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Abstract.—The Mk model was developed for estimating phylogenetic trees from discrete morphological data, whether for
living or fossil taxa. Like any model, the Mk model makes a number of assumptions. One assumption is that transitions
between character states are symmetric (i.e., the probability of changing from 0 to 1 is the same as 1 to 0). However, some
characters in a data matrix may not satisfy this assumption. Here, we test methods for relaxing this assumption in a Bayesian
context. Using empirical data sets, we perform model fitting to illustrate cases in which modeling asymmetric transition
rates among characters is preferable to the standard Mk model. We use simulated data sets to demonstrate that choosing
the best-fit model of transition-state symmetry can improve model fit and phylogenetic estimation. [Bayesian estimation,
morphology, paleontology, phylogeny, priors.]

Most estimates of phylogenetic trees from
morphological character data are based on parsimony
analysis. However, recent work suggests that a
Bayesian implementation of a simple likelihood
model outperforms parsimony (Wright and Hillis 2014).
This model, the Mk model introduced by Lewis (2001),
is a generalization of the Jukes–Cantor model of DNA
sequence evolution (Jukes and Cantor 1969). The Mk
model has one parameter, the rate of transition between
character states.

The Mk model makes several assumptions about the
data: that characters are always in one of k states,
that characters are conditionally independent of one
another, that character change from one state to another
is instantaneous along a branch, that changes are
independent of one another (there may be change in
every instant along a branch), and that no state is a priori
ancestral or derived (though ordering can be specified in
some implementations). The Mk model is a symmetrical
model, in which the rate of change from one character
state to another is assumed to be equal to the rate of
reversal (i.e., the probability of changing from 0 to 1
is the same as 1 to 0). This assumption is similar to
the assumption of an unweighted transition matrix for
ordered or unordered characters under the parsimony
optimality criterion.

However, not all traits fit this assumption. For
example, a Dollo character (a character assumed to
be unlikely to re-evolve once lost; Dollo 1893) has
strongly asymmetrical transitions. A growing number
of studies have used the Mk model for morphological
data (examples include Clarke and Middleton 2008;
Ronquist et al. 2012; O’Leary et al. 2013) although there
is little discussion on the implications of the symmetric
change assumption (see Alekseyenko et al. (2008) for one
discussion). Here, we investigate the effects of relaxing
the assumption of symmetry and allowing heterogeneity
in character change symmetry.

Allowing asymmetrical rates of character change
is challenging, as morphological character states do
not carry common meaning across characters in a
matrix. In molecular studies, characters have the same
properties from site to site: the nucleotide base “A” at
a site in an alignment is generally expected to have
the same properties as the nucleotide base “A” at a
different site in the same alignment, as they represent
the same biochemical structure. Each nucleotide has
exchangeabilities (relative rates of change from one state
to another) that can be defined with respect to other
nucleotides (e.g., transitions and transversions) across
data sets as a function of the constancy of nucleotide-
specific properties. Because labeling morphological
characters is subjective, this property does not hold
for morphology. In a morphological matrix, a state
“1” in one character does not necessarily have similar
properties as a state “1” in another. Changes, for
example, cannot be relied upon to be of equal magnitude
across characters. A change from state 0 to state 1
could be the gain of a complex trait requiring many
underlying genetic changes in one character, but a
change requiring only a single substitution in a different
character. Under parsimony, this inequality can be
managed through applying different step matrices
to sets of characters. The basic Mk model has no
methodology comparable to allowing different step
matrices.

Parametric models that allow flexible transition rates
have been proposed. Bayesian methods, specifically,
can allow character change asymmetry through the
use of priors on the equilibrium state frequencies
of characters. Unequal state frequencies permit
asymmetrical transition rates: the rate of change from
0 to 1 in a Markovian model depends not simply on
the exchange probability between 0 and 1, but on
the availability of the state 0. If the stationary state
frequency of state 0 is very low for some characters,
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changes from state 0 to state 1 will be expected to occur
infrequently at those sites, even if the rate of change is
high.

