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The reconstruction of phylogenetic history has become an integral part of all
comparative biological studies over the past few decades (e.g., see Brooks and
McLennan, 1991; Harvey and Pagel, 1991; Hillis and Moritz, 1990; Maddison and
Maddison, 1992). The range of applications of phylogenetic inference is immense:
phylogenies are used for everything from tracking infections of viruses within human
populations (e.g., Ou et al., 1992) to studying the cvolution of sex determining
mechanisms across hundreds of millions of years (e.g., Hillis and Green, 1990) to
tracing the earliest lineages of life billions of years ago (e.g., Olsen, 1987). However,
it is obviously not possible to go back in time and directly observe any of these
phylogenies, so how can we know if phylogenetic methods are finding the correct
phylogenies? As with most scientific theories and methods, there are two choices to
evaluate the validity of phylogenetic techniques: empirical and theoretical experimen-
tation (or to put it in other terms, biological and numerical simulation). The purpose
of this review is to examine the results of both types of studies with regard to
performance of phylogenetic methods, and then to make general recommendations
about selecting a method for use.

Numerical Versus Biological Simulations

To date, most evaluations of phylogenetic methods have involved numerical simula-
tions: an investigator defines a simple model of evolution, creates some sequences
{perhaps at random), and specifies a tree or some rules for generating a tree (e.g., a
Markov process of speciation). The investigator then applies the model of evolution
to the given sequences and tree, and a computer program carries out the tasks of
assigning mutations and recording successive generations of new sequences. After
the sequences have “evolved” in computer memory, the various methods of phyloge-
netic infcrence can be tested to see which ones perform the most effectively. The
advantages of simulating phylogenies in this manner include the ability to generate a
sample of thousands or millions of phylogenies with great ease and the ability to
generate any conceivable phylogeny. Thus, we can choose some aspect of trees to
investigate, definc the parameter space of interest, and then examine samples of
trees from throughout this parameter space. The limitations of the approach lie only
in our ability to identify relevant problems and in computational limitations in
analyzing the simulated data sets.

Given the flexibility of the numerical simulation approach, why would we ever
turn to experiments with real organisms? There are two principal reasons: we are
painfully ignorant about the details of molecular evolution, and computer simula-
tions, by necessity, incorporate gross simplifications of evolutionary processes. The
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most complex of computer simulations still make sweeping generalizations and
simplifying assumptions about how organisms evolve. This will likely always be the
case, because a computer simulation that did not simplify evolutionary processes
would have to be as complex as a real functioning organism. As an example, the vast
majority of simulations of molecular evolution to date have defined one or two
parameters associated with mutation rates; typically, there is either a single mutation
rate or two different rates for transitions and transversions, respectively. The most
complex simulations may specify as many as twelve different mutation rates for the
twelve possible changes that can occur among nucleotides. However, in a real
sequence, these rates are likely to differ in ways we are yet to understand across every
position in a given gene. Many simulations also assume a constant rate of change
across all positions, a situation we know to be very different from what actually occurs
in real sequences. There are also complexities that we can imagine but are difficult to
model!: there may be complex interactions among different nucleotide positions (e.g.,
having to do with RNA or protein secondary structure, or related to the binding of
control sequences), or there may be fluctuating kinds and levels of selection at
various developmental stages. Of course, given that we could thoroughly understand
such complexities, we could incorporate them into simulations. Unfortunately, our
knowledge of molecular evolution is far too rudimentary to develop any but the
simplest modcls at present, and even if we had complete knowledge, it would be
computationally intractable to develop such detailed models. Therefore, we necd
some check on the simulations to see to what extent our simplifications have led us
astray, as well as to suggest ways in which the models nced to be modified to make
them more realistic. This is the role of experimental phylogenies, also known as
biological simulations.

When we create an experimental phylogeny, we would like to control some
aspects of evolution while we let the experimental organisms control the rest. For
instance, if we are interested in the effects of differing branch lengths on the
performance of phylogenetic methods, we might design a series of experimental trees
in which we systematically vary branch lengths across trees for some experimental
lineages, while we hold such factors as population size and environmental conditions
constant. The biological constraints of the organisms are established by the organ-
isms themselves, rather than modeled by an investigator, If we model the same trees
and show that the results are consistent with the experimental lineages, then we can
begin to conclude that the simplifications of the numerical simulations are not
adversely affecting our conclusions. On the other hand, as will often be the case, we
may see a difference between the simulated trees and the experimental trees. In this
situation, we can evaluate the two data sets and determine why they are different.
After doing so, not only will we now know more about the processes of molecular
evolution, but we can also incorporate this information into new and better simula-
tions. The new simulations may suggest new conditions to test experimentally, and
the process can be repeated indefinitely, with the investigators learning more about
the behavior of phylogenetic methods and the processes of molecular evolution with
every cycle.

