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We investigated the usefulness of a parallel genetic algorithm for phylogenetic inference under the maximum-
likelihood (ML) optimality criterion. Parallelization was accomplished by assigning each ‘‘individual’’ in the genetic
algorithm ‘‘population’’ to a separate processor so that the number of processors used was equal to the size of the
evolving population (plus one additional processor for the control of operations). The genetic algorithm incorporated
branch-length and topological mutation, recombination, selection on the ML score, and (in some cases) migration
and recombination among subpopulations. We tested this parallel genetic algorithm with large (228 taxa) data sets
of both empirically observed DNA sequence data (for angiosperms) as well as simulated DNA sequence data. For
both observed and simulated data, search-time improvement was nearly linear with respect to the number of pro-
cessors, so the parallelization strategy appears to be highly effective at improving computation time for large
phylogenetic problems using the genetic algorithm. We also explored various ways of optimizing and tuning the
parameters of the genetic algorithm. Under the conditions of our analyses, we did not find the best-known solution
using the genetic algorithm approach before terminating each run. We discuss some possible limitations of the
current implementation of this genetic algorithm as well as of avenues for its future improvement.

Introduction

With the advent of large-scale sequencing projects,
the amount of phylogenetically useful molecular data
has increased by several orders of magnitude. There are
intrinsic advantages to using large amounts of data in a
phylogenetic analysis, both in terms of number of taxa
and number of characters (Wheeler 1992; Lecointre et
al. 1993; Hillis, Huelsenbeck, and Swofford 1994; Hillis
1996, 1998; Pollock et al. 2002; Zwickl and Hillis
2002). In addition, many researchers would like to an-
alyze their data with a computationally intensive, model-
based optimality criterion such as maximum likelihood
(ML). These trends suggest a need for an analytical
method that can be scaled to accommodate phylogenetic
problems with any number of taxa and characters. One
possible way of accomplishing this goal is to develop
parallel and distributed algorithms for ML analysis.
These methods can potentially take advantage of both
the increasingly common dispersed computer resources
and the ‘‘big iron’’ of supercomputer centers. A natural
candidate for such a method is one based on a genetic
algorithm.

In nonphylogenetic domains, genetic algorithms
have been used to find near-optimal solutions to com-
plex problems in a rapid and efficient manner. A genetic
algorithm mimics the adaptation of a ‘‘population’’ by
including processes analogous to mutation, recombina-
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tion, and selection. Each ‘‘individual’’ in the evolving
population is a potential solution to a problem, and the
individual’s fitness is determined by how well it solves
the problem. We used GAML (Lewis 1998), a genetic
algorithm designed to solve the problem of finding a
phylogenetic tree that maximizes the likelihood of a data
set, to investigate the usefulness of applying a parallel
approach to genetic algorithms for ML phylogenetic
analysis. In this phylogenetic application of a genetic
algorithm, an individual in a population is a hypothesis
consisting of the tree, branch lengths, and parameter val-
ues for the model of sequence evolution; the fitness of
the individual is the likelihood score of the hypothesis.
The ML score of a tree is usually approximated by a
computationally intensive hill-climbing process in
which the values of many nuisance parameters must be
estimated. GAML uses the genetic algorithm approach
to optimize these parameters and to simultaneously
search through tree space. In the original article in which
the method was described, Lewis (1998) applied GAML
to a real data set of 55 sequences. GAML correctly
found the best tree and performed substantially faster
than a traditional heuristic search in which all parame-
ters were optimized for each tree examined.

The genetic algorithm approach implies an obvious
strategy for parallelizing the search process. Each indi-
vidual in a population can be handled by a single pro-
cessor or node, which calculates the likelihood of the
respective individual (tree, branch lengths, and param-
eter values). Because this operation takes the largest
amount of wall-clock time, an increase in population
size up to the number of available nodes should not
substantially increase the amount of time needed to
solve the problem. Thus, with an efficient parallel al-
gorithm, searches can be scaled to run on either mas-
sively parallel processors or on workstation clusters
such as Beowulf (Becker et al. 1995) or Legion (Grim-
shaw and Wulf 1997).
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As with other heuristic search strategies, the ge-
netic algorithm approach does not guarantee finding the
best solution; the parameters chosen for the genetic al-
gorithm affect its efficiency and the extent of solution-
space covered. Our goal in this study was to evaluate
the accuracy and efficiency of a parallelized genetic al-
gorithm in solving very large (.200 taxa) ML problems
in phylogenetics. This parallel version of GAML al-
lowed us to examine the performance of the method for
a data set whose size and complexity place it beyond
the normal range of most other heuristic methods.

