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bound state. Taken together, these 
unique features of the MCAK motor 
domain tune it to identify and 
stabilize curved protofilaments 
at MT ends. Notably, our current 
knowledge on how kinesins alter MT 
dynamics is heavily influenced by 
work on kinesin-13s, largely because 
mechanistic details of how other 
kinesins work do not exist. We await 
further studies to see if the kinesin-
13 paradigm is universal, or if other 
kinesins use unique biochemistries 
to shape the MT cytoskeleton.
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Electrical signaling in animal nerves 
and muscles is largely carried out by 
proteins in the superfamily of voltage-
gated ion channels [1]. These proteins 
are based on a single homologous 
domain, but different types exist as 
single-domain tetramers, two-domain 
dimers, or four-domain proteins that 
comprise the whole pore-forming 
structure [1]. Four-domain channels 
are hypothesized to have evolved 
from a single-domain ancestor by two 
rounds of internal duplication [2]. The 
role that a channel plays in a cell’s 
physiology is largely determined by 
its selectivity for specific ion species 
and by the stimulus that opens the 
channel — its method of ‘gating’. The 
voltage-gated sodium (Nav) and calcium 
channels (Cav), which drive the upstroke 
of action potentials and transduce 
electrical signals into cellular signals, 
respectively, both have the four-domain 
architecture, whereas voltage-gated 
potassium channels (Kv) have only one 
domain. Crystallographic studies have 
led to important discoveries about ion 
permeation and gating in the single 
domain Kv channels, but structural 
studies of the four-domain Nav and Cav 
channels have not achieved the same 
level of precision [3], leaving the atomic 
details of these important proteins in 
the dark. The recent discovery of and 
subsequent crystallographic work on a 
voltage-gated, sodium-selective, single-
domain channel in bacteria (BacNav) 
was therefore greeted with excitement 
as a potential model of four-domain Nav 
channels [4–6].

The selectivity filter of BacNav 
channels is very different from that 
of eukaryotic Nav channels, however, 
and these studies often lack clear 
statements of homology between 
the two channel types [4–6]. BacNav 
channels are often referred to as 

Correspondence
 ‘ancestors’ of Nav channels [5], a 
claim whose evolutionary meaning is 
difficult to interpret. Basic research 
on the organismal function of BacNav 
channels, moreover, has lagged behind 
the sophisticated structural studies. This 
situation leaves it unclear whether the 
molecular correlates of function are truly 
comparable between eukaryotic Nav 
and BacNav channels. We help address 
this by grounding the relationship of 
BacNav channels to other major channel 
groups in an evolutionary framework.

The constituent domains of four-
domain channels have what may be 
called molecular serial homology, where 
all four domains are equally related to 
the single-domain precursor [2]. We 
therefore followed the procedure of 
Strong et al. [2] and broke the four-
domain channels into their constituent 
domains, making the smallest 
homologous unit (the domain) into 
the operational taxonomic units in 
the phylogeny. Figure 1 shows strong 
support for the traditional view of ion 
channel evolution [2], with a single 
origin of the four-domain structure in 
Nav and Cav channels.  DI and DIII form 
a clade, as do DII and DIV, in keeping 
with the hypothesis of two sequential 
rounds of internal gene duplication [2].

BacNav channels fell outside the 
four-domain group with strong support, 
rejecting the notion that BacNav 
channels can be considered Nav 
channels [4] in an evolutionary sense.  
Instead, they grouped near CatSper 
channels, consistent with earlier studies 
showing that both BacNav and CatSper 
channels are used as pH sensors in 
the bacterial and sperm cells in which 
they are respectively expressed [7,8]. 
We therefore propose that the BacNav, 
CatSper, and the novel single-domain 
protist types be viewed provisionally 
as a pH-gated group, based both 
on evolutionary relatedness and 
conservation of function.

This tree rejects the possibility of 
BacNav channels being placed within 
Nav channels, but it is still possible 
that BacNav are functionally similar to 
the precursors of animal Nav channels. 
There are two mutually exclusive 
hypotheses about the evolution of ion 
selectivity in voltage-gated ion channels 
(Figure S1 in Supplemental Information, 
published with this article online). In 
one scenario (Figure S1A), sodium 
selectivity is independently acquired 
in BacNav and animal Nav channels. In 
the other, BacNav channels are similar 
in function to the common ancestor 
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Figure 1. Unrooted tree of major ion channel types and ancestral state reconstruction of BaNav 
selectivity filter. 
The four homologous domains of Cav and Nav channels have a single, well-supported origin 
to the exclusion of all the single-domain channels.  The branching order of CatSper, Bac-
Nav, and eukaryotic single-domain channels is not well supported, but we do not find BacNav 
near eukaryotic Nav channels in any scenario. Novel sequences include a clade of one-domain 
channels in protists, and channels from early-branching zoosporic fungi (red lineages), includ-
ing a horizontally transferred BacNav channel and the first described Cav channels in fungi 
(Supplemental Information). Bayesian posterior probabilities are provided for interior branches.  
Ancestral states for the BacNav family’s selectivity filter are displayed in proportion to their a 
posteriori likelihood. The wild-type (wt) selectivity filter for the founding member of the BacNav 
family, NaChBac, and a mutant channel with Ca2+ selectivity [9] are displayed for comparison.  
The ancestral pore is more similar to the calcium-selective mutant.
of all non-Kv channels, and selectivity 
for sodium is the ancestral state for all 
these channels (Figure S2B).

To test these hypotheses, we 
used ancestral state reconstruction 
to estimate whether functionally 
characterized BacNav channels have the 
same amino acids in their ion selectivity 
filter as the channel ancestral to extant 
BacNav channels. This method uses an 
evolutionary model to reconstruct the 
most likely ancestral sequence for a 
clade given an alignment and a tree.

Figure 1 shows the ancestral 
pore reconstruction for all sampled 
BacNav channels (the full tree used 
for reconstruction can be found in 
Figure S2).  Functionally characterized 
BacNav channels have the selectivity 
filter sequence LESWAS or LESWSM 
[9,10].  Aspartate residues (D) were 
more common in the ancestral 
pore than in characterized BacNav 
sequences. An aspartate in the sixth 
position, which occurs in the ancestral 
channel, is enough to nearly equalize 
the permeability to calcium and 
sodium in mutated channels [9]. An 
aspartate at both the third position, 
which was nearly as probable as a 
serine in our reconstruction, and the 
sixth position would strongly suggest 
calcium selectivity in the ancestor of 
BacNav channels [9]. We therefore 
find it most likely that the ancestor of 
BacNav channels was a non-selective, 
or even calcium-selective, pH-sensitive 
channel resembling CatSper channels 
in structure and function [7,8]. This 
result awaits functional verification, but 
we find strong support for the idea that 
selectivity for sodium is a derived trait in 
the channels that have been expressed 
and characterized.

In this study we asked whether 
selectivity for sodium is directly 
comparable in Nav and BacNav 
channels by exploring the evolutionary 
history of the latter group. We found 
that sodium selectivity almost certainly 
arose independently in BacNav and Nav 
channels, and that BacNav should not 
therefore be thought of as evolutionary 
precursors of animal Nav channels. 
This finding does not preclude the 
use of BacNav channels as models for 
animal channel function, but it does 
highlight the importance of evolutionary 
considerations in such studies. Our 
analysis begins the work of placing 
BacNav channels in an integrative 
framework that will allow more fruitful 
comparisons to animal channels in the 
future.
Supplemental Information
Supplemental Information includes two figures 
and experimental procedures and can be 
found with this article online at http://dx.doi.
org/10.1016/j.cub.2013.09.025.
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