Of course, the scenario above assumes three things. First, we need to be able to
define what we mean by “good performance” of a phylogenetic method. Second, we
need to be able to identify and define relevant “parameter space” to explore in the
numerical and biological simulations. Third, we need to identify organisms that
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evolve quickly enough that we can create experimental phylogenies in reasonable
periods of time (hopefully measured in weeks or months rather than years).

How Do We Know a Good Method When We See One?

An ideal phylogenetic method would be fast, powerful, consistent, robust, discrimi-
nating, and versatile (see Penny, Hendy, and Steel, 1992). Unfortunately, there are
trade-offs involved in optimizing these criteria, so that it is usually necessary to rank
their importance in selecting a method for a given problem. Below we consider each
criterion in turn.

Computational speed. If everything else were equal, computational speed would
be very important. In general, however, the methods that rank the best for speed
rank among the worst for some of the other criteria, and “quick-and-dirty” ap-
proaches are not often favored in science except as a way to get a first approximation.
However, there is a wide spectrum of computational speeds among the methods from
very fast single-tree clustering algorithms, to the character and distance-based
methods that identify an optimality criterion, to methods such as maximum likeli-
hood that require enormous computational efforts. Even though we may not want to
select a method based on speed considerations alone, we still must select a method
that is fast enough to give an answer without having to wait across geological time,
and for some applications, a fast approximation may be appropriate.

Power, In the real world, we have a finite number of data that we can analyze for
a given problem. If two methods are otherwise equal, but one correctly estimates a
phylogeny from sequences 100 bp long whereas the other requires sequences 1,000
bp long to achieve the same success rate, then we would obviously prefer the one that
requires fewer data to get the correct answer. Methods may differ in power because
they consider different kinds of variation among the sequences to be informative, or
because they give different weights to different kinds of variable characters. In the
latter case, power may be a function of the model of evolution and the degree to
which the assumptions of the method are matched.

Consistency. A method is consistent if it converges on the correct answer as
more data are examined. All methods of phylogenetic analysis proposed to date are
consistent under some conditions but are inconsistent under others. Some methods
explicitly state a set of assumptions, which if violated may lead to inconsistency; for
other methods, the assumptions are implicit and the conditions that lead to inconsis-
tency have to be determined empirically. Many methods are based on a stated model
of evolution, and as long as the organisms are evolving under the model conditions
the method is consistent. Ideally, we would like to have a method that is consistent
for the most general possible models of evolution.

Robustness. Even if we know the model conditions under which a method is
consistent, it does not necessarily follow that deviations from the model will
automnatically lead to inconsistency. A robust method is insensitive to deviations from
the ideal (model) conditions. This is obviously an important attribute, because it is
unlikely that any real organisms ever evolve precisely in accord with any but the most
general of models.

Discriminating ability. Methods should be able to return no answer if certain
basic assumptions are violated (e.g., if there is no underlying tree), and they should
be capable of comparing and ranking alternative hypotheses. Some methods (e.g.,
clustering algorithms like unweighted pair-group method of averages [UPGMA] and
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neighbor-joining) will always return one tree with no means of comparing alterna-
tives, although tests can be applied to ask if any of the branch-lengths are signifi-
cantly different from zero. Most other methods show limited ability to reject a
tree-like structure but do specify an optimality criterion that can be used to compare
and test alternative trees. Separate methods have been developed to identify data
sets that contain no more structure than would be expected at random (e.g., Hillis
and Huclsenbeck, 1992), and in principle such methods can be applied before
deciding that it is appropriate to proceed to phylogenetic analysis. Once it has been
determined that phylogenetic analysis is appropriate, a discriminating method
should identify a range of potential solutions and provide a means of evaluating their
optimality.

Versatility. The objectives of a phylogenetic analysis are usually more than
simply finding the branching structure of a tree, although that is a universal first step.
Some methods do little more than specify a branching structure, however. A versatile
method would also provide such properties as estimates of branch lengths and
estimates of the character states of the ancestral nodes in the tree. A method is also
versatile if it is applicable to a wide range of character types (e.g., both molecular and
morphological data); some methods are not versatile because they are applicable
only to DNA sequences or incorporate only information about substitutional changes
(e.g., information on insertion-deletion events is ignored).