In a model of nucleotide sequence evolution, there
are many combinations of assumptions that can be
made about both the rate of change between nucleotide
states and the equilibrium frequency of each state.
Most models of sequence evolution allow some degree
of variability in equilibrium state frequencies as a
model parameter. The Mk model has one parameter
(transition rate). Rather than developing a new model
with multiple exchangeabilities as free parameters,
the relationship between equilibrium state frequencies
and instantaneous rates of change has been exploited
in the software package MrBayes (Huelsenbeck and
Ronquist 2001; Ronquist and Huelsenbeck 2003) using
the symmetric Dirichlet prior. The prior specifies a
distribution on state frequencies, thus allowing different
characters to have different state frequencies, but within
the constraint of the specified prior. The symmetry of
transitions can, then, vary among sites as a function
of character state availability. In principal, allowing
equilibrium frequencies of states to vary is more similar
to the F81 model (Felsenstein 1981) than the JC model
upon which the Mk model was based.

In the case of binary characters, a discrete beta(�, �)
distribution, in which � and � are constrained to be equal,
is used as a prior on the state frequency. The vector of
state frequencies is integrated out of the model in the
likelihood function. In this case, the shape parameter
of the discrete beta is a parameter of the model. In the
case of a multistate character, state frequency remains in
the likelihood calculation, making the shape parameter
a hyperparameter. To calculate the likelihood of a
character, the symmetric beta distribution is divided
evenly into five categories, each represented by the
median forward and backward transition rates for that
category. The likelihood of the character is calculated
for each character and each category, then summed to
make a complete character likelihood. This process is
similar to the calculation of character likelihoods when
rate heterogeneity is modeled via a discrete gamma
distribution.

The general beta distribution has two parameters, �
and �; symmetric beta distributions (Fig. 1) are generated
by setting �=�. Thus, the family of symmetric beta
distributions can be generated by varying a single shape
parameter (�). Use of the symmetric beta distribution
as a prior or hyperprior allows different characters
to have different transition probabilities. However, the
symmetry of the prior or hyperprior assumes that if
some characters have lower frequency of state 1, then
others have higher frequency of state 1. For example, if
some characters have a bias toward 0 to 1 transitions,
this distribution assumes that there are also characters
in the data set displaying a bias of equal magnitude
toward 1 to 0 transitions. Thus, rates of 0 to 1 and
1 to 0 transitions may be asymmetrical for any one
character in the data set, although the distribution of
character change symmetry values in a data set on the

FIGURE 1. An illustration of various shapes of the Beta distribution
when controlled by a single parameter �=�. �=∞ corresponds to the
Mk model as proposed by Lewis (2001). On the opposite extreme, �=
0.05 corresponds to strongly asymmetrical transitions between binary
character states.

whole is symmetrical. Larger values of � correspond
to less transition rate asymmetry among characters and
smaller values correspond to more asymmetry. The �=
∞ value for the beta distribution conforms to Lewis’s
(2001) formulation of the Mk model, in which forward
and reverse transitions are considered to be equally
likely, and deviations from this assumption are not
allowed. Technically, �=∞ as implemented in MrBayes
is a real, but very large number; MrBayes allows the
use of the qualitative term “infinity” to denote this
as a limiting distribution to a continuously varying
sequence of distributions. In contrast, low values for
alpha give a U-shaped distribution (Fig. 1), which would
be indicated if very few characters conform to the
assumption of symmetrical transitions. The distribution
varies continuously between an extreme U-shaped
distribution and the single symmetric rate distribution
as � is set between 0 and ∞.

MrBayes also allows users to specify a second
distribution (such as an exponential distribution or a
uniform distribution), called a hyperprior, for �. Note
that in the user manual, both setting a fixed value for
� and specifying a distribution from which the value
of � will be sampled are referred to as “hyperpriors,”
regardless of whether the data are binary or multistate.
We will focus here on exploring a few specific values of �.
Such basic exploration is warranted before considering
the more complex case of sampling � from a distribution.

In this study, we assess the fit of models corresponding
to specific different values for the symmetric Dirichlet
prior. We then use the results of this exploration
to guide simulations to assess if altering this prior
improves topology estimation. We conclude with
practical recommendations for use of the symmetric
Dirichlet prior with morphological data.