Materials and Methods
The Program

We examined the performance of a parallelized ver-
sion of GAML for solving a large phylogenetic problem,
given a range of program parameters. We used the Au-
gust 1998 revision (pre-1.3) version of GAML modified
and compiled to run on the Cray T3E (Lonestar) at the
Texas Advanced Computing Center. Lonestar employs a
scalable number (88–277 during our study) of Alpha
EV5 RISC processors in a three-dimensional toroidal
memory interconnect, with 128 Mb of memory per node
(further technical specifications of the Cray T3E can be
found at the website http://www.tacc.utexas.edu). Par-
allel routines were written using the message-passing
interface, so the implementation is portable to other ar-
chitectures and operating systems. The program uses the
common HKY85 model (Hasegawa, Kishino, and Yano
1985), with inferred transition to transversion rate ratios
and empirical base frequency estimates. Other compar-
ative analyses were done as noted using the program
PAUP* 4.02b (Swofford 2000).

In this parallel version of GAML, a master proces-
sor creates a population of individuals and sends each
of them to another single processor to be scored. Thus,
the number of nodes used equals the number of slave
nodes (equal to the population size) plus one master
node. During each run, all nodes used were dedicated
to this analysis. Each of the slave processors calculates
the likelihood of the tree, given a set of parameters. This
value becomes the basis for the rank ordering of the
population which determines each individual’s fitness.
The next generation of the population is created by
copying the best individual in the current generation a
set number of times (referred to as the holdover num-
ber). The remaining individuals that will contribute to
the subsequent generation are stochastically selected,
with the probability of any given individual being se-
lected set by its rank. Next, all individuals, except one
copy of the best individual, are altered by mutations in
branch length, a change in topology (using a subtree
pruning-regrafting operation), or recombination with an-
other member of the population (or all).

Individual runs were stopped on the basis of a sub-
jective criterion incorporating the size of likelihood in-
crease per unit time and the current availability of com-
putational resources. In general, most runs took between
3 and 10 million node-seconds.

Data Sets

Two data sets of approximately equal size were an-
alyzed. The first (simulated) was a Monte Carlo simu-
lation of 5,000 nucleotide characters across a model tree
of 228 taxa derived from the most parsimonious solution
of a large angiosperm data set (Soltis et al. 1999). Data
were simulated using the program Siminator (Huelsen-
beck, Hillis, and Jones 1995), using parameters that cor-
respond closely to those estimated for the original data
set. As described by Hillis (1996), this simulation used
a K2P model with g-distributed rate variation (the shape
parameter a set to 0.5) and a transition-transversion ratio
of 2. For this data set, the model tree represents the
correct solution to the problem, although not necessarily
the tree with the highest likelihood. For the second (ob-
served) data set, 4,822 aligned nucleotides of 12S and
16S mitochondrial ribosomal RNA genes were taken
from the same 228 angiosperm taxa that formed the ba-
sis of the simulation (Soltis et al. 1999).

Variation of Program Parameter Values

The GAML program allows variation in the param-
eter values assigned to population size, holdover num-
ber, recombination probability, the probability of mutat-
ing the tree topology, and a shape distribution for the
size of branch length and transition:transversion ratio
mutations (these parameters are described at length by
Lewis 1998). We serially varied population size, topo-
logical mutation rate, and recombination rate to inves-
tigate the importance of these parameters on the effi-
ciency of the genetic algorithm. The parameter that
might most obviously affect performance is the size of
the population. We varied population size among the
values 3, 6, 15, and 30. A decline in the ratio of per-
formance–processor time was evident after 15 individ-
uals, so increases in population size much beyond 30
are unlikely to result in dramatic increases in perfor-
mance above that expected by the simple increase in
total processing power. Furthermore, limitations in the
number of nodes available for dedicated analysis pre-
cluded much larger population sizes. For all experi-
ments, the holdover number was set at one third of the
total population size. This parameter is the minimum
number of times that the top-ranked individual is rep-
resented in the subsequent generation (see Lewis 1998
for a complete description).