Given that we accept the above criteria as important, how can we rate a given
method for each criterion? Some of the rankings are straightforward, such as
computational speed, but others (such as power and robustness) are harder to
evaluate. Two main approaches can be used to compare the methods, namely
numerical simulations and experimental phylogenies.

Numerical Simulations: Examining Conceivable Limits

A common objection to numerical simulations is that the conclusions of a typical
simulation study invariably seem to support the investigator’s a priori views on the
relevant methods. For instance, onc investigator who likes the neighbor-joining
method (for whatever reason) may simulate phylogenies that indicate its superiority,
whereas another investigator who prefers the UPGMA method may conduct simula-
tions to show support for that approach. The reason for such discrepancies is that
each of the methods has conditions under which it performs optimally, so a method
looks best if trees are simulated under only those conditions. As an example,
UPGMA performs best if rates of evolution are exactly the same in all lineages in the
trec. Under such conditions, UPGMA can be shown to estimate the cortect trees as
well as or better than many other methods. However, the conclusions from a study
that only includes such conditions are not very general and do not present a fair
comparison of different methods. If simulations are to be used effectively, then, we
need to define a specific problem for investigation and then examine the potential
parameter space for that problem as exhaustively as possible.

As an example of defining a problem exhaustively, consider the simple and
often-simulated “four-taxon tree with two rates” problem (Figs. 1 and 2). Felsenstein
(1978) discussed this problem to demonstrate that some methods of phylogenetic
analysis are inconsistent for some trees of this type; if the lineages represented by two
opposing peripheral branches are evolving at a very high rate compared to the other
three branches, then the parallel changes in the two long branches can overwhelm
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any signal in the small internal branch, leading one to be positively misled in
estimating the tree (Fig. 2). Several methods are inconsistent under such conditions:
the more data that are applied to the problem, the more likely the incorrect tree will
be estimated. Because of this well-known behavior, and because of the simplicity of
simulating and evaluating such trees, there have been numerous simulation studies
of this problem (see summaries by Nei, 1991; and Huelsenbeck and Hillis, 1993).
However, it is also simple to identify specific types of four-taxon trees that are
particularly amenable to most of the common phylogenetic methods. Therefore,
given that we havce identified a particular problem (namely a four-taxon tree with two
different rates), there is no reason not to examine the problem exhaustively for any
given model of cvolution. This is relatively easy to do in this case: we can graph out
the two rates along two axes, and vary the instantaneous rate of evolution from zero
to infinity along both axes (Fig. 1). We can then partition the graph space as finely as
our computational limitations will permit, and simulate trees from throughout the
entire possible parameter space. Using this approach, we can compare any set of
mcthods for all potential conditions simultaneously, rather than only examining a
biased set of trees that tends to support an a priori preference, If we arc interested in
consistency, we can calculate the expectations for infinitely large data sets; if we are
interested in powcr, we can examine a regular series of finitc data sets. A power
analysis using this approach is illustrated in Fig. 3, with colors used to show the
probability that a given method will find the correct tree in different areas of the
parameter space.
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Figure 3. Comparison of the power of several methods of phylogenetic inference. The colors
represent the probability of correctly estimating the phylogeny: green (>95%), dark bluc
(80-95%}, light blue (60-80%), magenta {40-60%), yellow (20-40%), and red (<20%).
White areas represent conditions in which over 90% of the data sets include undefined
pairwise distances (so no tree can be constructed). In graphs A-J, DNA sequence evolution
followed the Kimura model, with a 5:1 transition:transversion ratio. In graphs J and X, there
was a 5:1 ratio of G-C and A-T changes compared to G-A, G-T, A-C, or C-T changes. 100
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The model of evolution used to simulate the data sets analyzed in Fig. 3, a—, is
the simple Kimura model of nucleotide substitutions: there is one mutation rate for
transitions and another for transversions, and in this case transitions are five times as
common as transversions. This simple model is widely used because it approximates
the pattern of evolution observed for many genes, in particular mammalian mitochon-
drial genes (¢.g., see Brown, Prager, Wang, and Wilson, 1982). Parsimony (Fig. 3 a),
UPGMA (Fig. 3 g), and neighbor-joining using uncorrected distances (Fig. 3 d) are
inconsistent under these conditions for trees in the upper left-hand corner of the
graph, a region sometimes called the Felsenstein zone (for details of the regions of
inconsistency for most major methods under these conditions, see Huelsenbeck and
Hillis, 1993). The performance of most of the methods shown falls off at high rates of
change and near the Felsenstein zone. The performance of parsimony is increased
dramatically at higher rates of evolution by weighting the transversions more heavily
than the transitions, or by simply ignoring the transitions altogether (Fig. 3, £ and ¢).
Distance methods and parsimony can be made consistent by correcting the data in
accord with the model of evolution. For this model, pairwise distance methods like
neighbor-joining can be made consistent by correcting the distances as suggested by
Kimura (1980); parsimony can be made consistent through a Hadamard transforma-
tion (see Penny et al., 1992). If the model of evolution matches the correction exactly,
as shown in Fig. 3 e for neighbor-joining with Kimura distances, then many methods
are consistent throughout the parameter space (Penny et al., 1992). However, note
that these corrections may have a minimal effect on the power of the technique,
except within the region of former inconsistency (c.g., compare Fig. 3, d with ). At
high rates of change, the area in which neighbor-joining with Kimura-corrected
distances tinds the correct tree is still small compared to the weighted parsimony
method (compare Fig. 3, ¢ with ). Moreover, essentially the same level of perfor-
mance can be achieved using the Kimura distances with the Fitch-Margoliash
method as with neighbor-joining, with the added advantage of discriminating ability
with the Fitch-Margoliash approach (compare Fig. 3, ¢ with f). Using the Kimura
corrections actually decreases the performance of the UPGMA method, which has
little power in any case (Fig. 3, g and 4). Lake’s method of invariants (Fig. 3 i) shows
an extreme trade-off between consistency and power: the method is consistent over
the entire parameter space under, these conditions, but has very low power. Interest-
ingly, if we modify the model slightly by changing the classes of common versus rare
substitutions, thereby violating the assumptions of Lake’s method of invariants, the
power of the method actually increases, even though it also become inconsistent in
upper left corner of the graph (Fig. 3 7). In contrast, a similar change of models has a

