw) across all nodes in the tree (mean Iw). Mean Iw does not require 

strictly bifurcating topologies and the expectation under the ERM model is size 

independent (ERM mean Iw = 0.5).   

 

 The values for all of the tree statistics were compared to the values of tree shape 

for the true (ERM) topologies. In addition, because simulated data were used, I also 

calculated the accuracy of the reconstructed (unrooted) ingroup topologies. Accuracy was 

measured using the absolute error (E), which uses the Robinson-Foulds (RF) distance 

(also called the symmetric distance; Robinson and Foulds, 1981; Zwickl and Hillis, 

2002). The absolute error is calculated by dividing the RF distance, a measure of the 

number of incorrect bipartitions in the estimated tree compared to the true tree, by the 

maximum RF distance. The maximum RF distance is the number of internal branches in 

the true tree multiplied by two. The absolute error gives a value ranging from zero 

(identical topologies) to 1 (no shared branches). 

 

4.3 RESULTS AND DISCUSSION 

 

 Inaccurate estimates of tree topology are (on average) more imbalanced than the 

true topology. The simulation results show that all three of the phylogenetic 

reconstruction methods considered are biased toward imbalanced tree shapes. In general, 
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different reconstruction methods are affected by various properties of the data and have 

different levels of bias toward imbalanced trees. Figure 4.4 depicts the relationship 

between tree imbalance (using four different measures of tree shape) and the substitution 

rate of the trees reconstructed from data simulated and analyzed (for NJ and ML) under 

the Jukes-Cantor (JC) model. At very high substitution rates, all three methods become 

increasingly biased toward imbalanced topologies. In contrast to the findings of 

Huelsenbeck and Kirkpatrick (1996), whose results indicated that ML was the most 

biased method, I found that NJ, using the minimum evolution method, produced trees that 

were much more imbalanced than those reconstructed using ML or MP when data were 

simulated under simple models of sequence evolution (Figure 4.4). Neighbor joining 

analyses from JC-corrected distances produce extremely biased topologies as substitution 

rates increase above 0.75 substitutions per site. This is consistent with our understanding 

of the problems with distance estimation because at such high rates of evolution, pairwise 

distance estimates can be undefined and lead to biased topological estimates (Hoyle and 

Higgs, 2003; Xia, 2006). 

 

 The results indicate that at high rates of substitution, phylogenetic methods 

produce tree topologies with greater imbalance. A similar pattern is observed when 

comparing the accuracy of the estimated trees with the rate of change. Figure 4.5 shows 

the proportion of error (RF/RFmax) of the estimated trees increasing as substitution rates 

increase. Perhaps a surprising result is that maximum parsimony (MP) produces more 

accurate estimates of topology than likelihood (ML) at high substitution rates under this 

simple model of sequence evolution. Similar results have been found from data simulated 
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on trees that satisfy a strict molecular clock and are analyzed by methods assuming an 

over-simplified substitution model (Rzhetsky and Sitnikova, 1996; Yang, 1997; Shavit et 

al., 2007). It is likely that many of the ultrametric model trees simulated in this study 

contain long branches that are joined as sister taxa. Because parsimony reconstruction 

tends to group long terminal branches together, this method is favored and appears to 

outperform ML and NJ (Bruno and Halpern, 1999). This property of parsimony 

reconstruction was described in detail by Swofford et al. (2001). A simulation study by 

Hulesenbeck and Lander (2003) showed that the probability that parsimony 

reconstruction is inconsistent (converges on the wrong topology as more data are added) 

becomes greater as rates of evolution increase and if the number of sequences examined 

is low. Their results were based on simulations from ERM trees that satisfied a strict 

molecular clock. Based on the conclusions of Huelsenbeck and Lander (2003), there is a 

non-zero probability that parsimony is inconsistent for the data sets simulated in my 

study. Theory suggests that if ML reconstruction was conducted under the assumption of 

a strict molecular clock, or much longer sequences were used, ML would be more 

accurate than MP. Moreover, in their examination of estimates of tree imbalance, 

Huelsenbeck and Kirkpatrick (1996) showed that UPGMA was the least biased method. 