METHODS

Empirical Data set Collection and Modeling
Morphological data matrices were taken from

http://www.graemetlloyd.com/matr.html and are
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604 SYSTEMATIC BIOLOGY VOL. 65

archived at http://dx.doi.org/10.5061/dryad.sb8h1.
This compilation is drawn from multiple sources,
including: (i) other online matrix databases
(Paleobiology Research Group 2011; O’Leary and
Kaufman 2012; Mounce 2014; National Evolutionary
Synthesis Center 2015); (ii) source tree lists from
published supertrees (Pisani et al. 2002; Ruta et al. 2007;
Lloyd et al. 2008; Bronzati et al. 2012; Brocklehurst et al.
2013); (iii) the former Field Museum site of Peter Wagner
(Wagner 2000); (iv) the 1000 cladogram list from Benton
et al. 2000; and (v) the primary literature. All data
sets were vetted to ensure all ordering and outgroup
specifications were correct. Parsimony character weights
were not used as they conflict with the likelihood models
implemented in MrBayes.

Because many of these matrices are modified versions
of older data sets, or represent identical data sets used
in different analyses, we parsed the XML metadata
associated with them to pare down the list to a set of
approximately independent matrices, to avoid issues of
replication. This was done by first identifying clusters
of data sets that are mutually nonindependent. These
relationships can come in two forms: (i) parent–child
relationships: the parent being the older data set that
forms the main or sole basis for the child data set;
and (ii) sibling relationships: where either two or more
children share a parent or have some other equal claim
to novelty, for example, the alternative codings seen
in Farke et al. (2011). From these clusters we took
the single data set that had (in priority order): (i)
the most characters, (ii) the most taxa, (iii) the most
recent publication date, or (iv) if two or more data
sets tie on all three criteria then we chose the first
data set. We pruned one final data set due to small
size (6 taxa and 4 characters). We retained 206 total
data sets, ranging from 5 to 279 taxa and 11 to 364
characters.

We modeled each data set in six ways, with priors
corresponding to the six distributions shown in Figure 1.
The only setting altered was the symmetric Dirichlet
prior.

We refer to each model by the value of its shape
parameter (�). MrBayes uses as default �=∞ for the
� parameter. As mentioned above, this forces state
transition probabilities to be equal, corresponding to
the original formulation of the Mk model (Lewis 2001).
The setting �=1 represents a uniform distribution of
character–state transitions (Fig. 1). This model assumes
that characters in the data set are expected to be
sampled from all possible values of asymmetry. The
values of �=2 and �=10 were chosen to allow some
degree of asymmetry in character–state transition, while
expecting most characters to exhibit relative symmetry.
We examined two settings, �=0.2 and �=0.05, that
assume that most characters are more likely to display
asymmetrical transitions between states. These models
allow symmetry, but expect most characters to have some
degree of state-change asymmetry.

Ordering of characters as specified in the original
data sets was maintained in all parameterizations of the

data. Characters in the data sets were not pruned or
manipulated.

To assess support for a given model, we used Bayes
Factor comparisons. Using the Kass and Raftery (1995)
scale of 2 log Bayes Factor (BF) support, we considered
an improvement of 2 log(BF) ≥ 2 over the score of
next highest-scoring model to be positive evidence for
that model. Values between 0 and 2 were considered
suggestive of a model preference.

Phylogenetic Analysis
We estimated phylogenetic trees for each data

set in MrBayes 3.2.2 using the Mk model for
estimation of phylogeny from discrete morphological
characters. The model was corrected for having only
observed parsimony-informative characters, or variable
characters, as the data sets dictate. Estimation was
performed on the Texas Advanced Computing Center
Stampede cluster. We ran the Markov chain for each data
set for 10 million generations. To assess the fit of each
model to the data, we used stepping-stone sampling,
which shows greatly improved accuracy over harmonic
mean methods for estimating marginal likelihoods (Xie
et al. 2010).

Marginal likelihoods can be used to assess model
fit, allowing us to reject a poorer-fit model in favor
of a better-fit model. They cannot tell us, however, if
improved fit of the model to the data will result in
different topological estimates. Therefore, we compared
the trees resulting from the preferred model, as
determined by Bayes Factors calculated from marginal
likelihood scores, to trees estimated from the default
parameter settings. We used the Robinson–Foulds score
(Robinson and Foulds 1981) scaled by the number of tips
in the tree to arrive at a proportion of nodes estimated
differently between the �=∞ and the preferred-model
tree. On this scale, a score of 0 indicates topologically
identical trees were estimated under both models, and 1
indicates the maximum possible topological difference
between the estimated trees.

