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ABSTRACT RNA folding from sequences into secondary structures is a simple yet powerful,
biophysically grounded model of a genotype–phenotype map in which concepts like plasticity,
evolvability, epistasis, and modularity can not only be precisely defined and statistically measured
but also reveal simultaneous and profoundly non-independent effects of natural selection. Molecu-
lar plasticity is viewed here as the capacity of an RNA sequence to assume a variety of energeti-
cally favorable shapes by equilibrating among them at constant temperature. Through simulations
based on experimental designs, we study the dynamics of a population of RNA molecules that
evolve toward a predefined target shape in a constant environment. Each shape in the plastic
repertoire of a sequence contributes to the overall fitness of the sequence in proportion to the time
the sequence spends in that shape. Plasticity is costly, since the more shapes a sequence can
assume, the less time it spends in any one of them. Unsurprisingly, selection leads to a reduction
of plasticity (environmental canalization). The most striking observation, however, is the simulta-
neous slow-down and eventual halting of the evolutionary process. The reduction of plasticity
entails genetic canalization, that is, a dramatic loss of variability (and hence a loss of evolvability)
to the point of lock-in. The causal bridge between environmental canalization and genetic canali-
zation is provided by a correlation between the set of shapes in the plastic repertoire of a sequence
and the set of dominant (minimum free energy) shapes in its genetic neighborhood. This statisti-
cal property of the RNA genotype–phenotype map, which we call plastogenetic congruence, traps
populations in regions where most genetic variation is phenotypically neutral. We call this phe-
nomenon neutral confinement. Analytical models of neutral confinement, made tractable by the
assumption of perfect plastogenetic congruence, formally connect mutation rate, the topography of
phenotype space, and evolvability. These models identify three mutational regimes: that corre-
sponding to neutral confinement, an exploration threshold corresponding to a breakdown of neu-
tral confinement with the simultaneous persistence of the dominant phenotype, and a classic error
threshold corresponding to the loss of the dominant phenotype. In a final step, we analyze the
structural properties of canalized phenotypes. The reduction of plasticity leads to extreme modu-
larity, which we analyze from several perspectives: thermophysical (melting—the RNA version of
a norm of reaction), kinetic (folding pathways—the RNA version of development), and genetic
(transposability—the insensitivity to genetic context). The model thereby suggests a possible evo-
lutionary origin of modularity as a side effect of environmental canalization. J. Exp. Zool. (Mol.
Dev. Evol.) 288:242–283, 2000. © 2000 Wiley-Liss, Inc.
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Biological evolution is the transformation of
heritable phenotypes through time. Evolution is
fueled by the introduction of novel phenotypes and
steered by population-level interactions including
natural selection and genetic drift. The predomi-
nant route to heritable phenotypic change origi-
nates with genetic mutation. The processes that
translate genetic variation into phenotypic varia-
tion give rise to an association between genotype
and phenotype which we represent as a map that
is sensitive to environmental conditions. Concepts
such as canalization, epistasis, and modularity

underlie our understanding of phenotypic variabil-
ity [for a sweeping perspective see Wagner and
Altenberg (’96) and Schlichting and Pigliucci (’98).
Yet, a microfoundation of these concepts and of
their interconnections in terms of the relation be-
tween genotype and phenotype is largely missing.
Our goal here is to initiate such a foundation in
the specific context of a conceptually, computa-
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tionally, and empirically simple yet powerful geno-
type–phenotype model based on the folding of RNA
sequences (genotypes) into shapes (phenotypes).

RNA folding seems, at first, unlikely to be able
to address canalization, epistasis, and modular-
ity. Although we shall mostly use language ap-
propriate for RNA, an RNA sequence could be
viewed as a metaphor for a genome, and a posi-
tion along the sequence as a metaphor for a locus
with four possible alleles (nucleotides). A pheno-
type (RNA shape) then is a simple pattern of
gene–gene interactions (base pairs, see section
1.2). As this paper weaves together several seem-
ingly diverse concepts, we begin with an overview.

Our study provides a molecular illustration
for the Simpson–Baldwin effect (Baldwin, 1896;
Simpson, ’53; Ancel, ’99a) using RNA as an ex-
ample. Central to the initial “discovery” stage of
the Simpson–Baldwin effect is phenotypic plas-
ticity, that is, the genetically influenced capacity
of an individual to develop into one among a range
of phenotypes. In an evolutionary context, a fixed
environment will convey a selective advantage to
those individuals that can access an improved phe-
notype within their plastic repertoire over those
who cannot. The “assimilation” stage of the
Simpson–Baldwin effect arises from the fitness
costs of plasticity. Among the individuals selected
in the first stage, those that can still access the
improved phenotype while reducing their range
of phenotypic plasticity will have a selective ad-
vantage. The Simpson–Baldwin effect describes
the genetic determination of a phenotype that pre-
viously seemed to be acquired anew in each gen-
eration. A frequently considered mechanism of
plasticity is learning (Hinton and Nowland, ’87;
Maynard-Smith, ’87).

Although molecules do not learn, biopolymers
like RNA are plastic in the sense that a given se-
quence can realize a repertoire of alternative struc-
tures, rather than being frozen in its minimum free
energy configuration (section 1). An RNA sequence
samples a variety of energetically low lying struc-
tures by wiggling among them under thermal fluc-
tuation. The overall time a sequence spends in a
shape reflects the thermodynamic stability of that
shape. Consider now a population of replicating and
mutating RNA sequences that are subject to selec-
tion for structural proximity to a constant target
shape (section 2). Assume further that each shape
attainable by a sequence contributes to that
sequence’s overall fitness in proportion to the time
the sequence spends in it.

Sequences with an advantageous but energeti-

cally suboptimal shape will be selected over those
that lack that shape. Plasticity entails a fitness
cost because the more alternative shapes an RNA
molecule can fold into, the less time it will spend
in each shape, including advantageous ones. Se-
quences with an advantageous but energetically
suboptimal shape s will therefore be replaced by
mutants with s at lower free energy until s be-
comes the minimum free energy structure. Sub-
sequently, natural selection will fine tune the
thermodynamic stability of σ by favoring variants
with few alternative structures in the energetic
vicinity of s. We show that in our RNA model such
genetic assimilation occurs extremely rapidly and
covers several orders of magnitude in thermody-
namic stability (section 2).

Some models link plasticity to a speed-up in evo-
lution (Hinton and Nowlan, ’87). This is not the case
in our RNA model. In fact, the reduction of plastic-
ity in a constant environment leads to a slow down
of evolution to the point of a phenotypic dead-end.
In section 2 we describe this dynamic, and in sec-
tion 3 we offer an explanation for this behavior in
terms of features that are intrinsic to the RNA geno-
type–phenotype map. Several threads come together
as we argue that genetic assimilation (the reduc-
tion of plasticity) requires a genotype–phenotype
map in which plasticity mirrors variability. In other
words, the shapes appearing in a sequence’s reper-
toire of energetically favorable structures correlate
significantly to the minimum free energy structures
of the one-error mutants of that sequence. This
turns out to be a general property of the RNA geno-
type-phenotype map (section 3). We call this phe-
nomenon “plastogenetic congruence.”

Phenotypic variability describes the extent of phe-
notypic variation accessible to a genotype through
mutation. The evolvability of an individual is the
likelihood of reaching a phenotype with improved
fitness through mutation (Altenberg, ’95). As such,
evolvability is linked to variability via the fitness
function. Plasticity, on the other hand, captures the
phenotypic variation at a fixed genotype, typically
induced by environmental heterogeneity. In this
sense, the impacts of the environment on plasticity
are analogous to those of genetic mutation on phe-
notypic variability. Plastogenetic congruence means
that plasticity and variability mirror each other: low
plasticity (that is, strong genetic determination) im-
plies low variability (that is, strong mutational buff-
ering), and vice versa.

Plastogenetic congruence implies that an evo-
lutionary reduction of plasticity has a flip side: a
decline in variability. This link results in a self-
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defeating process in which the loss of plasticity
through natural selection leads to the loss of phe-
notypic variability, to the extent of evolutionary
lock-in.

Plastogenetic congruence also sheds light on
Waddington’s theories for the evolution of organis-
mal development (Waddington, ’57). He introduced
two modes of evolution: environmental canaliza-
tion is the honing of developmental pathways to
reduce environmental noise, and genetic canaliza-
tion is the integration of genetic factors to reduce
the deleterious effects of mutation. Under plasto-
genetic congruence then, genetic canalization will
ensue as a byproduct of selection for environmen-
tal canalization. This yields a mechanistic expla-
nation of a hypothesis put forward by Wagner et
al. (’97).

Pairwise epistasis is the influence that an alter-
ation of gene i has on the phenotypic consequences
of a subsequent alteration of gene j (Wagner et al.,
’98). This definition of epistasis captures the ge-
netic control of variability. In RNA, low plasticity
coincides with low variability, maintained by the
fixation of epistatic interactions that buffer the phe-
notype against mutations. Remarkably, epistatic
interactions in RNA can eliminate variability al-
most completely. This phenomenon, which we call
“neutral confinement,” contributes to the evolu-
tionary lock-in mentioned earlier.

Analytical models built on a stylized version of
plastogenetic congruence predict that, for certain
parameter regimes, the mutation rate needed to
escape this exploration catastrophe is so high as
to result in the loss of the dominant phenotype
(error catastrophe). We discuss this issue in sec-
tions 4 and 5.

The RNA folding genotype–phenotype map en-
ables not only an exploration of evolutionary
dynamics but also a characterization of the
morphological endpoints of evolution. In section
5 we compare three classes of sequences that
share the same dominant (that is, minimum free
energy) structure. One set is derived from a ran-
dom sample of sequences with the given domi-
nant structure, another set has evolved on a
neutral network (see section 1.3), and the third
set results from genetic assimilation under the
plastic genotype–phenotype map. The charac-
teristic which best distinguishes among the
three classes is modularity. We study modular-
ity of shape characters from a variety of per-
spectives, all contributing to a definition and
quantification of modular traits as “transpos-
able characters” that maintain their structural

integrity in different sequence and environmental
contexts. Although the three classes share the same
minimum free energy structure, that structure is
not even remotely modular on the random se-
quences while it is extremely modular on sequences
that have experienced genetic assimilation.

Genetic assimilation leaves us with sequences
that possess modular shapes and are at the same
time evolutionarily locked in. This seems to con-
tradict the hypothesized evolutionary advantage
of modularity: modularity partitions quantitative
traits into independently and easily evolvable
units (Wagner and Altenberg, ’96). While modu-
larity may indeed facilitate the quantitative pol-
ishing of a trait, it leads to an evolutionary lock-in
with respect to significant structural modifications
of that trait. Resistance to structural change is
the hallmark of a module. Once modules are avail-
able, the generation of further evolutionary nov-
elty (or plasticity) then may shift from locked-in
modules to the combinatorial arrangement of mod-
ules into new units.

1. RNA FOLDING AS A GENOTYPE–
PHENOTYPE MAP

1.1. Why RNA?
RNA combines genotype and phenotype into a

single molecule. This makes RNA folding in many
respects a limited, but also a simple, model of a
genotype–phenotype map. As a model system, RNA
has the advantages of both computational tracta-
bility (Waterman, ’95) and suitability as a substrate
for test tube evolution experiments (Joyce, ’89;
Landweber, ’99). The RNA sequence–structure re-
lation also occupies a rare intermediate level of ab-
straction bridging the empirical and the formal.
RNA folding algorithms are sufficiently realistic for
computational discoveries to suggest worthwhile
empirical investigations. At the same time, RNA
folding is sufficiently abstract to provide insight
and to suggest axioms for the construction of sim-
plified models that are analytically tractable.

1.2. Secondary structure
RNA molecules are heteropolymers of (predomi-

nantly) four units called ribonucleotides. Ribo-
nucleotides have a ribose phosphate in common
but differ in the base attached to the sugar. The
essence of an RNA sequence is therefore captured
by a string over a four letter alphabet, each letter
representing a particular base: A for adenine, U
for uracil, C for cytosine, and G for guanine. Hy-
drogen bonds give rise to stereoselective recogni-
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tion between certain base pairs, specifically A·U
and G·C. This base pairing enables an RNA se-
quence to be copied into a negative and back again
into a positive. The pairing is not always exact.
Error rates depend on the molecular machinery
that assists in pairing and ligating the bases. For
example, the per nucleotide error rate is 7 × 10–5

to 2.7 × 10–4 for Influenza and 3 × 10–4 for Coliph-
age Qβ (Eigen et al., 1989). In this way, base pair-
ing enables heredity in RNA viruses. We therefore
treat an RNA sequence as a genotype. The same
base pairing mechanism, however, also enables
segments of a sequence to pair with other seg-
ments within the same sequence, causing it to fold
back on itself into a three-dimensional structure.
(For the formation of an intramolecular structure
G·U is also an admissible pair.) This structure con-
veys chemical behavior to the sequence and con-
stitutes its phenotype.

The rapid replication time and simplicity of the
phenotype make RNA a tractable laboratory
model. RNA molecules can be evolved in the test
tube using a variety of techniques for amplifica-
tion, variation, and selection. Evolutionary opti-
mization of RNA properties in the test tube occurs
readily and effectively (Mills et al., ’67; Spiegel-
man, ’71; Ellington and Szostak, ’90; Tuerk and
Gold, ’90; Beaudry and Joyce, ’92; Bartel and
Szostak, ’93; Ellington, ’94; Ekland et al., ’95;
Landweber and Pokrovskaya, ’99). For a recent
review see Landweber (’99).

Molecular structure in RNA can be character-
ized at many levels of resolution. One empirically
well-established notion is the secondary structure,
which is the topology of binary contacts as they
result from base pairing (Figure 1). The second-
ary structure is a useful abstraction, since the pat-
tern of base pairs provides both a geometric and
thermodynamic scaffold for the tertiary structure
of the molecule. This puts the secondary struc-
ture in correspondence with some functional prop-
erties of the tertiary structure.