Finally, to establish that the values chosen for the
per-generation topological mutation and crossover prob-
abilities were reasonable, we jointly varied these two
parameters over a range of values. Initial experiments
showed that mutation and crossover probabilities less
than 0.1 or greater than 0.8 did not improve perfor-
mance, so these experiments limited crossover and to-
pological mutation probabilities to values within this
range. Crossover and topological mutation rates were
thus 0.1, 0.2, 0.4, or 0.8 per generation.

Migration Experiments

To determine the extent to which a loss of popu-
lation genetic variance might limit the performance of
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FIG. 1.—Progress of the genetic algorithm across four populations
of differing sizes, measured by the log-likelihood of the best solution
in the population. Note that the abscissa is measured in millions of
node-seconds of processor time. Similar solutions require similar
amounts of total processor time for the different population sizes, but
the total number of processors used in this parallel algorithm equals
the population size plus one. Therefore, the absolute (wall-clock) time
for a given analysis decreases in an almost linear fashion with increas-
ing population size.

GAML, we conducted migration experiments, in which
two independent populations were first evolved for
66,500 generations (by which point the increase in like-
lihood score had slowed substantially) and were then
mixed, with recombination occurring between individ-
uals of different populations. The resulting hybrid pop-
ulations were allowed to continue evolution under the
original conditions, and variation within and among
these populations was monitored.

Evaluating Performance

The performance of any algorithm is a function of
the accuracy of its solutions and the efficiency of its
resource use. We estimated the accuracy of a phyloge-
netic solution by its likelihood score and also by its
topological proximity to one or more ‘‘reference’’ trees
representing the best available solutions.

The choice of reference tree depended on the data
set used. For experiments using the simulated data set,
the actual solution is known—it is the tree used as the
model for simulation. The model tree is therefore used
as the reference. Measuring progress against this ‘‘true’’
reference tree (in contrast to the best ML tree used for
the real data set) allows some estimate of the objective
performance of the method for a given model of
evolution.

The solution for the empirically observed (real)
data set is unknown. Furthermore, it is not feasible to
calculate with certainty the single optimal ML tree for
a 228-taxon problem. For these reasons, the reference
was taken to be the best ML tree found for this data set
under any search strategy. The best ML tree that we
have found for this data set was discovered by optimiz-
ing the likelihood scores among the 1,728 best trees
found by PAUP* in a maximum parsimony heuristic
search. For both simulated and real data sets, solutions
were also compared with the last solution (i.e., to the
best of the trees found when the analysis was stopped).
Note that because the respective reference trees differ,
progress is not directly comparable between the two data
sets.

Progress toward the reference tree was quantified
by monitoring the log-likelihood of the best tree in the
population. Additionally, the topological distance from
the reference tree was calculated in symmetric distance
units (Robinson and Foulds 1981; Penny and Hendy
1985). This index sums the number of internal edges
(branches) found in each tree that are not found in the
other. The symmetric distance is taken here as a rough
correlate of the number of mutations (i.e., nearest-neigh-
bor-interchange operations) needed to move between
two trees because no exact algorithm has been devel-
oped to calculate this number (Swofford 1991). The
maximum symmetric distance between two trees is 2(N
2 3), where N is the number of taxa in each tree (and
N 2 3 is the number of internal edges).

It is possible for two trees to be similar for most
taxa but still have a high value for the symmetric dis-
tance statistic (in the extreme case of moving just one
terminal taxon from one end of a pectinate tree to the

other, the symmetric distance metric will be at its max-
imum value). To obtain a metric of tree similarity that
is less sensitive to this problem, we also calculated the
size of the maximal agreement subtree (Goddard et al.
1994). The size of the agreement subtree was generally
inversely proportional to the topological distance mea-
sured in symmetric distance units.

For experiments in which population size was held
constant, we discuss the progress of the algorithm as a
function of the number of generations elapsed. When
comparing populations of different sizes, however, this
measure cannot adequately describe the program’s use
of computational resources. Therefore, for these exper-
iments, we measured the progress of the algorithm in
terms of node-seconds. Number of node-seconds 5
(elapsed time) 3 (number of nodes used), or equiva-
lently, (elapsed time) 3 (population size 1 1). All nodes
in use were dedicated to the given experiment; hence,
the time per generation per node did not change sub-
stantially between runs.