Simulated Data set Collection and Modeling
Empirical data sets do not allow researchers to assess

if an estimated tree is more or less “correct” than
another estimated tree. Simulating data along a known
phylogeny and estimating a tree from the simulated data,
however, provides a straightforward comparison by
which accuracy of the inference process can be assessed.
Therefore, in addition to the analyses of empirical data
sets, we also simulated data matrices along two trees. The
first was a simple 8-taxon tree (Fig. 2) with equal branch
lengths throughout the tree. To capture the complexity
of empirical trees, we also simulated along a tree that we
estimated from the data set of Zheng et al. (2009) (Fig. 2).
This tree was chosen because it was representative of the
data sets we examined, both in terms of number of taxa
and characters.
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2016 WRIGHT ET AL.—EXPANDING MORPHOLOGICAL MODELS 605

FIGURE 2. A) The first tree used for data set simulation. This tree
was estimated from the Zheng et al. (2009) data set using the best-fit
prior discovered by the procedure outlined in section Empirical Data
set Collection and Parameterization. B) The 8-taxon tree used for data set
simulation.

We simulated 4 sets of 100 matrices each of the same
size as the original data set for the Zheng tree (221
characters) and of 200 characters for the 8-taxon tree.
Matrices were simulated using the sim.char function in
the R package GEIGER (Harmon et al. 2008; Pennell
et al. 2014). GEIGER allows users to supply a Q-
matrix on a character-by-character basis. The four sets
of simulated data sets corresponded to four values
of �. The four distributions chosen were �=∞ (the
original formulation of the Mk model with symmetric
transitions), �=2 (transition rate is biased toward
symmetric transitions), � = 1 (a uniform prior), and
�=0.2 (transition rate is biased away from symmetric
transitions). Each character in a data set had its own
transition rate, drawn from the beta distribution with
the appropriate seed value of �. For example, when
we simulated according to �=∞, transition rates were
constrained to have equal forward and backward rates.
In this way, for each of the 4 sets of matrices, there is a
true value of the shape parameter �. We investigated the

frequency with which the true value was selected and
the effect of correct versus misspecified values of � on
the accuracy of topological estimation.

Missing data may affect one’s ability to detect the
best-fit model, particularly if those missing data are
biased in some way. For example, if missing data tend
to be concentrated among labile characters that change
symmetrically between states 0 and 1, this may inhibit
the detection of this class of characters. To capture the
properties of the real data sets, we modeled missing
data in the simulated data sets based on the observed
distributions of missing data in the empirical data sets.
For example, if a taxon was missing 90% of the characters
in the Zheng et al. matrix, we deleted 90% of the data
for that taxon in the corresponding simulated data
sets. For the data sets simulated under �=∞, the only
heterogeneity among characters is in evolutionary rate.
For these data sets, we varied the bias in the missing data
between slowly evolving characters and fast-evolving
characters. In the case of slow-biased missing data,
missing cells for a given taxon were concentrated
preferentially in characters with slow evolutionary rates.
The opposite was true of missing data biased toward fast-
evolving characters. For data sets simulated under �=1,
�=2, and �=0.2, we did not model rate heterogeneity
among sites, only heterogeneity in backwards and
forwards transition rates. For these data sets, we deleted
data randomly among characters within a taxon to mimic
the patterns of missing data observed in the empirical
data sets. We also estimated trees for the data sets
without any missing data.

The 8-taxon tree was not modeled on an empirical data
set. For data sets simulated using this tree, 50% of all data
were missing for all taxa. For all four priors, data were
randomly deleted within each taxon. For �=∞, missing
data were also deleted preferentially from low- and
high-rate character classes, as outlined in the previous
paragraph.

We modeled each data set using each of the four
� values, including the � under which the data
were simulated. We performed phylogenetic estimation
as described above for the empirical data sets. We
performed model selection to determine the best-fit
value of � using a 2 log Bayes Factor comparison for
each simulated data set, according to the stepping-stone
marginal likelihoods. We quantified the topological
difference using the Robinson–Foulds (1981) metric,
scaled by the number of nodes in the tree.

All data sets and code are available in the Dryad
repository for this article: http://dx.doi.org/10.5061/
dryad.sb8h1.

RESULTS

Empirical Data sets
We did not detect evidence for a prior other than �=∞

in 102 data sets (i.e., 2 log BF > 0, as compared with
the next highest-scoring model). We detected support in
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606 SYSTEMATIC BIOLOGY VOL. 65

FIGURE 3. Results from fitting value of � to empirical data sets. The
numbers underneath the value of � indicate the average strength of
Bayes Factor (2 log BF) support for that prior among data sets in which
it was the best-fit prior.