A secondary structure on a sequence of length
n can be represented as a graph of base pair con-
tacts (Fig. 1). The nodes of the graph stand for
bases at positions i = 1,...,n along the sequence.
The set of edges includes the unspecific covalent
backbone connecting node i with node i + 1, for i
= 1,...,n – 1, and those indicating pairings between
non-adjacent positions. The set of such non-adja-
cent pairings P has to satisfy two conditions: (i)
every edge in P connects a node to at most one
other node, and (ii) if both i < j and k < l are in P,
then i < k < j implies that i < l < j. Failure to

meet condition (ii) results in pseudoknots which
are interactions that belong to the next—the ter-
tiary—level of structure. Both conditions distin-
guish RNA structure from protein structure, in
particular condition (i) which builds RNA second-
ary structure exclusively from binary contacts. We
use a picture of the graph (Fig. 1) as the visually
most immediate representation of a secondary
structure. We sometimes use a more convenient
line-oriented representation of nested parenthe-
ses, such as “((((.(((...))).(((...))).)))),” in which a dot
stands for an unpaired position, and a pair of
matching parentheses indicates positions that pair
with one another.

The elements of a secondary structure graph are
certain types of cycles or loops, see Fig. 1. Two
contiguous base pairs constitute the smallest loop.
We make the reasonable assumption that the over-
all energy of a secondary structure is the sum of
its loop energies. These have been measured and
tabulated (Freier et al., ’86; Turner et al., ’88; Jae-
ger et al., ’89; He et al., ’91) as a function of loop
size and delimiting base pairs. A stack of base

Fig. 1. RNA secondary structure graph. A secondary struc-
ture is a graph consisting of structural elements called cycles
or loops: a hairpin loop occurs when one base pair encloses a
number of unpaired positions, a stack consists of two base
pairs with no unpaired positions, while an interior loop has
two base pairs enclosing unpaired positions. An internal loop
is called a bulge if either side has no unpaired positions. Fi-
nally, multiloops are loops delimited by more than two base
pairs. A position that does not belong to any loop type is called
external, such as free ends or joints. Components are shape
features delimited by external bases.



246 L. ANCEL AND W. FONTANA

pairs—a double-stranded region of several contigu-
ous base pairs—is the major stabilizing element.
The formation of an energetically favorable stack-
ing region, however, implies the formation of an
energetically unfavorable loop constraining un-
paired bases (for example, a hairpin loop). This
“frustrated” energetics leads to a vast combinato-
rics of stack and loop arrangements constituting
the structural repertoire of an individual RNA se-
quence. RNA is an excellent model system for se-
quence–structure relations in biopolymers
precisely because of our ability to rapidly compute
the set of all structures realized by a sequence.
In particular, we use dynamic programming to
compute the minimum free energy secondary
structure and statistical mechanics quantities,
such as the partition function (Nussinov et al.,
’78; Waterman and Smith, ’78; Nussinov and
Jacobson, ’80; Zuker and Stiegler, ’81; Zuker and
Sankoff, ’84; McCaskill, ’90). The work in this pa-
per makes use of the Vienna RNA folding pack-
age (Hofacker et al., ’94–’98), a state-of-the-art
library of utilities and RNA folding programs rou-
tinely applied in the laboratory.

1.3 Robust properties of RNA folding
RNA folding algorithms vary considerably in the

accuracy of secondary structure predictions for in-
dividual instances (Huynen et al., ’97). Our main
concern, however, is with statistical properties of
the sequence to structure map as a whole, rather
than with specific cases. We review two statisti-
cal descriptions of the RNA folding map: typical
shapes and neutral networks (Fontana et al.,
’93a,b; Schuster et al., ’94; Grüner et al., ’96a,b).

Sequence space and shape space are both very
high dimensional, and the sequence space is sub-
stantially larger than the shape space. Analytical
tools developed in Stein and Waterman (’78) yield
an upper bound of only Sn = 1.48 × n–3/2 1.85n

shapes vis-à-vis 4n sequences, where n is the se-
quence length (Hofacker et al., ’99). The mapping
from sequences to minimum free energy shapes
is significantly many-to-one.

Typical shapes
Relatively few shapes are realized with very

high frequency, contrasting many rarely occurring
shapes. More precisely, as sequence length goes
to infinity, the fraction of such “typical shapes”
tends to zero (their number grows nevertheless
exponentially), while the fraction of sequences
folding into them tends to one. Consider a numeri-
cal example: In the space of GC-only sequences of

length n = 30, 1.07 × 109 sequences fold into
218,820 shapes; 22,718 shapes (10.4%) are typi-
cal in the sense of being formed more frequently
than the average number of sequences per shape,
and 93.4% of all sequences fold into these 10.4%
shapes (Grüner et al., ’96a,b; Schuster, ’97).

Neutrality and neutral networks
Many sequences have the same (typical) shape

α as their minimum free energy structure. We call
such sequences “neutral” with respect to a. A
structure a thereby identifies an equivalence class
of sequences. A one-error mutant of a sequence
that shares the same minimum free energy struc-
ture as that sequence is called a “neutral neigh-
bor.” By “neutrality” of a sequence we mean the
fraction of its 3n one-error mutants that are neu-
tral neighbors. This notion of neutrality pertains
to the minimum free energy structures of RNA
sequences, and should not be confused with fit-
ness-based neutrality.

Any given sequence has a significant fraction
of neutral neighbors, and the same holds for these
neighbors. In this way, jumping from neighbor to
neighbor, we can map an extensive mutationally
connected network of sequences that fold into the
same minimum free energy structure (Schuster
et al., ’94; Reidys et al., ’97). We termed such net-
works “neutral networks” (Schuster et al., ’94).
The ability to change a sequence while preserv-
ing the phenotype is critical for evolutionary dy-
namics. The role of neutrality has been typically
viewed as a conservative one, buffering the phe-
notypic effects of mutations. Neutrality, however,
also enables phenotypic change, because it per-
mits phenotypically silent mutations to influence
the phenotypic consequences of other mutations.

The boundary of a neutral network is the set
of sequences that differ by one mutation from a
sequence in the network, but are not themselves
contained in the network. Transitions between
structures are transitions between adjacent neu-
tral networks. This suggests a measure of near-
ness between RNA structures based on the
fraction of common boundary shared between
their corresponding networks in sequence space
(Fontana and Schuster, ’98a,b), rather than on
shape similarity. RNA shape space is then orga-
nized by an accessibility relation based on the ad-
jacency of neutral networks in genotype space.
Such a topology enables a formal definition of con-
tinuous and discontinuous phenotypic change in-
dependently of fitness criteria (Fontana and
Schuster, ’98a). Figure 2 describes the RNA shape
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transformations that are discontinuous in this ac-
cessibility sense.

1.4. Plasticity in RNA
Plasticity is the genetic determination of a range

of phenotypic possibilities, where the realized phe-
notype depends on the environmental context of
the organism. If the environment is relatively con-
sistent or the trait is fixed in development, then
plasticity may only be evident over several gen-
erations. In other cases, a plastic individual may

change phenotypes during its lifetime through
learning or by reacting to environmental stimuli.
For a single RNA molecule, unspecific contact with
a heat bath triggers transitions between molecu-
lar configurations, provided the energy barriers
between configurations are sufficiently low. The
range of configurations realized by an RNA mol-
ecule at a constant temperature depends on the
energies of the configurations. The kinetic process
of folding into the minimum free energy configu-
ration is the RNA analogue of development. Ran-

Fig. 2. Continuous and discontinuous RNA shape trans-
formations. The figure illustrates transformations between
RNA secondary structure motifs. Solid (dashed) arrows indi-
cate continuous (discontinuous) transformations in the to-
pology of Fontana and Schuster (’98). Three groups of
transformations are shown. Top: The loss and formation of
a base pair adjacent to a stack are both continuous. Middle:
The opening of a constrained stack (e.g., closing a multiloop)
is continuous while its creation is discontinuous. This reflects

the fact that the formation of a long stack upon mutation of
a single position is a highly improbable event, whereas the
unzipping of a random stack is likely to occur as soon as a
mutation blocks one of its base pairs. Bottom: Generalized
shifts are discontinuous transformations in which one or both
strands of a stack slide past one another, ending up with or
without an overlap. Accordingly, generalized shifts are divided
into the four classes shown.
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dom transitions between kinetically accessible
structures that are energetically close to the mini-
mum free energy configuration are an unavoid-
able consequence of the stochasticity of molecular
motion, akin to “developmental noise.”

A microscopic kinetic folding model for RNA has
been developed recently (Flamm et al., ’99), but
at present it is too involved for the goals of this
paper. Instead, we exploit an extension of the stan-
dard thermodynamic minimum free energy fold-
ing algorithm which permits the computation of
all secondary structures within some energy range
above the minimum free energy (Wuchty et al.,
’99). This suboptimal folding algorithm yields fast
access to the low-energy portion of the secondary
structure space of a given sequence. We neglect
energy barriers and assume that a sequence
equilibrates among all structures whose free en-
ergy is within 5kT from the minimum free en-
ergy configuration. The 5kT choice amounts to
approximately 3 kcal at 37°C and corresponds to
the loss of two G·C/C·G stacking interactions. Un-
der thermodynamic equilibration, the Boltzmann
probability of a structure σ, exp(–∆Gσ/kT)/Z, cor-
responds to the overall fraction of time that the
molecule spends in σ, where ∆Gσ is the free en-
ergy of structure σ, k is the Boltzmann constant,
T the absolute temperature, and Z = Στ exp(–∆Gτ/
kT), the partition function. The latter is computed
by an algorithm described in McCaskill (’90).

This defines a genotype–phenotype map that
takes a sequence to a set of structures and their
occupation times. We shall refer to this map as
the “plastic map,” to distinguish it from the
“simple map” where a sequence is associated with
its minimum free energy structure only (Fig. 3).

Under natural selection toward a target struc-
ture (section 2), the obvious advantage for a plas-
tic sequence that covers a broad spectrum of
structures is the increased likelihood that some
of them are structurally similar to the target. As
pointed out in Scheiner (’93) the cost of plasticity
may be in terms of maintaining the cellular ma-
chinery required for plasticity, rather than the di-
rect impact on fitness due to the realization of a
particular plastic trait. In the stripped down world
of RNA there is no such machinery beyond the
molecule itself. Yet, the cost of plasticity is evi-
dent: the broader the range of structures, the less
time the sequence will spend in any one of them.
Thus, even if some structures constitute an im-
provement, this can easily be undermined by a
small occupancy time. Incidentally, this is analo-
gous to Schmalhausen’s argument (’49) that one

cost of plasticity is given by “erroneous” pheno-
typic changes (Ancel, ’99a). The erroneous changes
in RNA are residencies in detrimental structures.

Biologists have drawn a distinction between
two kinds of plasticity: phenotypic plasticity
proper often refers to beneficial responses to
macroenvironmental variation, while environ-
mental variance refers to flexible responses to
microenvironmental parameters (Waddington,
’57; Gavrilets and Hastings, ’94). Our work in
RNA considers the latter. A given sequence as-
sumes a range of structures in response to its
microenvironment—energy fluctuations at a
constant temperature.

1.5. Epistasis in RNA
Epistasis is the extent to which the phenotypic

consequences of a mutation at position i depend
on the genetic background provided by the re-
maining sequence. One common estimate for the
epistasis of a genome measures the deviation of
pairwise gene interactions from additivity (Wag-
ner et al., ’98).

Some epistatic interactions increase the neutral-
ity of a sequence by making mutations at other
sites inconsequential. Consider the sequence
and its minimum free energy structure at the
center of Fig. 4. We call a sequence position
“neutral” if at least one out of three possible
mutations at that locus leave the structure in-
variant. The neutral positions, like the one la-
beled x, are marked with grey bullets. The
neutral mutation from C to G at position x
yields the (same) structure shown at the top
left of Fig. 4. The “+” symbols indicate positions
that have become neutral as a result of this
mutation, while the “–” symbol marks a posi-
tion that has lost its neutrality. This illustrates
that even if a point mutation does not affect
the structure, it can alter the extent of neu-
trality across the sequence. Epistasis as the ge-
netic control of neutrality plays an important role
in the evolutionary dynamics we describe in sec-
tion 2.

1.6. Neutrality: a note in terminology
In section 1.3 two sequences are called “neu-

tral” if they share the same minimum free en-
ergy structure. The term neutral, however, may
be used to indicate equal fitness. Under the simple
map, the phenotype of an RNA sequence is just
its minimum free energy structure (Fig. 3). In this
case, neutrality with respect to minimum free en-
ergy structures implies neutrality with respect to
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both phenotype and fitness. Under the plastic
map, however, the phenotype of an RNA sequence
is a repertoire of energetically favorable struc-
tures. In this case, neutrality with respect to mini-
mum free energy structure is not equivalent to
neutrality with respect to phenotype or fitness.
Two sequences that share a minimum free energy
structure, will differ in their remaining repertoire.
Nevertheless, we maintain the use of minimum

free energy neutrality for two reasons. First, it is
relevant to the phenotype of sequences under the
plastic map, as they spend a majority of time in
the minimum free energy structure. Second, evo-
lutionary dynamics under the simple map—which
constitute our baseline for comparison—have his-
torically been characterized by this notion (Huy-
nen et al., ’96; Fontana and Schuster, ’98a; Reidys
et al., ’98).

Fig. 3. Genotype–phenotype maps. The lower part illus-
trates the simple map that takes a sequence to its minimum
free energy structure as the only phenotype. The upper part
schematizes the plastic map that takes a sequence to the ther-
modynamic spectrum of shapes within 5kT (typically T =
310.15 K). If shape σ has free energy ∆Gs, the sequence is

assumed to spend a fraction of time in s that is given by its
Boltzmann factor, exp(–∆Gs/kT)/Z (values indicated on the
left). The minimum free energy structure is the dominant
phenotype, in the sense that the sequence spends the largest
fraction of time in it.
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2. SIMULATED EVOLUTION IN PLASTIC
AND NON-PLASTIC RNA POPULATIONS

2.1. Model setup
In this section we describe simulations of evolv-

ing RNA populations. Under the simple genotype–
phenotype map (section 1.4) a sequence S has a
single minimum free energy structure σ0 as its
phenotype. To determine the fitness of S, we com-
pare s0 to a prespecified target structure t.