variable nucleotide positions were included in all data sets. {(4) Parsimony, all changes
weighted equally; (8) transversion parsimony (transitions weighted zero); (C) weighted
parsimony (transversions weighted five times morc heavily than transitions); (D) neighbor-
joining with uncorrected distances; (£) ncighbor-joining with Kimura distances; (F) Fitch-
Margoliash method with Kimura distances; (G) UPGMA with uncorrected distances; (H)
UPGMA with Kimura distanccs; (/) Lake’s method of invariants, all assumptions met; {(J)
Lake’s method of invariants, mutation assumptions violated (see above); (K) ncighbor-joining
with Kimura distances, mutation assumptions violated (see above). For a description of all
these methods, see Swofford and QOlsen (1990).
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comparatively little effect on the power of neighbor-joining (Fig. 3 &, although it too
becomes inconsistent in part of the parameter space under these conditions).

The challenge in the field of numerical simulations is to identify ways that more
complex problems can be explored in a similarly unbiased manner. This requires that
we specify the purposes of a set of simulations explicitly: once the problem is defined,
the relevant parameter space will often be obvious. Unfortunately, for many of the
problems we face, the necessary computations will be much more difficult than in the
simple four-taxon problem discussed above. As the number of taxa increases, the
number of possible phylogenies increases rapidly, even if we ignore the lengths of
branches. For rooted bifurcating trees, the number of distinct, labeled topologies for
n species is equal to

[Tk - 3)
k=2

{Cavalli-Sforza and Edwards, 1967). Therefore, for just fifty taxa, there are 2.8 x 107
possible rooted bifurcating trees. Obviously, we can not examine every possible
solution in such cases; even with a computer that could examine 10 trees a second,
it would take much more time to examine all the trees than has existed in the history
of the universe! We can get around this problem to a large extent by developing
efficient heuristic searching methods (see Swofford and Olsen, 1990; Swofford,
1993), but the harder problems will still require major increases in computational
power, such as those afforded by massively parallel computing (see W. D. Hillis and
Boghosian, 1993).

Experimental Phylogenies: Observing Evelution in Action

The principal limitation in experimental phylogenies is producing the relevant levels
of evolutionary change within a human life span (or more realistically, within the life
span of a funded research project). This requires an organism with a short generation
time and high mutation rate. Ideally, we would like to be able to control the spectrum
of potential mutations, have the ability to examine a large fraction of the organism’s
genome (to avoid or explore problems of sampling bias), control population size over
a wide spectrum, control and manipulate the organism’s environment with ease (to
examine the effects of sclection}, and culture the organism without great difficulty.
All of these conditions are met most closely by viruses, and particularly bacte-
riophages, the viruscs of bacteria.