TABLE 1. Average log Bayes Factor support for a given prior among
data sets supporting that prior

Prior Number of Average Bayes Strength of
data sets Factor support support

(2 log BF)

�=∞ 102 2.26 Positive
�=10 71 4.59 Positive
�=2 13 2.63 Positive
�=1 71 1.85 Barely worth mentioning
�=0.2 5 4.244 Positive
�=0.05 8 6.81 Strong

Note: Strength of support scale from Kass and Raftery (1995).

71 data sets for �=10; support in 13 data sets for �=2;
support in 7 data sets for �=1; support in 5 data sets for
�=0.2; and support in 8 data sets for �=0.05. Relative
2 log BF support varied widely across priors; data sets
favoring �=0.05 tended to favor it most strongly (average
2 log BF = 6.81), whereas those favoring �=1 favored
this prior most weakly (average 2 log BF = 1.854) (Fig. 3,
Table 1).

For data sets that had support for a prior other than the
default of �=∞ (102 data sets), we compared estimated
tree topologies using the�=∞prior versus the preferred
prior to examine the effects of model misspecification.
For about a third of the data sets (Fig. 4) that favored
a different prior, fewer than 10% of internal branches
differed between the tree estimated under the best-fit
prior and the tree estimated under the �=∞. For about
10% of trees, over half the internal branches in the
tree were estimated differently. The largest difference
observed was 0.67 (i.e., 67% of internal branches differed
between the two estimates); this distance was observed

FIGURE 4. Scaled Robinson–Foulds distances between trees
estimated under the best-fit model and �=∞, the default model in
MrBayes.

for the 35-taxon athyridid brachiopod data set of Alvarez
et al. (1998).

Simulated Data sets—Model Comparison
Eight-taxon simulations.—The generating model was
often detectable (Fig. 5). When there were no missing
data, we detected the generating model in all but one of
the 8-taxon simulations. At values of �=1, �=0.2 and �=
2, there was an 11–15% decrease in our ability to detect
the true model in the analyses with missing data. In the
�=∞ data sets, the degree of drop in detection of the
true model depended on which characters were missing
from the data set. When the data were missing for low-
rate characters, we recovered the generating model 90%
of the time. In contrast, when the data were missing from
high-rate characters, we recovered the generating model
only 57% of the time.

Zheng-tree simulations.—In the simulations of the Zheng
tree, missing data did not affect our ability to
discriminate among models as severely as in the data
sets simulated along the 8-taxon tree (Fig. 5). The random
missing data were about equally detrimental to model
detection for all values of �, but the reduced data still
only resulted in failing to recover the generating model
in about 10% of data sets. In the �=∞ data sets, missing
data concentrated among the low-rate characters did not
affect model detection, though missing data in high-
rate characters resulted in the generating model being
undetected in about 20% of data sets.

Simulated Data sets—Topological Comparison
Eight-taxon simulations.—Overall phylogenetic error was
generally low, with many replicates estimating the true
tree exactly (Fig. 6 and Table 2). All trees estimated
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FIGURE 5. Percentage of data sets detecting the best-fit model in simulated data.

exhibited the lowest error when the generating model
and analytical model were the same, and exhibited the
greatest error when departures between the estimated
and analytical values of � were highest. We observed
the greatest sensitivity to the assumed value of � when
the generating value was set at �=0.2. Under these
conditions, consistently accurate phylogenetic estimates
were obtained only when we used the true (simulated)
value for �. For other simulated values of �, error among
the estimated trees was generally very low except under
the greatest departures between simulated and assumed
values of � (e.g., simulated �=1, assumed �=∞; and
simulated �=∞, assumed �=0.2).

In the simulations with missing data, overall levels of
estimation error were much higher. In these simulations,
we recovered the simulated tree in fewer replicates
(Fig. 7). Performance was best when the simulated
and assumed values of � were closest, and fell off
with increasing deviations between the simulated
and assumed values of �. We observed the worst
performance in the estimated trees when the missing
data were not random with respect to the rate of character
evolution.