This fitness function is motivated by an experi-
mental protocol in which RNA sequences are
evolved, for example, to optimally bind a ligand.
RNA sequences are artificially selected by run-
ning the RNA sample through a column that has
the ligand tethered to the filling material. The de-
sirable portion of the sample remains bound in
the column and is eluted by a solvent with suit-
able ionic strength (Ellington and Szostak, ’90;
Tuerk and Gold, ’90). The selected portion is then

subject to a further cycle of evolution by amplifi-
cation through replication at a controlled error
rate. The evolutionary end product is typically
unpredictable in the laboratory situation. Its pos-
sible shape(s) are, however, implicitly specified by
the choice of the ligand, like a simple lock speci-
fies its key. We are not seeking RNA shapes with
particular chemical properties, since little is
known about the link between an RNA structure
and its binding properties or catalytic behaviors.
Instead, we specify the optimal shape directly at
the outset, shortcutting the role of ligands in the
laboratory. We then study the evolutionary dynam-
ics, the evolutionary histories, and the thermody-
namic properties of evolved sequences.

We define the selective value f(s) of shape s as
a hyperbolic function of the Hamming distance
d(s,t) between the parenthesized representations
(section 1.2) of σ and the target t:

Fig. 4. Epistasis.
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where n is the length of the sequence. The results
reported here are robust to changes in the func-
tional form of the selective value. In particular, they
also hold under linear and exponential forms.

The fitness rj of a sequence Sj is its replication
rate constant, and for the non-plastic case we sim-
ply take it to be:

= 0( ).j
jr f σ (2)

Our population evolves in a model chemical flow
reactor whose outflow is regulated to maintain a
nearly constant total sequence population size
(Eigen, ’71). The entire system is simulated in
terms of continuous time stochastic chemical re-
action kinetics. [For a description see Fontana and
Schuster (’87) and Huynen et al. (’96); for a gen-
eral simulation technique see Gillespie (’76, ’77).]
The number of replication events per time unit in
the flow reactor depends on the replication rate
constants of the individual sequences comprising
a population, and changes over time as the popu-
lation evolves to larger rate constants. When com-
paring different runs, we therefore plot statistics
along replication events rather than the time
shown by an external clock.

Point mutations are the sole source of genetic
variation in our simulations. Unless otherwise
stated, the replication accuracy per nucleotide po-
sition is 0.999, the sequence length is 76 (which
corresponds to a short tRNA sequence), and the
reactor capacity is 1,000 sequences. Simulations
begin with a homogenous population of a ran-
domly generated sequence species.

The plastic fitness function is a simple exten-
sion of the one above. For a sequence Sj, we con-
sider all of its suboptimal structures s i

j whose free
energy E(s i

j) is within an interval of size ∆ above
the minimum free energy E(s 0

j). The s i
j are indexed

with increasing energy, where index 0 refers to the
ground state, and the set of all suboptimal struc-
tures accessible within [E(s 0

j), E(s 0
j) + ∆] is denoted

with σj(∆). Unless otherwise specified, ∆ = 5kT,
where T is the absolute temperature, which is fixed
at 310.15 K (37°C), and k is the Boltzmann con-
stant, k = 1.98717 × 10–3 kcal/K. Thus, ∆ = 3.08
kcal. The macroscopic environment of our model
consists in the target shape t and the temperature
T. Throughout this paper we only consider fixed t
and T.

The selective value of a suboptimal structure

s i
j is given by f (s i

j) (eq. 1), exactly as in the non-
plastic case. For a plastic sequence, however, s i

j

contributes this value to the overall fitness of the
sequence in proportion to the time the sequence
spends in it. In the laboratory, a sequence flow-
ing through the selection column will switch
among its alternative structures, such that each
structure contributes to the overall binding prob-
ability of the sequence in proportion to its Boltz-
mann factor. Hence,
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where Z is the partition function. Here we assume
that a sequence achieves thermodynamic equali-
bration among its alternative structures. High-en-
ergy barriers between the structures, however, may
render this assumption kinetically unrealistic on
time scales shorter than the experiment. Our un-
derstanding of the kinetic process of RNA folding
is too immature at present to assess this claim.

2.2. Discussion of sample runs
RNA shape space topology is invariant to
plasticity

Figures 5 and 6 juxtapose the progress of a simple
and a plastic population that evolve toward a tRNA
target shape. We will denote population averages
with –·$. The black curves trace –d(s 0

j,t)$, the aver-
age distance between the target and the minimum
free energy shapes realized by the sequences in
the population.

The plastic and simple populations exhibit quali-
tatively similar behavior: initial relaxation followed
by punctuated dynamics. Steps toward the target
shape correspond to difficult transformations from
one dominant shape to another. Recall from sec-
tion 1.3 that the difficulty of discovering minimum
free energy shapes through mutation is indepen-
dent of the fitness assigned to shapes. An evolu-
tionary transformation of one shape into another
corresponds to a transition between their neutral
networks in sequence space. In the simulations,
flat periods correspond to populations that are
mutationally isolated from higher fitness pheno-
types and are genetically diffusing along a shape-
neutral network or along several shape-neutral
networks that are fitness-neutral with respect to
each other. Steps, or difficult shape transforma-
tions, are transitions between neutral networks
with a small common border. Such shape trans-
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formations involve the simultaneous shift of sev-
eral base pairings in a single mutational event.

The gray curves in Figs. 5 and 6 monitor
–d(s j,t)$, the population average of the
weighted shape distance. For any given sequence,
–d(s j,t)$ is the Boltzmann weighted average dis-

tance between its suboptimal shapes and the
target:

∈ ∆
= −∑
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j j
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j j j
i id d E kT

Z σ σ
σ σ τ σt (4)

Fig. 5. Evolution under plastic and simple genotype–phe-
notype maps (example 1). These graphs depict the evolution
of the population average of the distance between the mini-
mum free energy structures in the population and the target
(a), as well as the average weighted shape distance to target
(b). (See text for definitions.) The inset magnifies the trajec-

tories through the first few million replication events. In the
plastic case, fitness improvements correspond to transitions
manifest in the average weighted distance to the target. The
target is a tRNA cloverleaf structure, the population size is
logistically constrained to fluctuate around 1,000 sequences,
and the replication accuracy is 0.999 per position.

Fig. 6. Evolution under plastic and simple genotype–phenotype maps (example 2). See
caption to Fig. 5.
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In the plastic case, –d(s 0
j,t)$ dictates the trajec-

tory of –d(s j,t)$. The minimum free energy
structure of a sequence S is usually closer to
the target than any other suboptimal structure
of S. When this is the case, the Boltzmann
weighted average distance to target over all
suboptimals, not just those within s j(∆), would
necessarily be larger than the average mini-
mum free energy distance to target, –d(so

j,t)$.
But –d(s j,t)$, which considers only the shapes
in s j(∆), remains less than –d(s 0

j,t)$. This indi-
cates that the suboptimal structures are not much
worse than the minimum free energy structure
or that their probabilities are relatively small. Be-
low we show that both of these factors play a role.
This is in contrast to the statistics for evolution
under the simple map where the –d(s j,t)$ fluctu-
ates wildly at values much higher than –d(s 0

j,t)$.

No Baldwin expediting effect
Figures 5 and 6 represent the outcomes of a

large set of similar simulations: evolution proceeds
much more slowly under the plastic map, and
plastic populations never approach the target as
closely as do simple populations, which often at-
tain the target. We defer the explanation of this
striking contrast until section 3.

Here we take issue with a generalization often
drawn from the Hinton and Nowlan class of mod-
els (Hinton and Nowlan, ’87; Maynard-Smith, ’87)
that phenotypic plasticity expedites evolution by
effectively smoothing the fitness function. More
specifically, they claim that plastic individuals
scan a wider range of phenotypes, and therefore
have a better chance of locating advantageous
ones than non-plastic individuals who are blind
to other possibilities. Plasticity will accelerate ge-
netic evolution, however, only if the phenotypes
realized through plasticity correspond to the phe-
notypes that can be reached through mutation. In
section 3 we show that such a correlation exists in
RNA (plastogenetic congruence), and that it ulti-
mately leads populations into an evolutionary dead-
end. In this section, we counter the claim that
plasticity speeds up the early stages of the evolu-
tionary process. On average, plasticity does not
shorten the early periods of stasis preceding phe-
notypic innovations. To see this, we compare the
early evolutionary trajectories under the plastic
map and the simple map (see the inset of Fig. 5,
which magnifies the first few million replications).

Recent work specifies the restrictive population-
genetic conditions for a Baldwin expediting effect
(Ancel, ’99b). In the present case, the absence of

an expediting effect results from features intrin-
sic to the RNA genotype–phenotype map. Consider
the evolutionary transition from a structure α to
a higher fitness structure b. The simple popula-
tion must wait for a mutation that takes a se-
quence from minimum free energy structure a to
minimum free energy structure b. In the plastic
population, this transition may be mediated by a
sequence that has minimum free energy structure
a and suboptimal structure b. Call this sequence
S. The opportunity to encounter b as a subopti-
mal may expedite the production of a mutant
with minimum free energy structure b, if there
is a correlation between the suboptimal struc-
tures of a sequence and the minimum free en-
ergy structures produced through mutations on
that sequence.

Assume that b is difficult to access from α in
the shape space topology sensu Fontana and
Schuster (’98a) (section 1.3). This is typically the
case at the major phenotypic transitions in the
simulations. We claim that the discovery of indi-
vidual S under the plastic map is approximately
as unlikely as the first appearance of an individual
with b as its minimum free energy shape in a non-
plastic population dominated by a. That is, plas-
ticity does not significantly expedite the search
for a higher fitness structure.

First we note that the individual S is always
possible in principle. If we relax conditions by ask-
ing if there is a sequence S′ that can assume both
shapes a and b irrespective of their energies, that
is, dropping the requirements that b is in the 5kT
band and a is the minimum free energy struc-
ture, then such a sequence S′ exists for any choice
of a and b. This was proved by Reidys et al. (’97).
A sequence is said to be compatible with a struc-
ture if it can form that structure, regardless of
where it ranks energetically. A given structure α,
then, determines a set consisting in all sequences
compatible with a. Our individual S′ must there-
fore be an element of the intersection between the
compatibility set of a and the compatibility set of
b. The theorem of Reidys et al. (’97) states that
the intersection of any two compatibility sets is
non-empty.

One can compute the size of these intersections
Weber (’97). Figure 7 provides a nontechnical il-
lustration. A sequence is compatible with a struc-
ture α if positions that are supposed to pair in α
are occupied by nucleotides that are actually able
to pair. Satisfying two structures at once entails
additional constraints. If the two structures are
“independent,” meaning that positions that pair
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in one structure are distinct from positions pair-
ing in the other, the constraints simply add up.
If, however, the two structures are non-indepen-
dent, additional constraints arise because certain

positions must now satisfy two pairings simulta-
neously, and, depending on how the two structures
are related, such constraints propagate along
chains of dependencies. The constraints on nucle-
otides for a sequence that must satisfy two par-
ticular structures increase with the number and
length of such chains. The most severe constraints
arise from structure pairs that differ in shifts and
their generalization (see Figs. 2 and 7). These
highly constrained sequences are precisely those
that enable the difficult shape transformations in
the accessibility topology of Fontana and Schuster
(’98a,b). These transformations correspond to the
evolutionary steps of Figs. 5 and 6. Plasticity ex-
pedites these transformations only after the popu-
lation finds these highly constrained sequences,
that is, the intersection of the compatibility sets
of a and b. Yet, the difficult transformations cor-
respond to the smallest overlap regions. These re-
gions are, in essence, as hard to find as the
boundary between the neutral networks of a and
b. The benefit gained once the population is in
the overlap regions is negligible compared to the
time required to find these regions in the first
place. The search for these regions is made even
more challenging by the requirement that the in-
termediary sequence must not only be compatible
with a and b, but it must have α as its minimum
free energy structure and b within 5kT. There-
fore, if the transformation from a to b is hard to
achieve in the simple case, it is approximately as
difficult to achieve in the plastic case. In this way,
the failure of plasticity to expedite the discovery
of new structures stems from the organization of
the RNA genotype–phenotype map.

Environmental canalization (reduction
of plasticity)

In Fig. 8 we monitor the time course of five
population plasticity statistics for the plastic case.
We discuss three of them here. Curve i in Fig. 8
shows the average fraction of the partition func-
tion realized within 5kT, which is

∈ ∆
= −∑

( )

1 exp( ( ) / ).
j j
i

j j
iz E kT

Z σ σ
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This indicates the total probability of the struc-
tures in 5kT relative to all structures attainable
by sequence Sj, that is, how much of the partition
function is accounted for by the 5kT neighborhood
of the minimum free energy structure. Curve iv
shows the average number of structures realized

Fig. 7. Satisfying two structures at once (after Weber ’97).
Top: Two structures that differ in a “shift”—a transforma-
tion in which one strand slides past the other (see Fig. 2).
Middle: The same structures represented as circles with the
base pairs drawn as chords. Bottom: The two circles super-
imposed to illustrate the additional constraints on a sequence
that arise from having to satisfy both structures simulta-
neously. Position 1 must have a nucleotide that can pair with
both position 13 and 12. But the nucleotide choices at 12 must
take into account its complementarity to position 2 as well,
and so on until the end of this chain is reached at position 9.
Any such chain can be satisfied, and hence there exists at
least one sequence compatible with any two structures. [A
secondary structure can be thought of as a permutation act-
ing on sequence positions. For example, the permutation cor-
responding to the structure on the left specifies that positions
{5, 6, 7, 8, 9} are fixed points, and that 4 is assigned to 10, 10
to 4, 3 to 11, 11 to 3, etc. The two permutations correspond-
ing to the two structures generate a dihedral group, and the
chain of constraints in the bottom circle is one orbit obtained
by the action of this group on the sequence positions (Reidys
and Stadler, ’96; Reidys et al., ’97).]
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in 5kT, –|s j(∆)|$, while curve v tracks the aver-
age structure variance, –var s j(∆)$, with

∆ = −
22

0 0var ( ) ( , ) ( , ) ,j j j j j
i id dσ σ σ σ σ (6)

where the bar indicates an average over the struc-
tures in s j(∆). In eq. (6) we make use of the fact
that the notion of variance can be generalized to
sets (here of structures) for which a mean does

not exist, but for which one can compute pairwise
distances between the elements. Finally var s j(∆)
conveys information about the structural diver-
sity in the plastic repertoire of sequence Sj, while
|s j(∆)|simply counts the structures. These are
three quantitative measures of RNA plasticity. We
juxtapose these to adaptive events indicated by
the evolutionary trajectories (curves vi and vii).