The number of node-seconds used takes into ac-
count that larger populations distributed across more
nodes take more computational resources, as measured
by most administrators of supercomputer systems. But
if processors are not limiting, total elapsed time is more
relevant because it measures the time to completion
from the perspective of an end user.

Results and Discussion

For populations of all sizes, the fitness of the best
individual in the population follows a characteristic pat-
tern (figs. 1 and 2). There is a rapid increase in the log-
likelihood score, followed by a slow approach to an ap-
parent asymptote fairly close to the score of the model
or reference tree (lnLref 5 2139,001.17 for the real data
set, lnLref 5 284,490.0 for the simulated data set). By
this measure, progress toward a solution appears to be
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FIG. 2.—Detailed views of the data presented in figure 1, shown
across three divisions of the abscissa. Note that there is a slight de-
crease below linear speedup between a population size of 15 and 30.

FIG. 3.—Progress of the genetic algorithm for simulated (solid
line) and observed (dashed line) data, measured both by log-likelihood
of the best solution and symmetric distance between the best solution
and the reference tree. Replicate runs (not shown) had nearly identical
trajectories.

extremely rapid in the earliest part of the run, after
which it reaches a phase of diminishing returns during
which the application of further resources adds little to
finding a better solution.

But when the progress of the population is ex-
pressed as the topological distance from the reference
tree, the conclusion is different. Whether the observed
or simulated data sets are being considered, there is a
substantial gain in topological accuracy even after the
likelihood has neared its likelihood asymptote (fig. 3).
Thus, from the standpoint of making an accurate phy-
logenetic estimate (where accuracy is defined by the
number of correct branches in the tree), the algorithm
continues to find better solutions, even though the im-
provement in likelihood scores is relatively small.

Despite this continued improvement, the algorithm
never found the best-known solution for either the sim-
ulated or real data set during our analyses. After about
58,000 generations a population with a size of 15 was
still 94 symmetric distance units away from the refer-
ence tree for the simulated data. In the analysis of the
observed data set, after about 61,000 generations the
best tree found by GAML was still 241 symmetric dis-
tance units away from the reference tree (fig. 3).

It is unlikely that the best trees found are topolog-
ically very distant from the ‘‘correct’’ trees, although it
is a possibility. The likelihood scores of the best trees

found by GAML are much lower than those of the ref-
erence trees, indicating that GAML did not find a dif-
ferent and better solution. Given that the goal of this
study was to examine the effects of parameters on the
performance of the algorithm, and not to find the best
tree for either of the data sets, the failure to converge
after these limited runs is not surprising. In the original
demonstration of GAML using a 55-taxon data set, the
program found what was believed to be the optimal ML
tree in around 8,000 generations.

Observed Versus Simulated Data

It is usually much easier to infer phylogenies from
data simulated under any currently used model of sub-
stitution than from empirically observed data. Indeed,
there is a stark difference in the progress of populations
analyzing observed versus simulated data (fig. 3). As
measured both by the increase in likelihood and the ap-
proach in topology toward the reference tree, progress
is much slower for the empirically observed data set.
These differences are genuinely due to the different data
sets: replicate runs show nearly identical results (not
shown).

Effects of Varying Population Parameters

In our experiments, the number of processors used
was equal to the population size (of the genetic algo-
rithm); hence, the population size studies are also an
assay of how well GAML scales to many processors.
Population size did affect the rate at which the optimal
fitness is reached (fig. 4). At 4 million node-seconds, a
population size of 15 produced the tree with the best
likelihood of all of the conditions tried. Fortunately, the
population of size 30 was not far behind, indicating that
this method of parallelizing the problem works very
well. If the parallelization of this scheme were perfect,
population size would have no effect and all runs would
perform identically with respect to node-seconds. This
result is promising because it implies that the amount
of time to perform a search should decrease nearly lin-
early with the number of processors that are used, at
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FIG. 4.—Log-likelihood of the best solution versus elapsed (wall-
clock) time for four populations of different sizes.

FIG. 6.—Progress of two independent populations (A and B), us-
ing simulated data and measured by four indices: (1) symmetric dis-
tance between the best tree and the model tree; (2) symmetric distance
between the best tree and the final tree found; (3) size of the agreement
subtree between the best tree and the model tree; and (4) size of the
agreement subtree between the best tree and the final tree found. Mu-
tation and crossover rates were 0.2; population size was 15.