The UPGMA method assumes a strict molecular clock and the results of Huelsenbeck 

and Kirkpatrick (1996) indicate that UPGMA outperformed other methods because the 

data met the assumptions of the model. Therefore, the observed performance of 

parsimony and under-parameterized model-based methods is not an indication these 

methods are superior, but instead, the data are simulated under conditions (ultrametric 

trees and small data set sizes) such that the true tree is favored by biased methods. The 
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simulations presented in this study are oversimplified and it is unlikely that such highly 

divergent biological sequences will satisfy a strict molecular clock and support a simple 

model of sequence evolution (JC). In fact, my results for data simulated under 

heterogeneous substitution models show a very different pattern. 

 

 When sequence data are generated under models that incorporate greater 

complexity in the substitution process, the degree of bias toward imbalanced topologies is 

reduced for ML and NJ (Figures 4.6 and 4.7). Figure 4.6 shows the imbalance, calculated 

using IC, for trees simulated and analyzed under JC+G, K2P, HKY, and GTR (with 

outgroup A). In contrast to the pattern of imbalance in figure 4.4A, likelihood and 

distance methods are much less biased toward imbalanced trees. When comparing 

methods using mean Iw imbalance, NJ and MP are both much more biased than ML. 

Figure 4.8 shows the proportion of error for trees estimated from datasets generated under 

the K2P model. This can be compared with the patterns of imbalance observed in figure 

4.7B. Imbalance measured by mean Iw shows a pattern that is similar to the error of the 

methods. Although, NJ appears to produce more accurate estimates of tree shape than 

MP, the topologies are actually less accurate. This discrepancy is due, in part, to how the 

trees are rooted and how polytomies are resolved. For the MP analyses, the method was 

forced to resolve zero-length branches and these resolutions translate to strong imbalance 

in the inferred topologies, particularly when using IC to measure imbalance (Figure 4.6). 

At high substitution rates, methods that account for unobserved substitutions, are less 

likely to underestimate branch lengths and may also be less likely to include polytomies.  
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 Parametric methods for phylogenetic reconstruction are known to be consistent 

when the model assumptions are satisfied (Chang, 1996). However, it is very important to 

consider the effect of model misspecification on the accuracy of these methods. Under-

parameterization of a model can lead to decreased accuracy in estimates of topology, 

branch length, and parameter values. Though, in some cases, over-simplified models 

have been shown to produce more accurate estimates of tree topology than the true model 

(Yang, 1997), because such model violation can lead to biases in the method that favor 

the true tree (Bruno and Halpern, 1999; Swofford et al., 2001; Sullivan and Swofford, 

2001). Several studies have shown that, under certain conditions, maximum likelihood 

estimation under an under-parameterized model can be an inconsistent method and prone 

to the same long-branch attraction effects as parsimony (Kuhner and Felsenstein, 1994; 

Yang et al., 1994; Yang, 1996; Bruno and Halpern, 1999; Philippe et al., 2005; Lartillot 

et al., 2007). For data generated under the HKY model, under-parameterization leads to 

an increase in estimates of tree imbalance (Figure 4.9) and reduced topological accuracy 

(Figure 4.10). When the data are analyzed under a very simple model (JC) the estimated 

tree topologies approach the levels of imbalance observed in parsimony reconstructions. 

However, when an over-parameterized model (GTR) is used, the imbalance in the 

estimated topologies is not significantly different from the estimates obtained from 

analyzing under the true model (HKY). In this case, the true model is a special case of the 

over-parameterized model and analyses under the true model and the overly complex 

model produce similar estimates of tree topology and imbalance (Figures 4.9 and 4.10).  

These results are consistent with our understanding of the effects of model 

misspecification on phylogenetic inference (Kuhner and Felsenstein, 1994; Lockhart et 
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al., 1996; Sullivan and Swofford, 2001; Lemmon and Moriarty, 2003; Brown and 

Lemmon, 2007). Moreover, with the increasing availability of genomic data, these results 

emphasize the importance of developing new models and phylogenetic methods that can 

better encompass the complex evolutionary processes responsible for generating multi-

locus, biological data sets. 