After an initial period, –|s j(∆)|$ levels off to be-
tween 126 and 254 structures for the simple case

Fig. 8. Plastic evolution. The time evolution of five
plasticity statistics (i–v) are shown in conjunction with
the major shape transitions (curves vi and vii). See text

for the definitions of the quantities monitored. The inset
enlarges a population-level Simpson–Baldwin effect dis-
cussed in the text.
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(not shown). In contrast, the plastic curve (iv) at-
tains much lower, fairly constant levels of about
30, 13, and 20 structures. This shows a popula-
tion-wide reduced plasticity compared to the
simple case and the initial condition (204 struc-
tures in 5kT). The loss of plasticity occurs very
rapidly. The reduction is also evidenced by the av-
erage fraction of the partition function, –z j

$ (curve
i), which rapidly climbs to 0.9 and settles at 0.95,
while the simple case remains in the range [0.65,
0.75] (not shown). The structure variance, curve
v (range in the plastic case [7, 15], versus range
in the simple case [46, 92]), indicates that alter-
native structures in the 5kT band become more
similar to the ground state.

Transitions between evolutionary epochs are
marked by dashes running vertically through all
graphs. The dynamics surrounding a transition
break down into four episodes: (a) the population
is dominated by a structure with no indications
of a better structure; (b) a sequence with a better
suboptimal structure arises and dominates the
population; (c) natural selection favors mutations
that move that structure to the minimum free en-
ergy; (d) it then favors subsequent mutations that
stabilize the new minimum free energy structure
by eliminating variation in the remaining plastic
repertoire. As described above, populations spend
long periods of time in stage a. Stage b is rapid
and typically does not transpire at the population
level. Stage c, during which the new structure has
become the minimum free energy structure but
has not yet been stabilized, is well-illustrated by
the dip in –z j$ immediately after transitions 2, 3,
and 6 in Fig. 8. The subsequent rapid assimila-
tion to pre-transition levels reflects the stage d.
We see even more dramatic evidence for the fourth
stage at the beginning of the evolutionary trajec-
tory, immediately after transition 1, with the drop
in the number of structures within 5kT, –|s j(∆)|$

(curve iv) in Fig. 8.

Example of a population-level Simpson–
Baldwin effect

The four episodes surrounding transitions con-
stitute the Simpson–Baldwin effect. As discussed
in the Introduction, there is a discovery phase
(stages a and b) and an assimilation phase (stages
c and d). Transitions 4 and 5 in Fig. 8 are some-
what unique in that the entire Simpson–Baldwin
effect is manifested at the population-level, al-
though not strictly chronologically. At transition
4, a new advantageous sequence species S with a
suboptimal structure b that is closer to the target

than its minimum free energy shape α begins to
invade the population. After 106 replication events
the first sequences S′ appear with b as their mini-
mum free energy structure. The population retains
a, however, as a frequent suboptimal shape with
high Boltzmann weight. Mutation shifts around
weights between a and b. Although a is selectively
worse than b, this can be offset by a higher
Boltzmann probability. Shape a thereby succeeds
in remaining the most prevalent minimum free
energy structure. This shows up as a discrepancy
between the population averages of the weighted
distance to target (curve vii), –d(s j, t)$, and the
distance based only on the minimum free energy
structures (curve vi), –d(s 0

j, t)$; see the enlarged
inset at the bottom of Fig. 8. Upon 2 × 105 further
replications, sequences with β as the minimum
free energy structure take over the population,
and –d(s 0

j, t)$ consequently drops toward –d(s j,t)$.
The situation reverses, however, as Boltzmann
probabilities shift again. After 6.5 × 105 replica-
tions, b disappears completely as a minimum free
energy structure and is observed only as a subop-
timal. Finally, 3 × 105 replications later the final
transition back to sequences with b as minimum
free energy structure occurs, accompanied by a
realignment of –d(s j,t)$ with –d(s 0

j, t)$. The plot of
–zj$ indicates a significant subsequent reduction
in plasticity that stabilizes b (label “f” in graph i
of Fig. 8). In terms of minimum free energy struc-
tures, events 4 and 5 taken together constitute one
single transition that occurs in two stages. Event 4
marks the onset of the Simpson–Baldwin discov-
ery phase which lasts until event 5 when the as-
similation phase begins. This is the only example
we encountered of both Simpson–Baldwin phases
being revealed at the population level.

2.3. Summary
A quantitative characterization of simulated RNA

evolution under the plastic and the simple geno-
type–phenotype maps, shows the following points:

• The punctuated character of the evolutionary
dynamics holds for RNA populations evolv-
ing under both the simple and the plastic
genotype–phenotype map.

• The populations evolving under the plastic
map halt evolutionary progress much farther
away from the target structure than those
evolving under the simple map.

• Plastic populations show no evolutionary
speed-up (or Baldwin expediting effect); over-
all they exhibit a strong slow-down.
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• A strong reduction in plasticity occurs in the
plastic case. The Simpson–Baldwin effect is
observed along individual founding lineages
causing the phenotypic transitions. The dis-
covery phase, however, typically occurs rap-
idly and is not evident in population-level
statistics. We observed one example of a
Simpson–Baldwin effect that was entirely ap-
parent at the macroscopic population level.

3. PLASTOGENETIC CONGRUENCE AND
NEUTRAL CONFINEMENT

3.1. Plastogenetic congruence
Section 2 demonstrates that a plastic popula-

tion evolving toward a constant target undergoes
a drastic narrowing of plastic repertoires and ul-
timately hits an evolutionary dead-end. In the cur-

rent section, we construct a causal bridge from
the loss of plasticity to the loss of evolvability by
arguing a significant correlation between the
structures available to a sequence in its plastic
repertoire and the minimum free energy struc-
tures present in the mutational vicinity of that
sequence. First we use a concrete example to pro-
vide intuition for the mechanistic underpinnings
of such a correlation. Then through statistical evi-
dence, we claim that it is a fundamental property
of the genotype–phenotype map.

The top left corner of Fig. 9 shows a short se-
quence A and its minimum free energy structure
a together with the list of all suboptimal configu-
rations within 5kT of the minimum free energy.
While the sequence spends 52% of the time in a,
its relative stability is only marginal, as it com-
petes with a number of energetically close subop-

Fig. 9. Plasticity and minimum free energy shapes of ge-
netic neighbors. The figure illustrates how the plasticity of a
sequence correlates with the minimum free energy structures
of one-error mutants. Arrows show point mutations. The mu-

tation from B to B′ involves the same nucleotide substitution
at the same position as the mutation from A to A′. The only
difference is the slight change in context due to the neutral
mutation from A to B. See text for details.
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timal structures. These alternative structures are
energetically easy to access because base pair in-
teractions holding together the stem in a are
weak. For example, the entire stem can switch
into a different position, such as in the 4th sub-
optimal configuration b.

Significantly, a’s marginal stability coincides with
an increased sensitivity to mutations. For example,
mutating a position inside a’s loop (arrow) tips the
thermodynamics in favor of b. The result is a
change in the minimum free energy structure from
a to b (upper right corner of Fig. 4).

Now consider a neutral mutation—one that does
not displace α as the minimum free energy struc-
ture—transforming A into B (lower left corner of
Fig. 4). The mutation strengthens the thermody-
namic stability of the stacking region of a. The
Boltzmann weight of a increases from 52% in se-
quence A to 88% in B. Notice that the set of alter-
native structures available to B within 5kT has
become considerably smaller compared to A. In
addition, the few alternative structures that oc-
cur with appreciable probability have become
more similar to the ground state. The relative
stability of b (which is still compatible with the
mutated sequence) has dropped by one order of
magnitude and disappeared from the set of 5kT
suboptimal structures in B. This coincides with
an increased robustness of a towards muta-
tions. In fact, the same nucleotide change that
led from A to A′, changing its minimum free
energy structure, leaves α invariant when ap-
plied to sequence B.

The upper arrow from A to A′ illustrates the cor-
relation between structures in the plastic reper-
toire and structures in the mutational vicinity. In
particular, this point mutation changes a (5kT) sub-
optimal structure into the minimum free energy
structure. It is not difficult to imagine that a se-
quence with b in its plastic repertoire is much more
likely to have a genetic neighbor with b as the mini-
mum free energy structure, then a sequence that
lacks b in its plastic repertoire. The arrows from A
to A′ and further to B′ illustrate the epistatic con-
trol of neutrality (section 1.5). This is a special case
of the correlation just described: the more time a
sequence spends in its minimum free energy struc-
ture, the higher the fraction of neutral neighbors
in its genetic vicinity.

To summarize, we call a shape s “plastically ac-
cessible” to a sequence S if s is in the plastic rep-
ertoire of S. Likewise, s is “genetically accessible”
from S, if there exists a one-error mutant S′ of S,
such that s is the minimum free energy struc-

ture of S′. The alignment of plastic accessibility
with genetic accessibility means that the set of
shapes into which a particular sequence can fold
(plastic accessibility) strongly correlates to the
minimum free energy shapes realized by its one-
error mutants (genetic accessibility). We call this
property of the genotype–phenotype map “plasto-
genetic congruence.”

The genetic accessibility of phenotypes con-
strains an evolutionary trajectory under the
simple map (Fontana and Schuster, ’98a,b). In the
plastic simulations, however, plastic accessibility,
through its alignment with genetic accessibility,
has an equally profound impact on the evolution-
ary dynamics. We return to this after a quantita-
tive demonstration of plastogenetic congruence for
the RNA folding map.

Ideally we would perform statistics on a broad
sampling of genotypes to show the extent of over-
lap between plastic repertoires and minimum free
energy structures of genetic neighbors. In lieu of
this computationally prohibitive approach, we
present three pieces of partial evidence for plasto-
genetic congruence:

1. The frequency of a structure b as a minimum
free energy structure among the one-mutant
neighbors of a sequence S is significantly
larger for sequences that have b in their plas-
tic repertoires than for sequences that do not.

2. The minimum free energy structure a of a
sequence S is present at high frequency in
the plastic repertoires of one-mutant neigh-
bors of S.

3. For any advantageous shape b in the plastic
repertoire of any sequence S, S can typically
evolve to another sequence S′ with b as its
minimum free energy structure, in only (on
average) five point mutations.

In the first approach we generate random se-
quences Sα with a particular structure a as the
minimum free energy structure [“inverse folding,”
see Hofacker et al. (’94)]. Since two sequences that
share the same minimum free energy structure
often share other suboptimal structures, this
simple procedure yields sets of sequences Sb

a that
share the same ground state α and that also have
a particular shape b in their 5kT-plastic reper-
toire. We simultaneously obtain control samples
of sequences Sa that specifically lack the shape b
from their plastic repertoire. We then compute the
minimum free energy shapes of all one-mutant
neighbors of sequences in the sample Sb

a and in
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the control sample Sa, and compare the frequen-
cies of sequences with b as the minimum free en-
ergy shape. Although a systematic exploration of
the possible shape combinations a and b is un-
feasible, Table 1 provides anecdotal evidence for
our proposition: A sequence (with minimum free
energy structure a) that has a structure b among
its 5kT suboptimals is much more likely to have
a one-error mutant with b as its minimum free
energy structure than a sequence (with minimum
free energy structure a) that lacks b among its
5kT suboptimals.

Table 1 shows ratios of likelihoods. The top
seven structures b are in the neighborhood of α
in the sense of the shape topology developed in
Fontana and Schuster (’98a,b). We are able to at-
tain larger samples for the top structures as they
appear more frequently as suboptimals of se-
quences with minimum free energy structure a.
The likelihood ratios indicate that these subopti-
mal structures are easily converted into minimum
free energy structures by a single point mutation.

The last row of Table 1 shows the only counter-
example we found when α is the tRNA cloverleaf.
We observe similar patterns for other ground
states a, and for sequence lengths other than 76.

In a second approach, we generate a sample of
sequences with minimum free energy structure α
(a “neutral set” of a), and check for the presence
of α in the plastic repertoires of sequences ob-
tained by one point mutation from the neutral set.
We search and calculate statistics over only the
one-mutant neighbors that are compatible (see
section 2.2) with α, since only these can have a
as a suboptimal in the first place. (Given a se-
quence S, the fraction of one-error mutants com-
patible with a is 1 + (nGU – 5nbp)/3n, where n is
the sequence length, nbp is the number of base
pairs in a and nGU is the number of GU pairings
that would occur when S folds into a.) While se-
quences that are compatible with a have, by defi-
nition, a among their suboptimals at some energy,
we are only interested in the limited plasticity
range of 0 ≤ ∆ ≤ 10kT from the minimum free

TABLE 1. Plastogenetic congruence I1

Ground state (a)
((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....