FIG. 5.—Effects of varying mutation and crossover rates on pro-
gress of the genetic algorithm. The values for topological mutation rate
and crossover rate are absolute probabilities per generation. Population
size was 15. Under these conditions one generation corresponds to
approximately 117 node-seconds.

least over a moderate range of processors. As larger
clusters of machines become available to biologists, ML
searches may become feasible on large data sets, such
as the ones investigated in this study. As might be ex-
pected, performance of GAML was improved with in-
creasing mutation and crossover rates up to a point. The
best performance was obtained from intermediate val-
ues: about 0.4 for both (fig. 5). Varying the rate of re-
combination independent of the mutation rate had little
effect, indicating that recombination of individuals was
not having a large effect on the performance of the al-
gorithm (not shown). In two replicate runs, the progress
(as measured by distance from the reference and ulti-
mate trees) occurred in a similar manner (fig. 6). In all
cases where populations of identical size and program
parameters were run, the fitnesses of the best solutions
in each population followed trajectories that were nearly
indistinguishable. As discussed in the next section, this
similarity in fitness trajectory is not the result of the
populations finding the same sequence of solutions.

The effect of varying holdover number was not ex-
amined. Changing this parameter should affect the rate
at which a population becomes more homogeneous: a
very large value would lead to a near-monomorphic
population after one generation. A very small value
would result in fewer lower-fitness individuals being
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Table 1
Increase in Log-likelihood Score (lnL) as a Result of Branch-Length Optimization

Tree lnL
Change in

lnL

Best tree after 70,000 generations of GAML search (n 5 15) . . . . . . . . . . . . .
… after subsequent branch-length optimization. . . . . . . . . . . . . . . . . . . . . . . . . .
At the end of TBR search in PAUP*, using the last tree found in GAML as

starting tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

285,699
285,562

284,491

—
137

1,071

FIG. 7.—The distribution of changes in branch length from opti-
mizing the branch lengths of the last tree found.

displaced. The significance of this parameter to the pro-
gress of the program is currently unclear.

Contributions of Branch Lengths to Performance

GAML encodes branch-length data within the
‘‘chromosomes’’ (the parameters associated with partic-
ular individuals) of the potential solutions. Preferred
branch lengths evolve over the course of a run, but the
branches are not optimized for every tree. This is in
contrast to the heuristic search algorithms of, for ex-
ample, PAUP*, which applies a branch-length optimi-
zation step after every new topology is found. Branch-
length optimization is computationally intensive.
PAUP* deals with the problem by approximating the
branch lengths, and if the score of a new tree is not
within a certain percentage (5% is the default setting)
of the best tree, the new tree is rejected without wasting
resources on further optimization (Rogers and Swofford
1998). Incorporating such a branch-length optimization
might increase the rate at which the genetic algorithm
approaches the correct solution but at an undetermined
per-generation cost in speed.

We examined the degree to which suboptimal
branch lengths reduced the likelihood of the best tree
found by GAML after 70,000 generations (at a popu-
lation size of 15) by optimizing the branch lengths in
PAUP*. We found that the increase in log-likelihood
score due to branch-length optimization was substantial
but much less than the increase obtained from a heuristic
search in PAUP*, using the last tree found by GAML
as the starting tree (table 1). We also examined the effect
of branch-length optimization on the distribution of

branch lengths across the tree (fig. 7). The average
change in the branch length is quite small; before opti-
mization the average branch length for the tree was
0.0050 and the average branch changed less than
0.0005, so on average each branch changed less than
10%. Under the settings of our experiment, 20% of the
branches changed each generation. When the branches
are close to the optimum (as they are for this tree), im-
provements from this massive level of mutation will be
rare. One way to avoid this effect would be to alter
dynamically the mechanism the genetic algorithm uses
to mutate branch lengths. During the early logarithmic
phase of increase in log-likelihood, the genetic algo-
rithm method of determining branch lengths seems to
work quite well. The population starts at a large distance
from the optimum, so large changes are most useful. As
the population approaches an optimum, the genetic al-
gorithm could lower the probability of branch-length
mutation to zero or switch to a Rogers and Swofford
(1998) branch-length optimization strategy.