Fig. 4 shows an actual and two estimated trees for an experimental phylogeny
based on cultures of the bacteriophage T7 (see Hillis, Bull, White, Badgett, and
Molineux, 1992). The T7 cultures were grown in the presence of a mutagen (in this
case, nitrosoguanidine) to increase the rate of mutations. The mutational spectrum
produced in such an environment is biased in favor of certain substitutions, but
deletions occur as well. With nitrosoguanidine, many kinds of mutations occur, but
the majority are transitions, especially G — A and C — T. This spectrum of
mutations is similar to that observed in some natural systems that have been
examined (e.g., mammalian genes and pseudogenes: Gojobori, Li, and Graur, 1982;
Li, Wu, and Luo, 1984; human immunodeficiency viruses: Moriyama, Ina, Ikeo,
Shimizu, and Gojobori, 1991). To create the phylogeny, an initial culture of bacteria
plus bacteriophage is divided into three lineages (one of which will become the
outgroup for purposes of rooting the tree), and then the lineages are redivided after
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a predetermined number of Iytic cycles. Stocks of ancestral cultures are saved at each
cycle for later analysis. After the phylogeny has been created, DNA is isolated from
the mutated lineages of T7 and analyzed by restriction digestion, sequencing, or
DNA-DNA hybridization. Different methods of phylogenetic analysis can then be
used to estimate the phylogeny, the branch lengths, and the genotypes of the
ancestors, and in each case evaluated against the true tree and actual ancestors.
What are the results of such experiments? An analysis of a set of just over 200
restriction sites that are variable among the lincages produces the correct phylogeny
with almost every method tested to date. However, if one uses the presence or
absence of restriction fragments as the primary data, instead of mapping out the sites
for analysis, then every method returns the incorrect phylogeny. Restriction frag-
ment analyscs are troublesome because restriction fragments are not independent
characters. There are two rcasons for this. First, a single site gain causes one
fragment to be lost and two other fragments to be gained, and second, a single
deletion can cause changes to multiple fragments. However, it is often argued that
mapping and aligning restriction sites may not be worth the extra effort (e.g., Bremer,
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1991). Yet, in the seemingly ideal situation of the experimental T7 phylogeny,
restriction sites always give the correct tree and restriction fragments always give the
wrong tree, indicating that the problem with nonindependence is a severe one. This
result has not been obvious from simulations, probably because simulations rarely
include insertions or deletions in the models of nucleotide change. This result
indicates that we necd to improve our simulation models to include rcalistic
frequencies of insertion-deletion ¢cvents.

As discussed carlier, the branching structurc is not the only aspect of the tree we
would like to estimate. Branch lengths are also of interest, as are the estimation of
ancestral genotypes. For this phylogeny, as well as for simulations based on the kinds
and distributions of mutations observed across the tree (Bull, Cunningham,
Molineaux, Badgett, and Hillis, 1993), the character-based parsimony method
produces significantly better estimates of branch lengths (estimated number of
restriction-site changes) than do pairwise distance methods such as neighbor-joining
or the Fitch-Margoliash method, and these latter methods produce significantly
better estimates than does UPGMA. Fig. 4 compares the actual branch lengths (in
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number of restriction-site changes) with the estimated branch lengths from parsi-
mony and UPGMA.,

Of the common methods of phylogenetic analysis, only parsimony provides
estimates of the ancestral character states at internal nodes in the tree (see
Maddison and Maddison [1993] for an excellent discussion of the reconstruction of
ancestral character states). How well does this method fair in this example? For any
given restriction site, the estimated state in an ancestor may be (a} correctly inferred,
(b} incorrectly inferred, or (¢} ambiguous (i.¢., the presence or absence of the site is
equally parsimonious). When we compared the inferred restriction maps to the
actual restriction maps for the seven ancestral nodes in the model phylogeny, we
found that the inferred restriction maps were > 98% correct. This finding indicates
that the method for reconstructing ancestral character states is working well under
the conditions tested.