Suboptimal shape (b) o-ratio n-ratio

((((((...((((........)))).((((((.......)))).....(((((.......))))).)))))).... 9.0 8.0
(((((....((((........)))).(((((........)))).....(((((........)))))..))))).... 7.4 6.7
((((((...(((..........))).(((((........)))).....(((((........))))).)))))).... 6.6 4.9
.(((((...((((........)))).(((((.......))))......(((((.......))))).)))))...... 6.2 4.8
.........((((........)))).(((((........)))))......(((((.......)))))).......... 14.0 3.9
((((((...((((.......)))).(((((.......)))))......((((..........)))).)))))).... 4.0 3.3
((((((...((((.......)))).((((.........)))).....(((((.......))))).)))))))).... 3.5 2.8

(((((((....(((.......)))..(((((.......))))).....(((((........))))).)))))).... 15.8 14.0
..((((...((((........)))).(((((.......))))).....(((((........))))).))))...... 9.7 10.8
((((((...((((........)))).(((((.......))))).(...(((((........)))))))))))).... 7.5 7.5
((((((.(.((((........)))).)((((.......))))......(((((........))))).)))))).... 10.8 7.1
((((((...((((........))))..((((........))))......((((........))))).)))))).... 7.0 6.2
(((((....((((........)))).(((((.......)))))...(.(((((.......))))).)))))).... 7.3 5.7
((((((...((((.(.....))))).(((((......))))).....(((((.......))))).)))))).... 6.3 5.5
((((((....(((........)))(.(((((.......))))).)...(((((.......)))).)))))).... 7.0 4.7
((((((.(.((((.......))).(((((........))))).......((((.......)))).)))))).... 5.2 4.2
((((((...((((.(....).)))).(((((.......))))).....(((((......)))).)))))).... 2.8 3.2
((((((.(.((((.........)))).(((((......))))).....(((((......))))))))))).... 2.7 2.4
((((((.(.((((.........))))((((((......))))).....(((((......))))).))))).... 0.5 0.4
1Samples of sequences with a tRNA cloverleaf as the minimum free energy structure a (bottom line) and various structures b as suboptimal
configurations were generated as described in the test. The frequency  of b becoming the minimum free energy structure upon one point
mutation was computed for the sample of sequences having b as a suboptimal and for a control sample of sequences lacking b within a 5kT
range from a. The ratio of the former to the latter is tabulated. Two kinds of frequencies were computed: the frequency with which b occurs
as a ground state among all one-error neighbors (“occurrence frequency” and corresponding o-ratio) and the frequency with which it occurs at
least once in a 1-error neighborhood (“neighborhood frequency” and corresponding n-ratio). For example, row 1 states that the shown shape
occurs 8 times more frequently as a minimum free energy structure in the one-error neighborhood (n-ratio) of a sequence that has that shape
as a suboptimal compared to one that lacks it. The first part of the table is based on samples with more than 200 sequences with b as a
suboptimal, while the second part is based on sample sizes of more than 100 but less than 200 sequences. A given sequence can have several
suboptimal configurations listed in this table.
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energy. Structures outside this range have Boltz-
mann probabilities too low to influence fitness.
Figure 10 shows the fraction of sequences that
have a, the tRNA cloverleaf, among their subop-
timal configurations and that are located in the
compatible one-error boundary of a tRNA neutral
set. This fraction is shown as a function of the
energy interval ∆. The fraction of sequences in the
sample that have at least one one-mutant neigh-
bor with the tRNA as a suboptimal (curve i) hits
1 at only 0.6kT, while the fraction of all one-error
mutants (curve ii) is above 0.8 at 5kT, and reaches
1 at 9.6kT (for T = 37°C).

The first numerical observation demonstrates
that the occurrence of α among the plastically ac-
cessible configurations of a sequence indicates the
immediate vicinity of a’s neutral network. The sec-
ond method shows that a’s neutral network casts
a “shadow” into the energetically low lying sub-
optimal configurations realized by sequences in
its one-error compatible boundary. Together these
facts suggest that plastic accessibility and genetic
accessibility mirror each other in our RNA model.
From a biophysical point of view, this matches in-
tuition. It means that the thermodynamic stabil-
ity of a suboptimal structure a that is realized
with non-negligible probability can frequently be
improved (even to the point of making a the

ground state) by one suitably placed point muta-
tion. This occurs “positively” through mutations
in the base pairing positions of a to nucleotides
that yield better stacking energies; and through
similar modifications to mismatches at the ter-
mini of helical regions. It also occurs “negatively”
through mutations that outright eliminate ener-
getically competing structures by making the se-
quence incompatible to them. Intuitively, the
mutational stabilization of structures toward
which a sequence is already predisposed occurs
more readily than the construction of a minimum
free energy structure from scratch.

The evolutionary reduction of plasticity proceeds
if plasticity entails a fitness cost and mutation
produces similar but less plastic alternatives to
existing phenotypes. The latter relies on plasto-
genetic congruence. Figures 11 and 12 emphasize
this evolutionarily enabling function of plasto-
genetic congruence. We generate a sample of se-
quences with a given a as a 5kT suboptimal
configuration and no constraints on the minimum
free energy structure. The likelihood of obtaining
sequences with a predefined α among their 5kT
repertoires can be tuned by enriching those se-
quence segments that should fold into the stack-
ing regions of a with stabilizing GC pairs (see
inset of Fig. 11).

We let each sample sequence be the starting
point of a gradient walk. At each step of a walk,
the one-error mutant is chosen that most in-
creases the Boltzmann probability P(a) of a. Fig-
ure 11 shows the distribution of the walk lengths
until α becomes the ground state and until P(a)
cannot further be improved. The graphs at the left
of Fig. 11 confirm that there is a large probability
of making a the ground state in a single point mu-
tation. Furthermore, this one-step probability is
lower for samples that permit α to lie higher in
the energy interval ∆. The difference is one order
of magnitude as ∆ increases from 5kT to 8kT. A
higher GC content in stacking regions also in-
creases the one-step probability, since any bias to-
ward α helps its evolution to lower free energy.

As shown in Fig. 11, α usually becomes the mini-
mum free energy structure in only two to three
mutations, yet it takes many more mutations for
the thermodynamic stability P(α) to attain its lo-
cal maximum.

Figure 12 shows the distributions of P(α) when
α has become the minimum free energy structure
for the first time and when P(α) is a local maxi-
mum. Two aspects are worth noting. First, the de-
gree to which the thermodynamic sharpness of

Fig. 10. Plastogenetic congruence II. For each point in the
graph, we generate a new sample of 100 sequences with the
tRNA cloverleaf as their minimum free energy structure. All
one-error mutants were scanned for the presence of the tRNA
cloverleaf as a suboptimal configuration. The graph shows
the frequency of such sequences as a function of the energy
range ∆ that defines the plastic repertoire. Curve i refers to
the frequency with which a sequence in the sample has at
least one one-error mutant with the desired suboptimal struc-
ture (“neighborhood frequency”), while curve ii shows the “oc-
currence frequency.” See text for details.
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Fig. 12. Plastogenetic congruence III. The frequency dis-
tributions of Boltzmann probabilities for structures I and II
are shown. See Fig. 11 for details. The left set of curves shows

the Boltzmann probabilities when the structures first appear
as the ground state, and the right set shows the Boltzmann
probabilities at local optima of the gradient walk.

Fig. 11. Plastogenetic congruence III. The inset shows the
frequency with which a random sequence compatible with a
tRNA cloverleaf (structure I) has that structure among its
5kT suboptimal configurations (curve i). This frequency is
shown as a function of the fraction of GC or CG pairs in the
sequence segments that fold into the stacking regions of the
cloverleaf shape. Curve ii is the frequency with which such
sequences have structure I as a minimum free energy struc-
ture. The main graph shows the distribution of gradient walk
lengths as described in the text. There are two sets of curves,
black (left hump) and gray (right hump). The left set pertains
to walk lengths up to the first appearance of the given struc-

ture (I or II) as a minimum free energy structure. The right
set is the distribution of walk lengths until the Boltzmann prob-
ability of that structure could not be further improved. Only
walks that terminated within 100 steps are considered. Circles
pertain to structure II, ∆ = 5kT, GC fraction in helical regions
is 0.5, 1,000 distinct walks were performed of which 686 ter-
minated. Squares pertain to structure I, ∆ = 5kT, GC fraction
is 0.5, 1,000 walks of which 999 terminated. Up-triangles per-
tain to structure I, ∆ = 5kT, GC fraction is 0.33 (i.e., no bias),
916 walks of which 909 terminated. Down-triangles pertain to
structure I, ∆ = 8kT, GC fraction is 0.33 (i.e., no bias), 322
walks of which 322 terminated.
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tRNA structures (for example) can be improved
is large. Second, the final P(α) distribution is much
narrower and the average P(α) attained is sub-
stantially closer to 1 for a tRNA structure (I) than
for another structure (II) chosen randomly. Only
68% of the gradient walks found within 11 steps
a sequence with the shape II as the minimum free
energy structure. This suggests structure depen-
dent limits to canalization.

In sum, this third perspective on plastogenetic
congruence looks beyond the one-error neighbor-
hood. If a conversion of a suboptimal shape into a
minimum free energy structure cannot be achieved
in a single step, it can occur gradually, over several
steps. Once a structure has become the ground
state, there is still room for a significant reduction
of plasticity.

3.2. Evolutionary downside of
plastogenetic congruence

We have seen that plastogenetic congruence en-
ables genetic assimilation, in that mutations eas-
ily move a good structure from a minor position
in a plastic repertoire to the minimum free en-
ergy position. There is, however, a flip side to
plastogenetic congruence. When the reduction of
plasticity is linked to the reduction in genetic vari-
ability, plastogenetic congruence stalls evolution.

We now consider the neutrality of the sequences
obtained through our gradient walks. Recall that
neutrality is the fraction of single base mutations
that preserve the minimum free energy structure.
The top graph of Fig. 13 shows four examples of
gradient walks, chosen for their diversity of ap-
proaches to a local optimum. The walk criterion op-
timizes the Boltzmann probability of the structure
depicted at the bottom of Fig. 13. (This structure
dominated the population when the evolutionary
process of Fig. 6, section 2.2, became trapped.) The
bottom part of Fig. 13 shows the concurrent changes
in neutrality along these same gradient walks. First
a structure descends to the minimum free energy
configuration, and the neutrality drops to a mini-
mum. Then the neutrality increases sharply to lev-
els above 0.4. This value lies in the tail of the
distribution of neutralities for all sequences with
that minimum free energy structure (not shown).
The mean of this distribution is 0.3 (Matt Bell, per-
sonal communication, August, ’99). Note that the
fraction of one-error neighbors compatible with the
shown structure is approximately 0.55. (The exact
compatibility fraction depends on the U content of a
sequence.) One walk (up-triangles) approaches but
does not sustain this upper bound for neutrality.

After the desired structure has moved into the
minimum free energy position, point mutations
that increase its Boltzmann probability typically
also increase the neutrality of the sequence. These
changes have an epistatic effect of the kind we
define in section 1.5 and Fig. 4.

Recall that neutrality indicates robustness to
genetic modification and the Boltzmann probabil-
ity of the minimum free energy structure indicates
robustness to thermodynamic perturbation. As
such, we conclude that genetic canalization occurs
in tandem with environmental canalization. In
these walks and in our full-blown simulations, en-
vironmental canalization—the reduction of plas-
ticity—is the directly selected response to selection

Fig. 13. Gradient walks in plastogenetic space. Gradi-
ent walks are generated by moving from the current se-
quence to its one-error mutant that most improves the
Boltzmann probability of a prespecified structure. Walks be-
gin with sequences that have that structure within their
5kT plastic repertoire. Top: Progress profiles along sample
walks. Bottom: Concurrent development of neutrality (frac-
tion of one-error mutants with the same minimum free en-
ergy structure) along these walks.
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in a population. Genetic canalization, however, is
not an adaptation. It is instead a byproduct of en-
vironmental canalization, to which it is linked by
common genetic underpinnings. The possibility
that environmental and genetic canalization share
a genetic basis which might account for the evo-
lution of canalization was recently hypothesized
by Wagner et al. (’97). Our study of the evolution
of plasticity in RNA provides a mechanistic real-
ization for this hypothesis.

Figures 14 and 15 provide support for the simul-
taneous drops in plasticity and evolvability. The first
of these figures illustrates the surprising extent of
plasticity reduction in RNA. It compares the den-
sity of structural states of three sequences that have
been obtained through different processes but that
share the same minimum free energy structure. The
common minimum free energy shape is the charac-
teristic shape α found at the dead-end of the evolu-
tionary process depicted in Fig. 6 (section 2).

The random sequence obtained by inverse fold-
ing α (Hofacker et al., ’94) has 574 different struc-
tures within 3 kcal of a. It spends only 3% of the
time in α, and the combined probability of the 574
alternative configurations accounts for only 58%
of the partition function. The different configura-
tions cover a wide range of structural diversity.

The second sequence is the product of evolution
under the simple map. We inoculated a simulated
flow reactor with the aforementioned inverse
folded sequence, and specified its minimum free
energy structure a as the target structure. This
leaves no room for phenotypic improvement. De-
spite the absence of direct selection pressure on
the well-definition of the ground state, we observe
a reduction of plasticity by one order of magni-
tude. In van Nimwegen et al. (’99a), we learn that
a population evolving on a neutral network under
the simple map will concentrate on sequences with
higher than average neutrality (see Figs. 15 and
18). Because mutations off the neutral network
yield, on average, much lower fitness phenotypes,
there is indirect selection against sequences in the
neutral network that have a high fraction of one-
error mutants off the network, i.e., low neutral-
ity. This is a second order effect that depends on
the probability of deleterious mutation. Similar
observations were made with a model of genetic
regulatory networks by A. Wagner (’96). The
evolved sequences that have become mutationally
more robust also exhibit a correspondingly lower
plasticity. This is a manifestation of plastogenetic
congruence, which is (weakly) effective even un-
der the simple map.