Treating branch lengths as parameters to be opti-
mized by the genetic algorithm might make tree esti-
mation more difficult by adding more local optima to
the fitness landscape. If one topology has been in the
population for a long time, the branch lengths will ap-
proach the ML estimates of the branch lengths for that
tree. A new topology might have a lower likelihood
when it is produced by mutation because most of the
branches do not change in length during the branch-
swap operation. Because variation is not maintained for
long within the population (at least not using the pop-
ulation sizes that we investigated), the new tree may be
lost from the population before its branch lengths are
sufficiently optimized (see additional discussion regard-
ing this point in the next section). At one point during
the analysis with a population size of 15, the best to-
pology did not change for several generations. Using
this tree as a starting point of a search in PAUP*, we
were able to find a topology that was one subtree prun-
ing-and-regrafting swap away (see Swofford et al. 1996)
and had a higher optimized likelihood. But the likeli-
hood of the new tree was lower than that of the previous
tree if the branch lengths from GAML were evaluated
(table 1). It appeared that the branch-length optimization
scheme of GAML had produced a local optimum from
which the algorithm might not escape. In subsequent
generations, the genetic algorithm did find a better to-
pology, but similar local apparent ‘‘optima’’ (that result
from not optimizing branch lengths on each topology)
may be slowing the search for the best topology toward
the end of the search. Salter and Pearl (2001) addressed
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FIG. 8.—Variation within and between two independently evolv-
ing populations, measured as average symmetric distance among all
solutions. Populations were evolved under identical conditions. Mu-
tation and crossover rates were 0.2; population size was 15.

FIG. 9.—Effect of mixing and recombining two independently
evolved populations. The arrow indicates the point at which a new
population, comprising random samples from the independent popu-
lations, was started. Mutation and crossover rates were 0.2; population
size was 15.

a similar problem in developing a simulated annealing
search strategy to phylogeny reconstruction. In that case,
when a topological change occurred, the branches in-
volved in the swap were optimized using the Newton-
Raphson optimization (Salter and Pearl 2001). This local
optimization may offer an efficient middle ground be-
tween random alterations of branches and full ML es-
timates of the branches.

Variation Within and Between Populations

We monitored the average pairwise distance (in
symmetric distance units) within two populations of size
15, as well as the mean distance between the popula-
tions, and between the population and the reference tree
(fig. 8). Variation within each population is low from
early in the run, as might be expected for conditions of
such strong selection. Note that at several points the
variation within a population is 0, indicating that selec-
tion frequently purges the populations of all variation in
topology. This may explain why varying the recombi-
nation rate had little effect on GAML.

Variation between populations from different anal-
yses remains substantial over the length of the runs, in-
dicating that each population explores a different region
of the solution-space. This suggests that it might be use-
ful to evolve independent populations until reasonably
stable solution sets are found and then to mix and re-
combine them. To examine this idea, we allowed two
independent populations to evolve to near the fitness
plateau, chose 15 random individuals from both, and
allowed this mixed population to recombine and evolve
further. This experiment showed a dramatic and sub-
stantial increase in the accuracy of the solution, taking
place at the point at which mixing occurs (fig. 9). Al-
though the result is encouraging, the significance of this
increase, its generality across data sets and experimental
conditions, and how it can best be used to increase the
accuracy of the ultimate solution will require further
experiments.

The Stopping Criterion Problem

As with any heuristic search strategy, it is not nec-
essarily clear when the problem is solved. With Bayes-
ian methods, such as those based on Markov-chain
Monte Carlo (MCMC) simulation (Rannala and Yang
1996; Larget and Simon 1999), the stability of the dis-
tribution of posterior probabilities can be used as the
basis of a stopping criterion. Unfortunately, this ap-
proach is not available for the genetic algorithm strate-
gy. But our results suggest some logical criteria for stop-
ping a GAML search. The early rapid progress of the
genetic algorithm quickly slows as the best solution
found approaches an asymptote in log-likelihood score
and in distance to the reference tree. At some point,
further investments in resources give increasingly small
returns, indicating a logical stopping point. The varia-
tion among estimates made by independent populations
of solutions might be used to evaluate the distance from
the ultimate solution, thereby suggesting another possi-
ble stopping point. Until the behavior of many indepen-
dent genetic-algorithm populations is explored, the stop-
ping point will more likely be determined by availability
of resources rather than by any objective function of the
genetic algorithm performance.