Zheng-tree simulations.—In the Zheng-tree simulations,
we observed the same general trends that we observed
in the 8-taxon tree simulations (Fig. 7), except that
overall error rates were much higher in the analyses
with biased missing data (biases toward missing high-
rate or low-rate characters). Error was especially high

in the biased-missing data simulations if � was also
misspecified (Fig. 7). This resulted in fewer data sets in
which a majority of nodes are correctly estimated. In all
the simulated data sets of the Zheng tree, we observed
the lowest overall error in the estimated trees when we
used the simulated values of � in the analyses (Fig. 7).

In simulations with missing data, topological error
is higher than in data sets without missing data, with
median error of data sets with missing data often
exceeding the maximum error observed in data sets
without missing data (Fig. 7). This was especially true in
the � = ∞ data sets with biased missing data. In all data
sets, the generating model performed the best, but in the
� = ∞ data sets, this difference is especially pronounced,
cutting error by more than half. In data sets simulated
under the other three models, correctly parameterizing
the generating model improves estimation more mildly.

DISCUSSION

In almost 50% of the empirical data sets we examined,
we did not reject the default assumption of �=∞.
A further 84 data sets had statistical support for a
value of �=10 or �=2. The beta distributions in
which the shape parameter � is between 2 and ∞
describe characters that tend to have symmetrical change
probabilities between states with increasing deviation
from symmetrical change at lower values of �. Only 13
data sets supported a value of �<1, biased away from
symmetrical transitions. Therefore, although some data
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608 SYSTEMATIC BIOLOGY VOL. 65

FIGURE 6. Boxplots showing the error in phylogenetic estimation for data sets without missing data. The measure of centrality of the boxplots
is the median, with the upper and lower bounds representing the lower and upper quartiles. Whiskers indicate range, and outliers are indicated
with a plus. Generating model is indicated with a star.
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TABLE 2. Summary of model performance per generating model

Generating Lowest-error Highest-error
model model model

�=∞ �=∞ � = 0.2
�=2 �=2 �=0.2
�=1 �=1 �=∞
�=0.2 �=0.2 �=∞

Notes: Error refers to topological error in estimated trees. The lowest-
error model was the one producing the lowest median scaled RF score,
whereas the highest-error model produced the largest median RF score

sets may benefit from a relaxation of the assumption of
equal transition rates between states, for other data sets,
this assumption may be justified.

We saw no clear relationship between the preferred
value of � and the number of characters in the study or
the taxonomic focus of the study (Table 3). There were
weak associations between studies of invertebrates and
preference for the �=1 prior (5 out of 7 data sets) and
between studies of dinosaurs and the �=0.05 prior (4
out of 8 data sets). However, this may be the result of
small sample size.

Our results suggest that Bayes Factor model selection
(Suchard et al. 2005) is effective for choosing among beta
distribution shape-parameter values that describe the
relative symmetry of changes between character states.
This approach is preferable to simply choosing the model
with the highest likelihood, as Bayes Factors penalize for
increased model complexity (Baele et al. 2012). Model
support tended to be positive (2 log Bayes Factors >2)
or even strong (2 log BF >6) for the value of � for most
empirical data sets (Fig. 2 and Table 1). Improved model
fit does not guarantee improved phylogenetic estimation
accuracy, but we did find that selection of a value for �
can strongly affect the resulting phylogenetic estimate
(Fig. 4). These results suggest that systematists who
evaluate morphological data should pay close attention
to appropriate selection of this model parameter.

For the empirical data sets, the “true” tree is unknown,
and we can only conclude that selection of a value
for � makes a difference in the tree estimated. We
cannot conclude that the topological difference among
estimates necessarily represents increased accuracy for
an appropriate value of �. However, our simulations do
allow us to assess the relationship between phylogenetic
accuracy and an appropriate selection of a value for �.
We found the highest levels of accuracy in phylogenetic
estimation when the analytical values of � matched
the simulated values (Figs. 6 and 7). This supports the
conclusion that selection of an appropriate value for �
not only makes a difference in many analyses, but also
that it is likely to improve accuracy.

Missing data in an analysis can interfere with selection
of an appropriate value of �, but not necessarily
severely (Fig. 5). In the case of 8-taxon data sets, with
random missing data, the ability to detect the generating
model was lessened by 15–20%. These values are in
accordance with previous research. Even small data
sets are often sufficient to detect differences among

alternative models, particularly when the model is
simple (Posada 2001; Posada and Buckley 2004).