Towhat extent can we generalize these findings from a study of bacteriophage to
other organisms? Phylogenetic methods are purported to be general for living
organisms, so any organism should therefore provide a test of the fallibility of the
methods. Some findings, such as the efficiency of reconstructing ancestral genotypes,
will be dependent on the level of homoplasy (reversals, parallelisms, convergences)
present across the phylogeny. In the case presented above, the level of homoplasy
present in the tree was almost exactly the average of that seen in real examples in the
literature for the same number of taxa and characters {Hillis, Bull, White, Badgett,
and Molineux, 1993; data on other organisms in Sanderson and Donoghue, 1989).
Obviously, there is a need to examine other tree topologies, the effects of highly
unequal branch lengths on the performance of the various methods, the effects of
parallel selection pressures on different parts of the tree, the effects of other
mutational spectra, the effects of population size, and many other aspects of
evolution that potentially affect our ability to reconstruct phylogenies. This is a
strength of experimental phylogenies: all of these aspects of phylogenies can be
studied, without detailed a priori knowledge of the underlying mechanisms. In fact,
the studies also can provide first-hand information on the processes of molecular
evolution. Experimental phylogenies can (and do) provide actual examples of the
failure of certain methods, as in the use of restriction fragment analysis in the
example above. Such findings can be used to improve the methods or to identify
conditions under which they should not be applied.

How Do the Major Methods Rate?

It should be clear that no single method is optimal for all of the criteria we have
identified. As with most things in life, there are trade-offs. Thus, the methods that
are fastest produce just a single estimate of the tree, without any obvious way to
compare or rank the alternatives (i.e., they have very low discriminating ability); fast
methods also tend to be less powerful. Methods that are fully consistent under a
specific model of evolution are usually less versatile (e.g., they only apply to certain
kinds of data). We have attempted to rank the most commonly used methods for the
assessment criteria identified earlier (see Table I). These rankings are somewhat
subjective, and we recommend that interested readers refer to the primary literature
on simulations and experimental phylogenies to make their own rankings. Also note
that these methods are constantly being modified and refined, so the rankings may
change over time. This is particularly true for the maximum likelihood methods,
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which have increased dramatically in speed and versatility in recent years (our
rankings for maximum likelihood reflect the current common implementations
rather than the full potential of the method).

Which method is finally selected will depend to a large extent on the goals of the
study: neighbor-joining is perfectly adequate for a tast, initial estimate of a tree, even
though it is useless for comparing and ranking alternative solutions. For most studies,
one of three classes of methods will usually be most appropriate: Fitch-Margoliash
and related methods (including the minimum evolution method), parsimeny meth-
ods, or maximum likelihood. Fitch-Margoliash and related methods specify an
optimality criterion for fitting observed pairwise distances to path-length distances
on trees. The optimality criterion can be assessed for any tree, and the methods are
relatively insensitive to variations in branch lengths across the tree. They are
currently somewhat limited in their power and versatility by the simplistic models
that are used to compute evolutionary distances (e.g., it is difficult to incorporate
different weights for different characters or types of character change into the

TABLE 1
Comparison of the Most Commonly Used Methods of Phylogenetic Analysis
Criterion
Method e T e
Speed Power Consis- Robust DISCI:]ml Versaltility
tency ness nation
UPGMA + 4+ — — — _ _
Neighbor-joining ++ + ++ + - +
Fitch-Margoliash
{and related methods) + + ++ + ++ +
Parsimony methods + ++ + + ++ ++
Methods of invariants + - ++ + ++ -
Maximum likelihood
(as currently implemented) ++ ++ + ++ *

Key: ++, excellent; +, good; and —, poor.

analyses, and it is difficult to combine analyses of different kinds of data into a single
analysis). Parsimony methods correct these deficiencies, but at a cost of lower overall
consistency for simple models of evolution. Parsimony methods are the most
versatile approaches: they can be applied to all kinds of data, can casily incorporate
differential weights for different character-state changes or for entire characters, are
amenable to combination of results among studies, and provide accurate reconstruc-
tions of branch lengths and ancestral character states. As shown in Fig. 3, this
versatility (e.g., character-state weighting) can lead to increased power. Although
parsimony methods are consistent under more limited conditions than some other
approaches, this limitation has been lifted to some extent by recent developments
(for more information, see discussion of the Hadamard transformation in Penny et
al.,, 1992). Finally, maximum likelihood methods are likely to undergo the most
development in coming years. Their use has been limited because they currently are
too slow to be applied to many real world data sets, and because they are not very
versatile (for instance, they currently are limited primarily to substitutional changes
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in DNA sequences). However, their versatility is being constantly improved, and they
are useful methods when they can be applicd because of their high power, consis-
tenicy, and discriminating ability.
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