Conclusions

Our results demonstrate the usefulness as well as
some limits of the genetic algorithm approach for esti-
mating phylogenetic relationships among many taxa.
The performance of this ‘‘first-generation’’ parallel ver-
sion of GAML is particularly encouraging when one
considers both the ease of and potential for further scal-
ing of the algorithm and the rapidly increasing avail-
ability of computational power. For solving large in-
stances of the phylogeny problem, wall-clock time is
likely to be more significant of a limiting resource than
of processor time. The fact that the process can be so
effectively sped up by addition of processors (fig. 4, for
example) indicates that problems of this size or greater
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FIG. 10.—Illustration of Fisher’s geometrical model and one
source of difficulty for a genetic algorithm approaching an optimal
solution. Arrows represent phenotypic effects of mutations for a pop-
ulation that is near a phenotypic fitness optimum. If mutational effects
remain constant with decreasing distance to the optimum, further in-
creases in fitness will be rare.

may be solved in reasonable amount of time. Although
we saw a slightly less than linear speedup from 15 to
30 processors (fig. 2), the nearly linear scaling of com-
putation time (from the standpoint of the end user) with
number of available processors across the range we in-
vestigated indicates that this approach to parallel genetic
algorithms is highly effective.

It is also encouraging that the GAML algorithm
progresses toward a better solution throughout what ap-
pears as nearly a plateau in likelihood score in later gen-
erations, both for observed and simulated data (fig. 3).
Despite the dramatic reduction in the rate of likelihood
increase for the best solution, the algorithm continues to
find trees that are topologically closer to the correct tree.
Given additional time, it would be reasonable to expect
that the best solutions found here would be greatly im-
proved upon. Below, we discuss a few possible im-
provements to the algorithm.

Dynamic Mutation Effects

The slowdown in performance of the algorithm is
similar in concept to the slowdown in adaptation in
Fisher’s Geometrical Theory (Fisher 1930, pp. 38–41)
(fig. 10). As a population approaches a fitness optimum
in a multidimensional phenotypic space, the larger mu-
tations do not bring the population nearer to the opti-
mum. As the complexity of the problem (and the di-
mensionality of the phenotype-space) increases, the dis-
tribution of mutations that are beneficial becomes
skewed toward those that are small in effect, relative to
the distance of the population to the optimum (Orr
1998). For this reason, a mutation rate and spectrum that
are constant will result in an asymptote in fitness. One
means of addressing this problem would be to scale the
effects of each mutation by the approximate distance to
the optimum. This might be done by periodically mod-
ifying the branch-length mutation effect so that it is a
function of the per-generation change in likelihood
scores. In other words, the slope of the likelihood score
versus time plot could be used to scale the size of mu-
tation effect.

The Model of Parallelization

One obvious limit to parallelizing a genetic algo-
rithm relates to the redundancy of calculations. If the

variation among solutions is low, that is, if most of the
potential solutions are similar or identical, then the pro-
cessors will in part be duplicating each other’s calcula-
tions. Furthermore, there will be redundancy in trans-
mitting the tree specifications, as well as the results of
the likelihood calculations. Because communication
among processors is often slow relative to computation-
al time, this transmission of duplicate data may signifi-
cantly slow the process.

Furthermore, in the scheme described here, all the
processors operate on all the data simultaneously. This
means that the efficiency of memory use does not scale
with the number of processors. As data sets grow in size,
it may become necessary to partition the data by subsets
of characters so that each processor works on only a
subset of the total data. For example, if each of n pro-
cessors were given 1/n columns of the data matrix, the
efficiency of memory use would then scale linearly with
processor number. In this case, each processor would
calculate the sum of the log-likelihoods for each of its
characters for a given tree. The log-likelihood for the
tree would then be the sum of log-likelihoods gathered
from each of the processors. The parallel implementa-
tion of a ‘‘gather-with-sum’’ operation is very efficient
in comparison with the processor to processor commu-
nication required to transmit the individual results of a
processor’s calculation. But the number of communica-
tion operations per tree would increase from one to the
number of processors used. There would be disadvan-
tages to dividing the problem by groups of characters,
as described above. The processors would not be oper-
ating independently and would have to be synchronized
at each generation. Branch-length optimization algo-
rithms use likelihood information from all characters; if
this procedure were added to a program parallelized by
character, the communication costs would be high. Par-
allelization by characters might therefore be more ap-
propriate for a large parallel computer, whereas the
‘‘classic’’ method, implemented in GAML, is probably
better suited for a highly distributed network of
workstations.