 

 Another factor observed to influence estimates of phylogenetic tree imbalance is 

the number of characters included in an analysis. In their study, Huelsenbeck and 

Kirkpatrick (1996) simulated data sets comprised of sequences of 100 and 500 

nucleotides in length. They found that all methods produced biased tree shapes regardless 

of the number of characters analyzed. Their comparison indicated that although 

increasing sequence length did not cure the bias toward imbalanced topologies, including 

more data resulted in an overall increase in topological accuracy. In the present study, I 

simulated additional data sets of 500 and 2000 bases under the JC (results not shown) and 

HKY models. Analyses of these data sets show that increasing sequence length improves 

tree imbalance estimates and leads to greater topological accuracy for all methods of 

reconstruction (Figure 4.11). However, it is important to state that, when dealing with 

biological data, increasing the number of characters is not straightforward. The 

simulations generated in this study satisfy the assumption that the data evolved under a 

single, stationary model and share a single evolutionary history and these results may not 

be general for large, multi-gene data sets.  
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 If phylogenies are used to address questions about the timing, rate, or 

directionality of evolutionary processes, then rooting is a necessary step in analysis. For 

example, methods for assessing diversification rate variation and evaluating tree shape 

typically require rooted trees and many tree imbalance measures place a considerable 

amount of weight on asymmetry at the root of the tree. Including taxa from outside the 

group of interest is the most common method for rooting phylogenetic trees, and 

selection of these outgroup taxa is an important consideration for any phylogenetic 

analysis. Holland et al. (2003) used simulated data to demonstrate that highly divergent 

outgroup taxa can disrupt the topology of the ingroup or misplace the root of the tree 

because the long outgroup branch is joined to a long terminal branch in the ingroup. I 

assessed three different types of outgroup taxa: outgroup A was the same distance to the 

root of the tree as any given ingroup taxon, outgroup B was the ancestral sequence of the 

ingroup, and outgroup C was half the distance to the root of the tree as any given ingroup 

(Figure 4.2). Figure 4.12 depicts the relationship between the mean Iw imbalance and the 

substitution rate for trees generated from data sets simulated under K2P with each of the 

different outgroup taxa. These analyses indicate that methods that correct for unobserved 

substitutions (ML and NJ) are unaffected by the distance of the outgroup taxon to the 

root. Maximum parsimony (MP), however, becomes less biased toward imbalanced 

topologies as the outgroup branch is shortened. This result can also be seen when 

calculating imbalance using IC (Figure 4.13). Colless’s imbalance weights imbalance at 

the root of the tree much more than mean Iw imbalance. When measuring imbalance with 

IC, MP appears to be biased toward more balanced topologies when using the ancestral 

sequence as an outgroup. In this case, parsimony favors placing the outgroup taxon closer 
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to the midpoint of the tree. When more distant outgroup taxa are used, however, long-

branch attraction causes the outgroup to be placed with other long-branched terminal 

taxa. This is illustrated in Figure 4.14 for two trees estimated using parsimony. When 

outgroup taxon A is included in the analysis, long-branch attraction causes the outgroup 

and another long-branched terminal taxon (labeled IN and in blue) to be grouped together 

as sister taxa. This leads to an overall increase in tree imbalance, particularly when 

measured with IC, because the tree is rooted on a single terminal branch (Figures 4.12 and 

4.11). Conversely, when the ancestral sequence (outgroup B) is included, the root is 

placed more centrally on the tree, resulting in greater symmetry at the root (Figure 4.13). 

Additionally, for parsimony reconstruction, when a highly divergent outgroup sequence 

is selected, the resolution of the ingroup can be affected. Shorter outgroup branches have 

less impact on the reconstruction of the ingroup and, on average, inclusion of a shorter 

outgroup sequence resulted in greater accuracy. Typically, one should consider using 

more than one outgroup taxon to reduce the effects of long-branch attraction (Graybeal, 

1998; Holland et al., 2003; Shavit et al., 2007). Maddison et al. (1984) found that single 

outgroup taxa were more likely to incorrectly root the tree. Inclusion of a monophyletic 

outgroup results in an overall reduction of long branches and can lead to more accurate 

reconstruction of the root of the tree (Smith, 1994). 