The last sequence in Fig. 14 is evolved under
the plastic map where reduced plasticity is the
direct consequence of natural selection. The size
of the plastic repertoire decreases by another or-
der of magnitude to only four structures in addi-
tion to the ground state which is occupied 67% of
the time. If the molecule equilibrates over all its
states, it spends 94% of its time in these five con-
figurations that are highly similar to each other.

Figure 15 shows the neutral positions of these
sequences. We call a position neutral if at least one
mutation at that position leaves the minimum free
energy structure unchanged. Figure 15 additionally
includes three sequences obtained similarly for the
structural end point in the evolutionary process of
Fig. 5, section 2. For the structures on the left, the
neutrality of the sequences increases from 0.184 for
the random sequence to 0.412 for the neutrally
evolved sequence to 0.456 for the canalized se-
quences. Similarly on the left, the neutrality in-
creases from 0.158 to 0.311 to 0.430 from top to
bottom. The neutral coverage in the canalized case
is almost perfect. That is, a position will tend to be
neutral if it permits a mutation that does not de-
stroy the compatibility of the sequence with its mini-
mum free energy structure. The intermediate
neutrality of the neutrally evolved sequences reflects
the second-order selection for increased neutrality
under the simple map as discussed above. The fur-
ther increase in neutrality that occurs under the
plastic map is a side effect of the sharp reduction
in plasticity.

3.3. Neutral confinement
Plastogenetic congruence provides both the

mechanism for an evolutionary reduction of plas-
ticity and the link between this reduction and the
ultimate evolutionary dead-end. Plasticity is costly
because more structures in the plastic repertoire
implies less time spent in any one. Plastogenetic
congruence enables populations to reduce these
fitness costs through genetic assimilation—the
movement of an advantageous suboptimal struc-
ture to the minimum free energy structure, and
subsequent reduction in plasticity. At the same
time, plastogenetic congruence causes a loss in
variability. In this section we closely examine the
extent to which populations end up genetically iso-
lated from phenotypic novelty.

Figure 16 compares the frequency distribution
of neutralities at the end of the plastic simula-
tions depicted in Figs. 5 and 6 (filled circles) and
the corresponding simple runs (down-triangles).
(The data represented by squares are discussed
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below.) Again, the neutrality of a sequence is the
fraction of its one-error mutants that share its
minimum free energy structure. It indicates the
lack of phenotypic variability of the sequence. The
plastic population evolves to a distribution of neu-
tralities with a much higher average and lower
kurtosis than that of the non-plastic population.

Sequences with high neutrality have only a small
proportion of distinct phenotypes in their mutational
vicinities, and are therefore unlikely to mutate to-
wards a higher fitness phenotype. Furthermore, we
argue that the minimum free energy structures of
the few non-neutral neighbors offer little phenotypic
diversity, making the discovery of novel advanta-

geous mutants even more unprobable. High neu-
trality correlates with high structural similarity be-
tween the ground state structure and the other
configurations in the plastic repertoire (Wuchty et
al., ’99). By plastogenetic congruence, this comes to
mean that a one-error mutant of a low-plasticity
sequence either folds into the same minimum free
energy structure (neutrality) or into a structure that
is very similar to it. Very similar here means that
the structures differ slightly with respect to stack
lengths or loop sizes. As a consequence, the discov-
ery of new advantageous shapes is considerably
slowed down and eventually halted. We say the
population is “neutrally confined.”

Fig. 14. Density of states in 5kT. The structural density
of states is shown for three sequences that have been ob-
tained by inverse folding, neutral evolution under the simple
map, and canalization under the plastic map. All three se-
quences have the same ground state. For the first two se-
quences, we present a few sample structures with their energy
on the right hand scale. We display the complete repertoire
of the third sequence. The gray boxes indicate many non-
displayed structural states.
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Highly neutral regions of a neutral network ap-
pear to be wide-spread and connected (Matt Bell,
personal communication). Genetic diversification,
therefore, still occurs within these regions. Yet the
extent of genetic variation is insufficient to pro-
duce difficult shape transformations, such as a
shift or the de novo creation of a stack (Fig. 2).

Neutral confinement in RNA seems independent
of the mutation rate. We simulate evolution on a
neutral network by starting a population with se-
quences that have the designated target structure
as their minimum free energy structure. Figure
17 depicts such simulations that use the struc-
ture shown at the top of Fig. 16 as both the start-

Fig. 15. Neutral positions. The emphasized positions are
those with at least one neutral nucleotide substitution. We
highlight these neutral positions for inverse folded, neutrally

evolved, and canalized sequences on two minimum free en-
ergy structures.

ing minimum free energy shape and the target.
Figure 17 monitors the fraction of sequences with
that structure as a function of the replication ac-
curacy per position. This is done for two values of
the superiority (see caption for Fig. 17) and for
both the plastic and the simple map. The pheno-
typic error threshold (Huynen et al., ’96; Reidys
et al., ’98) is the replication accuracy at which that
minimum free energy structure is lost from the
population. At the same time we monitor the av-
erage neutrality of sequences with that structure.
The independence of the average neutrality from
error rate and superiority was predicted for the
simple case by van Nimwegen et al. (’99a). In the
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Fig. 16. Neutral confinement. We measure the neutrality
of each sequence species in the population support and plot a
frequency distribution. This just means that each sequence
type is weighted the same, irrespective of its frequency in
the population. Frequency-weighted plots look similar, with
more dramatic high-neutrality peaks and a subdued low-neu-
trality spectrum. Top: Populations pertaining to the simula-
tion of Fig. 6. Filled circles: population support neutrality
after 4.2 × 106 replications under the plastic map (the struc-
ture shown in the inset dominates). Down-triangles: neutral-

ity at the end of the simple run (Fig. 6) with the simple map.
Squares: neutrality of a population that has evolved for 5.6
× 106 replications from the one underlying the filled-circle
data when plasticity was switched off. Bottom: Similar analy-
sis for populations pertaining to the simulation shown in Fig.
5. Filled circles: with plasticity after 30 × 106 replications.
Down triangles: simple run without plasticity after 32 × 106

replications. Squares: evolved from the filled-circle data for
4.4 × 106 replications with plasticity switched off.
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plastic case, however, the independence is rather
unexpected. In section 4 we present formal mod-
els of evolution under the plastic map. They pre-
dict a shift in the equilibrium distribution from
high neutrality (of neutral confinement) to lower
neutrality at a mutation rate higher than the er-
ror threshold. This suggests that as the mutation
rate increases, the population goes directly from
neutral confinement into falling completely off the
neutral network (error catastrophe).

To summarize, we have demonstrated that

plastogenetic congruence plays three critical roles.
First it enables the genetic assimilation of subop-
timal shapes into ground states. Second it facili-
tates the reduction of plasticity. This occurs under
stabilizing selection following a transition, in the
early periods of apparent stasis when the geneti-
cally accessible phenotypes are either neutral or
of lower fitness. Third, during this reduction,
plastogenetic congruence yields the advance to-
wards sequences with low phenotypic variability—
sequences in an evolutionary dead-end.

3.4. Fitness landscape perspective
Our analysis repeatedly appeals to neutrality

with respect to minimum free energy structures.
Under the simple map from genotype to minimum
free energy structure, such neutral networks are
also invariant with respect to phenotype and fit-
ness. Plasticity adds texture to these neutral net-
works in terms of both phenotype and fitness. Two
sequences that share a minimum free energy struc-
ture will have divergent structures in their remain-
ing plastic repertoires, and hence different fitnesses.
As discussed in section 1.6, we nevertheless con-
tinue to refer to such networks as neutral.

When populations of plastic sequences arrive at
an evolutionary dead-end, they are confined to the
most neutral recesses of a neutral network. These
regions correspond to local fitness maxima under
the plastic map. One might therefore argue, that
these dynamics can be solely conceived in terms
of evolution toward a local fitness optimum. We
counter that the ruggedness of the fitness func-
tion that results from the plastic map is remark-
able by virtue of plastogenetic congruence.

The fitness peaks at which plastic populations
come to rest correspond not just to good phenotypes
(that is, repertoires with a stable minimum free en-
ergy structure close to the target), but also to re-
gions that are mutationally isolated. Plastogenetic
congruence means that the set of genotypes with
highest fitness in a neutral network are mutation-
ally highly interconnected with very small bound-
aries (if any) with other neutral networks.

Consider a fitness function in which a randomly
chosen connected sub-network of a neutral net-
work was assigned high fitness relative to the rest
of the network. We assert that a population evolv-
ing under such a fitness function is much less
likely to be trapped than a population evolving
under our plastic fitness function. Arbitrarily cho-
sen fitness peaks of this kind will not suffer the
mutational buffering induced by plastogenetic con-
gruence.

Fig. 17. Neutrality as a function of replication accuracy.
Populations were obtained by neutral evolution with differ-
ent replication accuracies on the structure α shown at the
top of Fig. 16. The graphs that decay exponentially with de-
creasing replication accuracy represent the stationary fre-
quency of the target phenotype α in the population. The nearly
constant graphs monitor the average neutrality (in the popu-
lation support sense of Fig. 16; essentially the same figure
obtains when sequences are weighted by their frequency) of
the sequences on the “master network” (i.e., whose minimum
free energy configuration is the target α). The replication ac-
curacy at which the master network is lost is known as the
phenotypic error threshold (Huynen et al., ’96; Reidys et al.,
’98). For infinite populations the threshold accuracy qmin de-
pends on the average neutrality of the α-network, λα, and
the superiority of α, σα, indicating how much better the rep-
lication rate of α, rα, is with respect to the remaining pheno-
types in the population (Reidys et al., ’98; Schuster and
Fontana, ’99): qmin = ((1 – lasa)/(1 – la)sa)1/n with sa = ra/Sb¹a
rβxβ/(1 – xa), where xb is the fraction of sequences with ground
state β. In the plastic case, rα is not constant, since different
sequences with α as a ground state will have different sub-
optimal configurations. We replace ra by the average over
such sequences in the population. The graphs for the plastic
case always dominate those of the simple case (higher neu-
trality and hence lower threshold accuracy). Filled circles:
neutral evolution at superiority 10. Down-triangles: neutral
evolution at superiority 1.5. Solid curves are linear regres-
sions and exponential fits. Note the near constancy of the
population neutrality in the plastic case regardless of the su-
periority and error rate.
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3.5. Relationship to work in protein folding
A correlation between the thermodyamic stabil-

ity of a minimum free energy structure and its
mutational robustness has been observed in lat-
tice models of protein folding (Bussemaker et
al., ’97; Vendruscolo et al., ’97; Govindarajan
and Goldstein, ’97; Bornberg-Bauer and Chan,
’99), and in RNA models (Wuchty et al., ’99).
“Thermodynamic stability” refers to the free
energy ∆G (Govindarajan and Goldstein, ’97;
Bornberg-Bauer and Chan, ’99), the thermal
stability (melting temperature) of the ground
state structure (Vendruscolo et al., ’97), or the
energy gap between it and the first excited state
(Bussemaker et al., ’97). We relate our findings
to this body of work in two respects.

Although plastogenetic congruence in RNA
implies an analogous correlation between ther-
modynamic and mutational stability, it has
broader implications. The plasticity of an RNA
molecule refers to alternative structures in the
vicinity of its ground state at constant tempera-
ture. [Bornberg-Bauer and Chan (’99) use the
term “plasticity” unconventionally to refer to
mutational (in)stability, rather than to alterna-
tive phenotypes of a single genotype in response
to the environment.] Plastogenetic congruence
states that the alternative structures available
to a given sequence are frequently found as the
minimum free energy structures of its muta-
tional neighbors. This indicates which minimum
free energy structures will be accessible through
mutation, and therefore goes beyond a correla-
tion between the thermodynamic and muta-
tional stability of the ground state. Hence we
introduce the new terminology “congruence.”

Bornberg-Bauer and Chan (’99) report that
neutral networks in protein models “center
around a single prototype sequence of maximum
mutational stability”. This is not true in RNA.
Our evolutionary simulations and numerical
studies by Matt Bell (personal communication,
August, ’99) indicate that the RNA sequences
with highest neutrality constitute extended and
connected subnetworks of neutral networks.
Furthermore, gradient walks to optimize the
Boltzmann probability of the minimum free en-
ergy structure (Fig. 13) reach maximum neutral-
ity after a dozen steps. Following this, the walks
continue to improve the thermodynamic stabil-
ity of the ground state structure while maintain-
ing constant neutrality.

4. ANALYTIC MODELS OF NEUTRAL
CONFINEMENT

4.1. Model assumptions
In this section, we discuss three simplified mod-

els of plastic RNA evolution. In each, we charac-
terize the dynamics of a plastic population in the
final stage of evolution, and derive equilibrium
conditions in terms of neutrality and fitness. The
two assumptions that make these approaches ana-
lytically tractable are (1) perfect plastogenic con-
gruence and (2) containment within a single
neutral network in which all sequences share the
same minimum free energy structure. By perfect
plastogenetic congruence, we mean that structures
accessible to a sequence through plasticity are ex-
actly those found as minimum free energy struc-
tures of sequences accessible through single
mutations. Although simulated populations typi-
cally consist of sequences from several equally fit
neutral networks, our containment assumption
simplifies the population to sequences that share
a single minimum free energy structure, while
their suboptimal structures may vary.

Recall that the plastic genotype–phenotype map
gives rise to a much more rugged fitness land-
scape than the simple map. Neutral networks of
sequences with the same minimum free energy
structure no longer share the same fitness. Rather,
the fitness of a sequence depends directly on other
structures in its plastic repertoire. Since plasto-
genetic congruence ties these structures to the
minimum free energy structures of mutational
neighbors, our simplifying assumption (1) means
that the fitness of a sequence becomes a function
of the phenotypes of its genetic neighbors. By ex-
tracting this brand of ruggedness in a simpler
framework, we demonstrate that the extreme ge-
netic isolation in RNA should come as no surprise.

Furthermore, these models provide insight into
the role of mutation. We demonstrate that the ge-
netic isolation may be such that no amount of mu-
tation can facilitate an escape. The minimum
amount of mutation necessary to produce novel
phenotypes is so great that the resulting mutants
have regressed completely from the target.