Another way that parallelization might be achieved
is by separating the populations into several moderately
sized demes with each processor controlling an entire
population. The performance gain from recombining
among populations does not appear to be phenomenal,
but repeated introgression of independently evolved so-
lutions may speed up the progress toward the optimum.
A further advantage is that relatively little communica-
tion would be required: each processor could run several
generations uninterrupted and then report back to a serv-
er to receive migrants before continuing their evolution.

Performance Relative to Other Approaches

GAML’s approach to phylogeny reconstruction is
sufficiently distinct from either the heuristic methods of
PAUP* or the MCMC methods of BAMBE (Larget and
Simon 1999) and MrBayes (Huelsenbeck and Ronquist
2001) that substantial performance differences might be
expected. For estimates to approximate independence,
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MCMC methods must discard the vast majority of the
sampled solutions. These methods also discard an initial
set of solutions (those found in the ‘‘burn-in’’ period)
that can be quite large. As with genetic algorithms and
other heuristic methods, the optimum program parame-
ters must be determined empirically for an MCMC
method. The costs of these factors relative to those in-
curred by the use of a genetic algorithm have not been
determined, and the relative performance of these meth-
ods is not known.

The potential benefits of parallelizing genetic al-
gorithms of course apply to MCMC methods as well.
Determining whether the latter can be as easily and ef-
ficiently adapted to parallel architectures as can genetic
algorithms, and the extent to which this affects overall
performance, will require further research.

Statistical Confidence and Hypothesis Testing

The GA approach to statistical hypothesis testing
in phylogenetic inference will probably remain limited
to the bootstrap methods developed for other heuristic
tree-finding algorithms (Hillis and Bull 1993; Huelsen-
beck, Hillis, and Jones 1995). In contrast to MCMC
methods, genetic algorithms do not retain and use inter-
mediate solutions for quantitative estimates of a poste-
rior probability density function. The results of a boot-
strap resampling using heuristic procedures thus lack the
clear statistical interpretation obtained from results of
Bayesian estimation procedures. In addition, the perfor-
mance trade-offs of a Bayesian method versus multiple
bootstrap runs of a heuristic method have yet to be
determined.

The Future of Genetic Algorithms in Phylogenetics

The class of large-scale problems represented by
the angiosperm phylogeny will always require substan-
tial computational resources as long as thorough search-
es of tree-space are conducted. Although some recent
authors have suggested that simple point-estimation
methods are adequate to find reasonable estimates of
phylogenetic trees under certain limited conditions (e.g.,
Nei, Kumar, and Takahashi 1998), other studies show
that thorough searches of tree space markedly increase
phylogenetic accuracy and become increasingly impor-
tant to estimate accurate trees of many taxa (Zwickl and
Hillis 2002). Therefore, efficient and thorough phylo-
genetic algorithms are increasingly important for the
field of phylogenetic analysis. In most cases, finding so-
lutions to large phylogenetic problems is more limited
by absolute time than by available computational re-
sources. A requirement for millions of node-seconds of
computer time may seem extreme, but many universities
and other research institutions have large numbers of
computers, in computer labs or on desktops, that remain
idle for many hours. Therefore, a program that distrib-
utes a phylogenetic problem across hundreds of proces-
sors (e.g., during periods when the computers would
otherwise be idle) may be feasible, whereas one running
10 times more quickly, but limited to a single very pow-
erful processor, may not be. With computer resources no

longer at such a premium and distributed computation
schemes becoming more common, parallel algorithms
will increasingly be used to capture and exploit a large
amount of networked computer resources. Our results
indicate that genetic algorithms are particularly well
suited for such a distributed environment. The existence
of a rich set of possible refinements (e.g., migration
among multiple populations, dynamic changes in mu-
tation and recombination rates, and periodic branch-
length optimization) indicates that rapid improvements
in genetic algorithms for phylogenetic analysis are
possible.
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