 

 The results of this simulation study demonstrate that the extreme bias toward 

imbalanced topologies, when trees are reconstructed from data generated under simple 

models, does not hold under a more general set of conditions (provided the assumptions 

of the model are satisfied). On average, inaccurate estimates of topology are imbalanced 
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and therefore, it is important to understand the sets of conditions that lead to inaccuracy 

for all methods. It is imperative to state, however, that the simulations in this study (and 

previous studies on tree shape bias) are very simple and do not adequately explore the 

parameter space occupied by biological data. For example, phylogenetic trees estimated 

from biological data are much more imbalanced than expected under the ERM model, 

and it is not clear from results based on ERM simulations whether methods are biased 

toward imbalanced topologies under a more realistic model of cladogenesis. When data 

are simulated on trees generated under variable speciation and extinction rates, inaccurate 

reconstructions are more imbalanced than the true trees (Figure 4.15). I observed the 

same pattern of increasing bias toward imbalanced trees with increasing substitution rates 

in non-ERM data sets as was observed when the ERM data sets were analyzed (Figure 

4.15). These results indicate that even when the true tree is imbalanced, methodological 

bias toward greater asymmetry remains.  

 

4.4 CONCLUSIONS 

 

 When using tree shape to address questions about macroevolutionary processes, it 

is important to consider the effects of non-biological factors which can lead to inaccurate 

estimates of tree topology and, in turn, inflate levels of tree imbalance. The results of this 

study have shown that different properties of the data and different inference methods can 

lead to elevated levels of phylogenetic tree imbalance. Based on these results, it is 

apparent that bias toward asymmetric topologies has contributed to the degree of 

imbalance observed in published phylogenies. However, previous surveys of published 
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phylogenies have failed to detect a difference in the imbalance of trees reconstructed 

using different phylogenetic methods (Heard, 1992; and see chapter 3). Therefore, an 

important next step in understanding tree shape bias will be to compare methods using a 

number of biological data sets. Although one would be unable to assess the accuracy of 

the methods using these data, tree shape measures would be useful for comparing 

topological estimates and detecting directional biases. 

 

 My results, and those of previous studies (Mooers et al., 1995; Heard and Mooers, 

1996; Huelsenbeck and Kirkpatrick, 1996; Salisbury, 1999), have shown that 

reconstruction methods are inaccurate and biased toward imbalanced trees when model 

assumptions are violated or when the data are inundated with large amounts of 

homoplasy. Perhaps model violation is prevalent in empirical phylogenetic analyses and 

this model inadequacy is a possible explanation for the apparent lack of difference in 

imbalance estimates of biological trees produced by different phylogenetic methods. It is 

acknowledged that biological data are more complex than commonly used substitution 

models. Additionally, with the rapid accumulation of genomic data, phylogenetic 

analyses are being conducted with large, multi-locus data sets. The complexity of 

molecular data and our inability to model complex evolutionary histories underlines the 

necessity for new methods and biologically-realistic models that can better accommodate 

the heterogeneity we know is present in empirical data. Improvement in our ability to 

realistically model evolutionary processes will lead to fewer inaccurate estimates of 

phylogenetic relationships which can exacerbate phylogenetic tree imbalance. 
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TABLE 4.1: The range of conditions addressed by simulating and analyzing different data 
sets. The variables considered include the model tree shape (simulation tree type), the 
substitution model for simulation, the model for analysis, the outgroup, and the length of 
the sequences. Every set of conditions was simulated on every tree for each of the 12 sets 
of trees that ranged in tree depth (12,000). Only two cases involved model 
misspecification, where the simulation model was HKY and was analyzed under an 
under-parameterized model (JC) and an over-parameterized model (GTR).  
 

Simulation 
Tree Type 

Simulation 
Model 

Analysis 
Model 
T = true 

Outgroup Sequence length 
(# nucleotides) 

500 
1000 T A 
2000 
500 
1000 T B 
2000 

ERM JC 

T C 1000 
T A 1000 ERM JC+G T B 1000 
T A 1000 
T B 1000 ERM K2P 
T C 1000 

500 
1000 T A 
2000 

JC A 1000 
GTR A 1000 

500 
1000 

ERM HKY 

T B 
2000 

A 1000 ERM GTR T B 1000 
Variable 

Rates JC T A 1000 
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FIGURE 4.1: Two examples of constant-rate birth/death tree topologies. The branch 
lengths correspond to the divergence times. The simulation parameters were set so that λ 
= 0.4 (birth rate) and  μ = 0.3 (death rate).  
 