4.2. Frequency distribution within
a neutral network

Consider a population of RNA sequences with
phenotypic plasticity. A sequence can assume a
range of structures, all within an energetic neigh-
borhood of its minimum free energy structure. The
fitness of a sequence is determined by a weighted
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average of the distances between its low energy
configurations and a target structure. The as-
sumption that plasticity gives a perfect picture of
evolutionarily adjacent structures allows us to con-
strue the fitness of a sequence entirely in terms
of the fitness of its mutational neighbors:
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where Si is a sequence, a j
0 is the minimum free

energy structure of Si, N (Si) is the mutational neigh-
borhood of Si, d() determines structural distance be-
tween two shapes, f() is a monotonically decreasing
function of structural distance d(), and δm() is a
monotonically decreasing function of mutational dis-
tance. This definition is analogous to eq. (3) in sec-
tion 2. Because of perfect plastogenetic congruence,
the structures that determine the fitness of Si are
the minimum free energy structures in its muta-
tional neighborhood. The second factor in eq. (7) is
analogous to the Boltzmann probability in that it
weighs a neighboring structure with the likelihood
of reaching its sequence by mutation.

Suppose a population is concentrated on a neu-
tral network G of relatively high fitness. That is,
all sequences in G have the same minimum free
energy structure, and most one-error mutants of
these sequences that lie outside of G have rela-
tively much lower fitness. Let |G| be the num-
ber of sequences in G.

We use an approach proposed by van Nimwegen
et al. (’99a) in which G is viewed as a graph. Each
sequence corresponds to a node, and two nodes
are connected by an edge when the sequences they
represent differ by exactly one mutation. The de-
gree di of a node is the number of edges that con-
nect it to another node in G; in other words, it is
the number of single mutations that preserve the
minimum free energy structure. A node Si will
therefore have di one-error mutants in G, and 3n
– di one-error mutants that lie outside of G, where
n is the length of sequences. Assuming perfect
plastogenetic congruence, we can approximate the
fitness of an individual node Si by the average
fitness of its one mutant neighbors. We assume
fitness off of G is relatively negligible, and there-
fore ignore the fitness contributions of one-error
mutants not in G. Therefore the fitness of Si is
fdi + 0(3n – di) = fdi where f is the selective value
of the minimum free energy structure shared by
all sequences in G.

We can express the per generation change in
the frequency distribution of sequences in G with
a system of |G| equations. For any S ∈ G,
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where Ps gives the frequency of sequence S, m gives
the per sequence per generation mutation rate, n
is the length of the sequences, and w– is the aver-
age fitness of the population. Note that this for-
mulation ignores the possibility of mutations onto
G from sequences outside of G.

We now translate this system of equations into
a transition matrix M such that P→′ = M P→ where
P→ is the frequency distribution vector. Let I de-
note the identity matrix; A denote the adjacency
matrix where Aij = 1 if Si and Sj are one-error
mutants of each other and Aij = 0 otherwise; and
D denote the diagonal matrix of degrees with Dii
= di for all i and Dij = 0 for all i ≠ j. Then we
derive

((1 ) ) .
3n
µµ= − +M I A D (9)

Assume there exists a unique node c such that dc >
di for all i ≠ c. Without loss of generality, we let c =
0. Then S0 is the most neutral sequence in G with
degree d0. When m = 0, that is, there is no muta-
tion, then M = D which has a leading eigenvalue of
d0 and an associated eigenvector [1,0,0,...,0]. In the
absence of mutation then, the equilibrium popula-
tion is made up entirely of S0.

In general, the equilibrium distribution is the
solution P→ to the eigenvalue equation MP→ = lP→

where l is the leading eigenvalue of M. The re-
sulting distribution of sequences will reflect a mu-
tation–selection balance. Because we can break
our transition matrix into a diagonalizable ma-
trix and a small remainder term,
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we can use perturbation theory to get a first-or-
der approximation of the equilibrium distribution
for small m. We find that
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Recall that Aij indicates whether sequences Si and
Sj differ by a single mutation. According to this ap-
proximation, the equilibrium distribution is made
up of the most connected sequence S0 and its one-
error mutants. As m decreases, the proportion of non-
S0 sequence shrinks. Because the denominator 3n(d0
– dk) depends on dk, the frequency of a non-S0 se-
quence is an increasing function of its degree. Even
sequences with degree close to d0 will appear at
low frequency. For example, consider an Sk where
dk = d0 – 1 and the maximal µ = 0.1. Then P̂k =  0.3
d0/n, which is very small for large n.

For two simple networks, we compare the equi-
librium distribution of neutrality predicted by our
plastic model to that of the original non-plastic
model (van Nimwegen et al., ’99a). Both networks
contain 20 nodes (sequences). In the first, node 0
is connected to all 19 other nodes, and all other
nodes are only connected to 0. In the second, nodes
0–10 are connected to all other nodes while nodes
11–20 are only connected to nodes 0–10. Figure
18 graphs the equilibrium distributions for non-
plastic (dotted) and plastic (solid) populations. The
plastic populations are much more concentrated
on the nodes with highest degree.

4.3. Three-tiered model: exploration
and error thresholds

Premised on the previous model, we turn to the
role of mutation. Can mutation enable the popu-
lation to avoid the evolutionary dead-end in the
first place? Intuition suggests that an increased
mutation rate might enable populations to search
beyond their immediate genetic vicinity, into re-
gions where novel phenotypes exist. We show here,
however, that for certain parameter values there
is no mutation rate that provides such an escape.
Under low mutation rates, populations, like those
in our simulations, are confined in an “exploration
catastrophe,” yet under high mutation rates, popu-
lations are in an “error catastrophe” where they
have slipped away completely from the target.

Again consider a population that has reached a
relatively high fitness neutral network G. We break
down the population into three distinct classes, two
within the neutral network and one representing
the rest of sequence space. For any sequence Si ∈
G, the one-error mutants of Si that are also in G
are called its neutral neighbors, and the number of
such neighbors is called di, the degree of Si. Assume
that the neutral network contains a single sequence

Fig. 18. Network distributions. The equilibrium distribu-
tions for a non-plastic population (dotted) and a plastic popu-
lation (solid). In network a (left ordinate), node 1 has much
higher neutrality than all other nodes: d1 = 19 and dn = 1 for

n = 2–20. In network b (right ordinate), nodes 1–10 form a
high-neutrality subnetwork: dn = 10 for n = 1–10 and dn = 1
for n = 11–20.



PLASTICITY AND EVOLVABILITY 271

S0 with maximal connectivity d0 within G, and the
degree of all other sequences in G is d1. That is,
for any Si ∈  G where Si ≠ S0, di = d1 < d0.

We define three classes of sequences: C0 is just
the sequence S0, C1 consists of the sequences in
G – {S0}, and C2 are all sequences not contained
in G. Changes in the frequency distribution among
these classes results from a combination of muta-
tion and natural selection.

Let m be the probability of mutation per se-
quence per generation. Sequences in C0 mutate
to sequences in C1 at a rate md0/3n, where 3n is
the number of possible one-error mutants of a se-
quence. Mutations take sequences in C0 off the
network, into C2 at a rate m (1 – md0/3n). Likewise
the mutation rates from C1 to itself and to C2 are
md1/3n and m (1 – d1/3n), respectively. We ignore
back mutation of sequences in C1 to C0 and of se-
quences in C2 to either C0 or C1. We discuss the
implications of this assumption below.

The sequences in this model are again endowed
with perfect plastogenetic congruence as described
in the previous section. Every sequence has a se-
lective value which is a measure of the similarity
between the sequence’s minimum free energy
structure and a pre-determined target structure.
Sequences within G have a selective value of 1
while sequences off G have a relative selective
value of f<1. The relative fitness of a sequence in
class Ci is wi, an average of the selective values
of its one-error mutants:
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Recall that di/3n (i = 0, 1) is, for any sequence in
Ci, the fraction of its one-error mutants that also
lie within G. We construct a transition matrix T
that incorporates the effects of mutation and selec-
tion. If P→ = (P1, P2, P3) describes the occupancy of
the three classes at some time, then  P→′= TP→ gives
the frequency distribution in the next generation
where T is as follows:
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The leading eigenvector of T provides the popula-
tion equilibrium distribution. The eigensystem of
T is given by
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The subscripts of the eigenvalues and eigenvec-
tors refer to the class which dominates the distri-
bution, and not to their magnitudes. As parameter
values vary, so does the leading eigenvalue λ =
max(l0, l1, l2).

We seek parameter ranges that allow the popu-
lation to explore phenotype space. A population
concentrated in C0 will have mostly neutral mu-
tants, and therefore will be unlikely to find a
higher fitness phenotype through mutation. We
call this an exploration catastrophe. A population
lost in C2 has regressed from the higher fitness
network. This is the error catastrophe. C1 on the
other hand is a high fitness platform from which
a population can explore phenotype space for bet-
ter options. For these reasons, we say that a popu-
lation with a high concentration of C1 is below
the error threshold which moves the population
off of G, and above the exploration threshold which
contains the population in a highly inward-look-
ing subset of G.

In Fig. 19, we display equilibrium distributions
for various parameter ranges. In every case, we
set the length of the sequences to n = 100. Each
right-hand graph shows the concentration of C0
(labeled “0”), C1 (labeled “1”), and C2 (labeled “2”).
Populations dominated by C2 are above the error
threshold while populations dominated by C0 are
below the exploration threshold. On the left we
graph the eigenvalues. The topmost plane at each
point is the leading eigenvalue. Its associated
eigenvector is that which determined the frequen-
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cies in the opposing graph. Light gray, medium
gray, and dark gray represent l0, l1, and l2, re-
spectively.

The center distribution assumes neutralities of
d0/3n = 0.45 for C0 and d1/3n = 0.3 for C1. These

Fig. 19. Eigenvalues (left graphs) and equilibrium distri-
butions (right graphs). Given values for µ and f, we graph λ0,
λ1, and λ2 in light, medium, and dark gray, respectively, and

equilibrium concentrations for C0, C1, and C2 labeled as (0),
(1), and (2), respectively.

are the values we obtain from actual simulation.
The equilibrium distribution suggests that for the
low values of µ we use in simulations, the popu-
lation should be trapped on C0 in an exploration
catastrophe. This is consistent with the neutral



PLASTICITY AND EVOLVABILITY 273

confinement we find for low-plasticity sequences.
We discuss these distributions further in the next
section.

4.4. Neutrality in the subnetwork C0

In simulation, RNA populations evolve through
neutral networks that are much more complex
than the idealized C0 and C1 of the three-tiered
model. Populations move among highly intercon-
nected subnetworks of multiple structurally simi-
lar neutral networks. In this extension of the
three-tiered model, we still assume the popula-
tion converges on a single neutral network G, but
attempt a more realistic conception of the struc-
ture of G.

Suppose now that C0 is enlarged to a subnet-
work of the neutral network G in which all |C0|
sequences have degree d0. As above, the remain-
ing sequences in G occupy C1 and share degree
d1. We define two new parameters c0 and c1, which
are the fractions of neutral mutations that remain
within C0 and C1, respectively. Thus 1 – χ0 is the
fraction of neutral mutations from C0 to C1, and 1
– χ1 is the fraction from C1 to C0.

Mutation operates according to the following
table of mutation rates (Table 2). The entry in
the Ci row and Cj column is the probability that
an individual in Ci mutates into Cj in a given gen-
eration. We will use these rates in the transition
matrix.

In this case, we also consider mutations from
C1 into C0, but again we ignore mutations from
C2 into G.

As in the original formulation, fitness is the
weighted average of the selective values of the
minimum free energy structures of all one-error
mutants of a sequence. For any sequence in C0 or
C1 the total number of one-error mutants that are
also in G is still d0 or d1, respectively. Therefore
the extension of C0 to a sub-network of G does
not alter the fitnesses of the three classes.

Again we construct a transition matrix that de-

scribes flow between classes. In the following ma-
trix µij, 0 ≤ i, j ≤ 2, is the mutation rate from Ci to
Cj as given in Table 2:
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Though it still only involves a quadratic and a
linear term, the eigensystem of T′ looks more com-
plicated than that of T because T′ is not triangu-
lar, and we have added the new parameters c0
and c1. In the following analysis, we assume c0 =
c1 = c, and explore the effects of c and m on the
predicted equilibrium distributions.

Figure 20 depicts equilibrium distributions for
f = 0.9, 0.5, 0.1 from left to right. As c increases,
the equilibrium concentration of C0 increases
slightly and the frequency of C1 decreases, mak-
ing exploration even more difficult. For very larger
c, the frequency of C1 remains negligible for all m.
See for example Fig. 21.

The lower eigenvalue graphs reveal that under
the extended model, populations are always in ei-
ther the l0 phase or the λ2 phase. In the previous
model, we found three distinct regimes, each domi-
nated by a unique eigenvector. This discrepancy
arises from the role of mutation. In the first model
recall that there is no back mutation from C2 into
C0 and C1, and no back mutation from C1 to C0.
In the second model, we add mutation from C1 to
C0. A model that includes mutation in all direc-
tions among three classes would yield a single
maximum eigenvector over all of parameter space.
In the first model, we use the transitions between
leading eigenvalues to mark the phase transitions
between regimes dominated by different subsets
of the population. In the current model and the
hypothetical all-mutations model, however, tran-
sitions between such phases in the frequency dis-
tribution are difficult to identify. One innovative
approach to this problem considers finite-popula-
tion dynamics in a simplex (van Nimwegen et al.,
’99b). Here a qualitative perspective suggests that
there are parameter values for which populations
go directly from an exploration catastrophe, con-
fined to C0, to an exploration catastrophe, diffus-
ing in C2.