Biases in missing data in the data sets simulated
under �=∞ had variable effects on model selection.
Missing data concentrated in the high-rate of evolution
characters tended to have a more negative effect on
model selection compared with missing data in the
low-rate characters. High-rate characters exhibit more
changes compared with low-rate characters, so the loss
of high-rate characters would be expected to have a
greater effect on appropriate model selection. In low-rate
characters, any signal of character change asymmetry
in any one character would be relatively weak. On the
other hand, a character that exhibits multiple changes
would be expected to have stronger signal for a particular
model. In the case of �=∞, a character that strongly
supports this parameter value will exhibit 0 to 1 and 1 to
0 transitions in approximately equal numbers. If the rate
of change in a given character is higher, observing both
types of transitions is more likely. Therefore, the high-
rate characters are more important for an appropriate
selection of a value for the � parameter.

In the Zheng-tree simulations, random missing data
made little difference in terms of our ability to select
the generating model. Overall, the analyses based on
the Zheng-tree simulations were less affected by missing
data, and generally detected the generating model more
often than in the 8-taxon analyses. However, the effect of
biased missing data was similar to the 8-taxon analyses;
the loss of high-rate characters had more detrimental
effect than the loss of low-rate characters, with the latter
showing very few effects.

The Zheng tree data set has six times as many taxa
as in the 8-taxon tree and so there are many more
opportunities to observe changes in each character,
which leads to a greater ability to estimate an appropriate
value for the � parameter. This conforms to previous
work on model selection, in which it has been shown
that the number of taxa in an analysis has a positive
relationship with the ability to detect a model of
evolution in molecular sequences (Posada 2001; Heath
et al. 2008).

In the 8-taxon data sets without missing data, we saw a
very clear pattern consistent with the theory underlying
the use of the symmetric Dirichlet prior. For data sets
simulated under �=∞, �=0.2 tended to perform worst,
and vice versa. This is the exact pattern expected from
Figure 1: data sets conforming to the original Mk model
assumption of equal transition rates from 0 to 1 and 1
to 0 should be poorly modeled by a prior that punishes
this assumption. For the �=1 data sets, the �=∞ prior
performed worst. This, again, is expected: a prior that
assumes all characters in a data set should exhibit equal
0 to 1 and 1 to 0 transition rates would be expected to be
a poor fit to data in which character asymmetry values
are expected to be drawn from all possible values of
asymmetry.

These patterns held for the Zheng-tree simulations,
although the magnitude of improvement from a poorer-
fit model to the best-fit model was smaller than in the

 at U
niversity of T

exas at A
ustin on A

ugust 26, 2016
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/


610 SYSTEMATIC BIOLOGY VOL. 65

FIGURE 7. Boxplots showing the error in phylogenetic estimation for data sets with missing data. Boxplot configuration is explained in the
legend of Figure 6. Generating model is indicated with a star.

8-taxon data sets. The overall amount of error was also
smaller in these data sets, as would be expected from the
fact that branches are shorter on this tree.

In both sets of simulations (but especially for the
Zheng-tree simulations), biases in the distribution of
missing data with respect to rate of character evolution
resulted in greatly increased rates of phylogenetic error.
This fits conclusions based on previous simulations
of larger data sets (350 characters and 75 taxa) that
showed that biases in patterns of missing data can
result in high phylogenetic error rates, even in the

absence of any model misspecification (Wright and Hillis
2014).

The beta distribution has two parameters, � and �,
but these two parameters are set equal to one another
in the case of the symmetric beta distribution. Setting
these parameters separately would allow for asymmetric
beta distributions. This might be appropriate for Dollo-
like characters, in which we would expect to see many
losses of a trait, with rare regains of that same trait. If
assignment of states 0 and 1 is random with respect to
presence or absence of a character, then this should not be
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TABLE 3. Comparison of average number of taxa and characters
in data sets of each best-fit value of �

Preferred Average number Average number
prior of taxa of characters

�=∞ 16.77 67.51
�=10 25.24 90.68
�=2 40.73 126.45
�=1 33.51 43.57
�=0.2 59.17 172.67
�=0.05 14.30 62.40

necessary. However, a 2-parameter Dirichlet prior might
be useful for many morphological data sets in which 0
represents absence of a trait, and 1 represents presence
of the trait.

SUPPLEMENTARY DATA

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.sb8h1.
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