Tree Depth (TD)  
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FIGURE 4.2: The three different outgroup branch lengths considered for this simulation 
study. The distance (d) from the root of the tree to the tip of the outgroup lineage was 
varied from so that one outgroup (outgroup A) was the same distance to the root as any 
given ingroup taxon (d = TD), the second outgroup (outgroup B) was the ancestral 
sequence of the ingroup (d = 0), and the length of the third outgroup branch (outgroup C) 
was half of the total tree depth (d = 0.5 * TD). 
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FIGURE 4.3: Two examples of trees simulated under variable rates of speciation and 
extinction. The gamma shape parameter that controls the level of rate variation was set to 
3 (see chapter 2). The branch lengths correspond to the divergence times. 
 

Tree Depth (TD)  
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FIGURE 4.4: Tree imbalance/balance as a function of substitution rate for four different 
tree imbalance measures. Tree shape was measured for each estimated tree using (A) IC, 
(B) N-bar, (C) B2, and (D) mean Iw and averaged across all topologies reconstructed from 
data sets simulated under a given substitution rate (0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 
1.0, 1.25, 1.5, 1.75, and 2.0 substitutions/site) for each of the three methods with 
outgroup taxon A. Neighbor joining (NJ) trees are indicated by blue lines, maximum 
parsimony (MP) trees are depicted using black lines, and maximum likelihood (ML) trees 
are shown with red lines. The average values for the true (ERM) trees are indicated by 
the grey dotted lines. For substitution rates above 1.25, mean Iw could not be calculated 
for NJ trees because of high numbers of undefined distances or zero-length branches.  
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FIGURE 4.5: The proportion error (or absolute error) of reconstructed topologies as a 
function of substitution rate calculated using Robinson-Foulds distances and normalized 
by the maximum RF distance. The error is shown for trees reconstructed using NJ (blue), 
MP (black), and ML (red), with outgroup taxon A. 
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FIGURE 4.6: Colless’s imbalance (IC) for data simulated and analyzed under 
heterogeneous models. The imbalance is shown for data sets simulated under (A) the JC 
model with gamma-distributed rate heterogeneity (JC+G), (B) K2P, (C) HKY, and (D) 
GTR, with outgroup taxon A. 
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FIGURE 4.7: Mean Iw imbalance for data simulated and analyzed under heterogeneous 
models. The imbalance is shown for data sets simulated under (A) the JC model with 
gamma-distributed rate heterogeneity (JC+G), (B) K2P, (C) HKY, and (D) GTR, with 
outgroup taxon A. 
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FIGURE 4.8: The proportion of error (absolute error) for trees reconstructed from data sets 
simulated under the K2P model. NJ and ML analyses were conducted using the same 
model for analysis that was used for simulation (K2P) and outgroup taxon A was 
included in the analysis to root the tree. 
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FIGURE 4.9: The mean Iw imbalance for trees reconstructed from data sets simulated 
under HKY and analyzed using parsimony (MP) and misspecified models using 
maximum likelihood (ML). Outgroup taxon A was included in the analyses for rooting. 
When the true model (ML/HKY solid-red line) or an over-parameterized model 
(ML/GTR dotted-red line) is assumed, no difference in the estimate of imbalance was 
observed. When the analysis assumes an under-parameterized model (ML/JC dashed red 
line), the estimated trees are more imbalanced. 
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FIGURE 4.10: The proportion of error for trees estimated under MP (black line) and ML 
(red lines) with misspecified models. The data sets analyzed were simulated under the 
HKY model with outgroup taxon A. ML reconstruction under the under-parameterized 
model (JC) is represented by the dashed red line and is less accurate than trees estimated 
under the true model (HKY, solid red line) or the over-parameterized model (GTR, 
dotted red line). The true/simulation model is a special case of the excessively complex 
model, and as a result, there is no difference in the average error of estimated topologies 
(in this case). 
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FIGURE 4.11: The imbalance (measured using IC) of trees estimated from data sets 
simulated under HKY with a range of sequence lengths using each of the three methods. 
Data sets with 500 bases are shown using dashed lines, the solid lines represent the data 
sets with 1000 bases, and the dotted lines indicate the trees estimated from data sets 
contain 2000 nucleotides. Outgroup taxon A was used in the analyses to root the trees. 
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FIGURE 4.12: The effect of outgroup branch length on tree imbalance. Mean Iw imbalance 
of trees reconstructed from data sets with one of three outgroup taxa. Outgroup A (solid 
line) had a branch length equal to the total tree depth, outgroup B (dashed line) was the 
ancestral sequence, and the length of outgroup C (dotted line) was half of the total tree 
depth. These results indicated that for maximum parsimony (MP) reconstruction, the 
topology of the ingroup is greatly affected by the length of the outgroup branch. NJ and 
ML analyses appear to be unaffected by the selection of the outgroup. 
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FIGURE 4.13: The effect of outgroup branch length on imbalance (measured using IC). 
Colless’s imbalance places greater weight on the imbalance at the root of the tree. When 
the ancestral sequence is used as an outgroup, there is a tendency for that taxon to be 
placed in a more central position on the tree when using parsimony. 
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FIGURE 4.14: An example of the effect of outgroup branch length on the ingroup topology 
under the maximum parsimony (MP) optimality criterion. The unrooted trees were 
reconstructed from the same simulated data sets with different outgroups (OUT; indicated 
in red). The length of the branch leading to outgroup A was equal to the total tree depth, 
which in this case was 0.75 substitutions/site (dA = 0.75). Outgroup B was the ancestral 
sequence of the ingroup (dB = 0.0). When an outgroup with a long branch is used, there is 
a greater chance the topology of the ingroup will be affected if there are ingroup taxa on 
long branches. In this example, homoplasy in the outgroup sequence and an ingroup 
sequence on a long branch (IN; colored in blue) causes the two taxa to be drawn together 
because of long-branch attraction. When the ancestral sequence (outgroup B) is used, 
parsimony is more likely to accurately reconstruct the root of the tree and the outgroup is 
less likely to affect the topology of the ingroup. 
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FIGURE 4.15: Imbalance of trees reconstructed from data sets simulated on non-ERM 
trees, calculated using IC and mean Iw imbalance. The model trees generated under 
variable rates of diversification had an average IC imbalance of 0.09 and an average mean 
Iw imbalance of 0.52 and are indicated by the dark grey, dashed lines. The average 
imbalance expected under constant rates of speciation and extinction for each measure 
(ERM IC = 0.072; ERM mean Iw = 0.5) are represented by the light grey, dashed lines. A 
similar pattern of increasing imbalance with increasing substitution rates was observed 
for these analyses. 
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Appendix B: Collection of Published Phylogenies and References 

TABLE B.1: Taxonomic groups and references for empirical phylogenies. ML = 
maximum likelihood, B = Bayesian, P = maximum parsimony 
 

Group Method Citation 
"PROTISTS"  
Dinoflagellates ML Murray et al. (2005) 
Euglenozoa ML Simpson and Roger (2004) 
Phaeophyceae ML/P Yoon et al. (2001) 
   
FUNGI   
Ascomycota ML/P Kauff and Lutzoni (2002) 
Cortinarius B Froslev et al. (2005) 
Homobasidiomycetes P, ML Binder and Hibbett (2002), Bodensteiner et al. 

(2004) 
Lichenicolous fungi B Lawrey et al. (2007) 
Pertusariaceae B Schmitt and Lumbsch (2004) 
Sordariales P Miller and Andrew (2005) 
   
PLANTS   
Anthemideae P Watson et al. (2000) 
Araceae P Lewis and Doyle (2002) 
Aristolochiaceae ML/P Neinhuis et al. (2005) 
Begonia P Forrest et al. (2005) 
Bryophyta B Shaw and Renzaglia (2004) 
Burseraceae P Weeks et al. (2005) 
Calamoideae P Baker et al. (2000) 
Cardueae ML/P Garcia-Jacas et al. (2002) 
Cariceae P Starr et al. (2004 
Caryophyllaceae B/P Fior et al. (2006) 
Cornales ML/P Xiang et al. (2002 
Croton ML/P Berry et al. (2005) 
Cucurbitales P Zhang et al. (2006) 
Epidendroideae B van den Berg et al. (2005) 
Eucalyptus P Steane et al. (1999) 
Gentianaceae  P Yuan et al. (2003) 
Houstonia ML Church (2003) 
Lamiales P Wortley et al. (2005) 
Leguminosae B Lavin et al. (2005) 
Lythraceae B/P Graham et al. (2005) 
Malaxideae P Cameron (2005) 
Malvatheca B/P Baum et al. (2002) 
Marchantiidae P Boisselier-Dubayle et al. (2002) 
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Marchantiophyta B Shaw and Renzaglia (2004) 
Monilophytes B Pryer et al. (2004) 
Myrtaceae P Wilson et al. (2005) 
Ocimeae B/P Paton  et al. (2004) 
Orchidaceae P Cameron (2004) 
Phyllanthaceae P Kathriarachchi  et al. (2005) 
Physematieae P Sano et al. (2000) 
Poaceae MRP Salamin et al. (2002) 
Rhododendron ML/P Goetsch et al. (2005) 
Sapindaceae P Harrington et al. (2005) 
Saxifragales ML/P Fishbein et al. (2001) 
Solanaceae B Martins and Barkman (2005) 
Vernonieae B Keeley et al. (2007) 
Vitaceae P Soejima and Wen (2006) 
   
ANIMALS   
ARTHROPODS  
Agromyzidae P Scheffer et al. (2007) 
Anostraca ML Weekers et al. (2002) 
Aphididae P, ML Ortiz-Rivas et al. (2004), von Dohlen et al. 

(2006) 
Aphodiini B Cabrero-Sanudo and Zardoya (2004) 
Arthropoda ML Pisani (2004) 
Asilidae ML/P Bybee et al. (2004) 
Avenzoariinae P Dabert et al. (2002) 
Bactrocera P Smith et al. (2003) 
Braconidae B/P Shi et al. (2005) 
Branchiopoda B/P deWaard et al. (2006) 
Carabidae ML/P Ober (2002) 
Ceratopogonidae P Bekenbach and Borkent (2003) 
Cheilosia P Stahls and Nyblom (2000) 
Cicadomorpha P Cryan (2005) 
Cicindela P Pons et al. (2004) 
Coccoidea ML/P Cook et al. (2002) 
Cotesia ML/P Kankare and Shaw (2004) 
Curculionoidea P Marvaldi et al. (2002) 
Dermaptera P Jarvis et al. (2005) 
Drosophilidae P Remsen and O'Grady (2002) 
Ephemeroptera P Ogden and Whiting (2005) 
Euglossini P Michel-Salzat et al. (2005) 
Eumolpinae P Gomez-Zurita et al. (2005) 
Eurytomidae B Chen et al. (2004) 
Formicidae P Astruc et al. (2004) 
Formicinae ML/P Johnson et al. (2003) 
Gelechioidea P Bucheli and Wenzel (2005) 
Geometridae P Abraham et al. (2005) 
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Gerromorpha P Damgaard et al. (2005) 
Harpalini ML/P Martinez-Navarro et al. (2005) 
Insecta B Kjer (2004) 
Membracoidea P Dietrich et al. (2001) 
Microgastrinae ML/P Mardulyn and Whitfield (1999) 
Mysida ML/P Remerie et al. (2004) 
Noctuoidea ML/P Fang et al. (2000) 
Nymphalidae P Freitas and Brown (2004) 
Orthoptera B/P Jost and Shaw (2006) 
Papilionini ML/P Aubert et al. (1999) 
Pentatomomorpha ML/P Li et al. (2005) 
Pholcidae  ML/P Bruvo-Madaric et al. (2005) 
Phyllopoda ML/P Braband et al. (2002) 
Pipunculidae P Skevington and Yeats (2000) 
Pycnogonida ML/P Arango (2003) 
Salticidae ML/P Maddison and Hedin (2003) 
Simuliidae  ML/P Pruess et al. (2000) 
Staphyliniformia ML/P Caterino et al. (2005) 
Syrphidae P Skevington and Yeats (2000) 
Tephritoidea ML/P Han and Ro (2005) 
Therevidae P Yang et al. (2000) 
Theridiidae B/P Arnedo et al. (2004) 
Trichoptera ML/P Kjer et al. (2001) 
   
VERTEBRATES  
Amniota P Hill (2005) 
Amphibia ML Zhang et al. (2005) 
Anura ML Roelants and Bossuyt (2005) 
Carcharhiniformes P Iglesias et al. (2005) 
Caudata B/P Weisrock  et al. (2005) 
Chiroptera ML/MRP Teeling et al. (2005), Jones et al. (2002) 
Chondrichthyes  ML Douady et al. (2003) 
Clupeiforms B Li and Orti (2007) 
Colubroidea ML/P Lawson et al. (2005) 
Cyprinidae ML/P Wang and He (2007) 
Elapidae ML/P Slowinski and Keogh (2000) 
Elopomorpha P, B Obermiller and Pfeiler (2003), Inoue et al. 

(2004) 
Emberizidae ML/P Carson and Spicer (2003) 
Euteleostei ML/P Ishiguro et al. (2003) 
Eutheria B/MRP Murphy et al. (2001), Beck et al. (2006) 
Gobioidei P Thacker (2003) 
Gymnophiona ML San Mauro et al. (2004) 
Hyloidea ML/P Darst and Cannatella (2004) 
Lygosominae P, ML Honda et al. (2000), Reeder (2003) 
Mammalia ML Phillips and Penny (2003) 
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Marsupialia P, ML Palma and Spotorno (1999), Amrine-Madsen et 
al. (2003) 

Muridae ML/P Jansa and Weksler (2004) 
Myliobatiformes ML/P Dunn et al. (2003) 
Osteoglossomorpha ML/P Lavoue and Sullivan (2004) 
Passeriformes B/P Spicer and Dunipace (2004) 
Reptilia (w/ birds) ML Rest et al. (2003) 
Rodentia ML/P Adkins et al. (2003) 
Scincidae B Brandly et al. (2005) 
Serpentes B/P Slowinski and Lawson (2002) 
Sigmodontinae ML Weksler (2003) 
Siluriformes B/P Hardman (2005) 
Squamata ML/P Townsend et al. (2004) 
Sylvioidea B Alstrom et al. (2006) 
Testudines ML/P Krenz et al. (2005) 
Tyranni ML/P Chesser (2004) 
   
OTHER ANIMAL GROUPS 
Acanthocephala P, ML Near et al. (1998), Garcia-Varela et al. (2002) 
Acoela P Hooge et al. (2002) 
Anthozoa  ML Berntson et al. (1999) 
Brachiopods ML/P Saito et al. (2000) 
Calcarea ML Manuel et al. (2003) 
Cestoda  P Olson et al. (2001) 
Conus  ML Cunha et al. (2005) 
Demospongiae B Nichols (2005) 
Gastrotricha P Wirz et al. (1999) 
Mollusca ML/P Passamaneck et al. (2004) 
Mytilidae ML/P Distel (2000) 
Nematoda B/P Meldal et al. (2007), Smythe et al. (2006) 
Nemertea ML/P Sundberg and Saur (1998) 
Octocorallia B/P McFadden et al. (2006) 
Opisthobranchia ML/P Grande et al. (2004) 
Pectinidae ML/P Barucca et al. (2004) 
Platyhelminthes ML Campos et al. (1998) 
Polychaeta ML/P Bleidorn et al. (2003) 
Proseriata P Littlewood et al. (2000) 
Rotifera ML/P Sorenson and Giribet (2006) 
Scleractinia B Le Goff-Vitry et al. (2004) 
Spatangoida B/P Stockley et al. (2005) 
Tubificidae B/P Sjolin et al. (2005) 
Tunicata ML/P Stach and Turbeville (2002) 
Venerinae B/P Kappner and Bieler (2006) 
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