4.5. Exploration and error catastrophes
In both versions of the model we find param-

eter ranges for which the population is confined

TABLE 2. Mutation rates

Destination
Origin C0 C1 C2
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a slightly monotonically increasing function of c.
This implies that as the size and interconnectivity
of C0 grows, so does the likelihood of reaching an
evolutionary dead-end.

There also exist parameter ranges for which the
population is lost in C2. For specified f, n, r, and c
we can find a threshold µ above which the popu-
lation reaches such an error catastrophe. Intu-
itively, as f—the relative fitness of C2—increases,
the error threshold decreases.

These transitions are formally identical to the
well-known genotypic error threshold, denoting
the mutation rate at which a genotype with opti-
mal phenotype (“master genotype”) is lost (Eigen,
’71), and the phenotypic error threshold, denot-
ing the mutation rate at which the optimal phe-
notype is no longer maintained in the population
(Huynen et al., ’96; Reidys et al., ’98).

In the simple version of our model, the explora-
tion threshold corresponds to the genotypic error
threshold in which there is a single master se-
quence with superiority approximately w0/[d0w1/
3n + (1 – d0/3n)w2] = [d0(1 – f ) + 3nf ]/[d1d0
(1 – f )/3n + 3nf]. The genotypic error threshold
divides the low mutation rates at which the mas-
ter sequence is preserved at equilibrium from the

Fig. 20. Extended model equilibrium distributions and
eigenvalues. Given values for m and c, these display equilib-
rium concentrations for C0, C1, and C2 labeled as (0), (1), and
(2), respectively. The bottom row gives eigenvalues l0 in light

gray, l1 in medium gray, and l2 in dark gray. All graphs as-
sume n = 100, d0 = 135, and d1 = 95. From left to right, f =
0.9, 0.5, 0.1. Note that the range for m varies across graphs.

Fig. 21. Equilibrium distribution for c = 0.9. For low m,
the population is confined to C0. Around m = 0.25, the popula-
tion moves off C0 into C2, with virtually no occupancy of C1.

to C0 and therefore is unlikely to find phenotypic
novelty through mutation (exploration catastro-
phe). For given values of f, n, and c we can iden-
tify a threshold m below which the population is
in an exploration catastrophe. Generally, the ex-
ploration threshold decreases as f increases and is



PLASTICITY AND EVOLVABILITY 275

high mutation rates at which the master class is
catastrophically lost. The exploration threshold
similarly divides the low mutation rates at which
the population is confined to C0 from the high mu-
tation rates at which the population reaches C1.

What we call the error catastrophe in our simple
model is equivalent to a phenotypic error thresh-
old where the mean fraction of neutral neighbors
is approximately ν ~ d1/3n. In our extended model
both the exploration catastrophe and the error
catastrophe correspond to a phenotypic error
threshold because C0 becomes a neutral network
rather than a single sequence. Increasing the size
of C0, i.e., increasing the neutrality of C0, post-
pones the exploration threshold. A larger C0 en-
tails extended ranges of mutation rates at which
the population will be in an exploration catastro-
phe. Consequently the regions of parameter space
in which the population goes directly from an ex-
ploration catastrophe into an error catastrophe
also increase.

5. MODULARITY
Modularity is a hallmark of biological organi-

zation and an important source of evolutionary
innovation (Bonner, ’88; Wagner and Altenberg,
’96; Hartwell et al., ’99). Once it exists, modular-
ity constitutes an obvious advantage by enabling
the recombination of stable subunits into novel
phenotypes. Yet, the origin of modules remains a
problem for evolutionary biology, even in the case
of the most basic protein or RNA domains (West-
hof et al., ’96). Here we offer a possible origin for
such organization.

In section 2, we demonstrated that plasticity is
rapidly reduced by natural selection under a bio-
physically motivated fitness function that weighs
the selective value of each shape in the plastic
repertoire of a sequence by its Boltzmann prob-
ability. The reduction of plasticity has, in addi-
tion to genetic canalization, a further side effect
which is best characterized as modularity.

The point we are making in this section is, in
essence, yet another characterization of plasto-
genetic congruence in RNA: structural units that
appear autonomous from an environmental and
developmental perspective appear at the same
time autonomous from a genetic perspective. Here
the environment refers to temperature, and de-
velopment refers to the kinetic process by which
an RNA sequence folds from an open chain into
its minimum free energy structure. We show that
the evolutionarily reduction of plasticity crystal-
lizes RNA structures into environmentally, devel-
opmentally, and genetically autonomous units.

5.1. Norms of reaction: melting behavior

We view plasticity as a stochastic choice among
alternative structural states of a biopolymer in
contact with a heat bath at constant tempera-
ture. Biologists often characterize the plasticity
of a genotype using a norm of reaction. This is
typically a map from some parameter in the en-
vironment to a phenotype. The RNA plastic rep-
ertoires deviate from this standard framework
in that the relevant environmental input—
Brownian motion in a heat bath—is not easily
scaled on an axis. In this section we use a more
conventional norm of reaction: a map from tem-
perature to minimum free energy structure. The
suite of minimum free energy structures as they
change with temperature is known in biophysics
as “melting” profile. Figures 22 and 23 compare
the (computed) melting profiles of the sequences
from Fig. 15 at three levels.

First we compute the melting series, that is, the
suite of minimum free energy structures in the
temperature range from 0 to 100°C. Second we
calculate the heat capacity (at constant pressure),
labeled H in Figs. 22 and 23, from the Gibbs free
energy, G, of the ensemble of structural states by
means of the partition function Z (McCaskill, ’90):

2

2  with log ,GH T G RT Z
T

∂= − = −
∂ (21)

where R is the universal gas constant. H can be
measured empirically by differential scanning
calorimetry (DSC). DSC is widely used to deter-
mine the thermophysical properties of materials.
As a sample is heated over a range of tempera-
ture, the material starts to undergo a phase
change that releases or absorbs heat. The calo-
rimeter measures the heat flow (enthalpy change)
into or out of the sample undergoing the phase
change, thereby providing data from which the
heat capacity can be quantitatively recovered. Our
third perspective on structural transitions are the
Boltzmann probabilities as a function of tempera-
ture for each minimum free energy structure ap-
pearing in the melting series. These show that
the peaks in H correspond to major structural
phase transitions occurring at the temperature at
which the Boltzmann probabilities of the outgo-
ing and incoming structures intersect.

In Fig. 22, we compare the melting profile for
the three sequences on the left of Fig. 15. Recall
that these sequences share a common minimum
free energy structure at 37°C. The melting behav-



276 L. ANCEL AND W. FONTANA

ior of the inverse folded sequence is markedly
more disorderly than that of the neutrally evolved
and canalized sequences. Its melting series con-
sists of as many as 10 shapes. The relevant ob-
servation, however, is the absence of structural
features that rearrange locally, particularly at low
temperatures (when there is more structure). In
other words, temperature variations induce glo-
bal refoldings of the shape. Furthermore, each
structure in the melting series remains stable only
over a small temperature range. As a consequence,
the heat capacity consists of several small and
closely occurring humps.

The canalized sequence, in contrast, has a
highly localized melting behavior. We easily iden-
tify structural features that melt individually at
distinct temperatures without affecting the integ-

rity of other parts of the structure. Often, but not
always, such structural units coincide with com-
ponents in the sense of Fig. 1. The structure of
the canalized sequence is stable up to 61°C, when
the large T-like feature at the 5′ end disappears
almost entirely in a single step. Remarkably, the
other feature at the 3′ end is not affected, despite
a new open sequence segment that is now avail-
able for interaction. The 3′ feature melts at its
own transition temperature of 89°C in a single
step. The major transitions from #1 to #2 and from
#3 to #4 are well separated and marked by two
sharp peaks in the heat capacity.

The neutrally evolved sequence occupies a
middle ground. It has fewer transitions and more
highly preserved structural similarity across tran-
sitions than the inverse folded sequence, but to a

Fig. 22. Melting behavior I. Left of each graph are the
minimum free energy structures in the temperature range
0–100°C for three sequences obtained by inverse folding, neu-
tral evolution, and canalization on the same structure (Fig.

15, left). The graphs trace the temperature dependence of
the specific heat (H) and the Boltzmann probabilities of the
individual structures in the melting series.
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lesser extent than the canalized sequence. It de-
parts significantly from the canalized sequence in
its lack of independently melting features. For ex-
ample, the transition from #1 to #2, involving the
hairpin structure at the 3′ end, neither melts this
feature completely nor does it preserve some of
its subfeatures. The same holds for the structure
portion at the 5′ end.

This comparative analysis of melting behaviors
suggests one facet of “modularity”: the thermo-
physical independence of a structural trait from
other traits over a wide temperature range. Note
that this is a quite different notion of “unit” than
what is obtained from parsing a shape into struc-
tural units based on morphology alone. In fact,
all three sequences considered have the same mor-
phology at 37°C, but only the canalized sequence
is modular in the sense of thermophysically au-
tonomous units.

Figure 23 illustrates the same points. Note,
however, that the modules evidenced in Fig. 22
are larger structural assemblies than in the case
of Fig. 23.

5.2 Kinetics: modularity and funnels
A recent stochastic model of kinetic RNA fold-

ing at elementary step resolution permits the
study of folding pathways (Flamm et al., ’99). The
folding kinetics of our three sequences provides a
further perspective on modularity. The folding
pathways of RNA play a role analogous to devel-
opmental pathways of organisms.

The tree graphs in Fig. 24 represent different
organizations of the energy landscape on which
the folding process occurs. For each of our three
sequences on the left of Fig. 15 the portion of the
energy landscape shown comprises the 50 lowest
local free energy minima (courtesy Christoph

Fig. 23. Melting behavior II. See caption to Fig. 22. The 37°C ground state structure for
these sequences is the one pictured on the right of Fig. 15.
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Flamm, University of Vienna). A local minimum
corresponds to a leaf, and leaves are grouped into
basins which are further linked to one another in
a hierarchical fashion. The heights of internal
nodes represent energy barriers connecting two
local minima or their basins (Flamm et al., ’99).
In other words, the height of the lowest internal
node connecting two leaves represents the ener-
getic requirement of refolding from one structure
into the other. The lower right graph of Fig. 24
shows the distribution of folding times (first pas-
sage times from the unfolded sequence to the na-
tive structure) for these sequences.

The differences are striking. Not only does the

Fig. 24. Folding kinetics and energy landscapes. The
graph on the lower right shows the folding time distributions
for the three classes of sequences shown on the left of Fig.
15, based on a stochastic model of kinetic folding whose el-
ementary moves consist in the making, breaking and shift-
ing of a single base pair (Flamm et al., ’99). Images (1), (2),

and (3) are the inverse folded, neutrally evolved, and cana-
lized sequences, respectively. The trees depict the energy
landscape associated with each sequence in terms of the hi-
erarchical organization of barriers separating individual
states and their basins. The distance from the root (top) of
the tree represents the free energy.

canalized sequence fold much more rapidly than
the others, but it folds predominantly along one
well-defined pathway and has, therefore, one
dominant time scale. Its energy surface resembles
a funnel (Bryngelson and Wolynes, ’87; Dill and
Chan, ’97), suggesting that individual structural
units fold independently from one another. Se-
quence segments of one unit are unlikely to
crossfold with segments of other units, which
would cause traps delaying the formation of the
native structure. (There is a folding trap [not
shown], visited with low probability, that accounts
for the tail of the distribution. It is due to early
diffusion among several high-energy shapes until
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the molecule drops into the funnel and folds). In
contrast, the inverse folded sequence has an en-
ergy landscape without much structure, as well
as high barriers separating individual states. The
sequence can misfold in many ways, giving rise
to a broad distribution of folding times. The neu-
trally evolved sequence exhibits two funnels, one
of which leads to a misfold.

5.3. Context insensitivity
We used the melting behavior and the organi-

zation of the energy landscape to identify modu-
larity with respect to temperature change and
folding dynamics. We next turn to modularity as
identified through genetic perturbation.

Point mutations cause only local disruption (if
any) to the minimum free energy structure of a
low-plasticity sequence. A thermodynamically
well-defined stacking region is unlikely to unfold
completely when a point mutation knocks out a
single base pair, while a marginally stable stack-
ing region is likely to unwind, leading to a global
rearrangement of the structure. Modules buffer
against extensive rearrangements. This aspect of

modularity is similar to low pleiotropy in an
organismal context (Wagner and Altenberg, ’96).

Perhaps the most defining property of modules
is the maintenance of their structural integrity
across changing genetic contexts. We slice from
each sequence the segment st that folds into a par-
ticular structural unit t. We then paste to the left
and right of st random segments half its size and
ask whether st still folds into t despite the new
genetic embedding. The chart in Fig. 25 shows
the fraction of 1,000 such foldings that maintain
t. Indeed, canalized sequences have structural
components that are much more context indepen-
dent than inverse folded sequences. In a few cases,
neutrally evolved sequences withstand contextual
modification as well as the canalized ones.

To summarize, plastogenetic congruence states
that plasticity (the environmental variance of phe-
notype) mirrors variability (the mutational sensi-
tivity of phenotype). This section on modularity,
in essence, further elaborates this theme. Ther-
modynamic and kinetic autonomy of units, as
manifest in the norms of reaction to temperature
and the organization of the energy landscape, cor-
relates to the autonomy of those same units with
respect to changing genetic contexts. A computa-
tional analysis of naturally occurring sequences
suggests that functionally important structures
have heightened context insensitivity (Wagner and
Stadler, ’99). Recall, however, that in our simula-
tions sequences were never selected for modular-
ity, only for reduced plasticity. Direct selection
pressures for modularity may exist, but this analy-
sis demonstrates that the emergence of modular-
ity does not require them. Modularity arises, like
genetic canalization, as a byproduct of environ-
mental canalization.

6. DISCUSSION

Biological evolution changes not only the frequen-
cies of extant phenotypes, but the phenotypes them-
selves. A population genetic analysis of the fate of
innovations under natural selection provides only
a partial story that must be integrated with a
theory of phenotypic innovations (Buss, ’87).

We turn our attention to a simple but nontrivial
evolvable object: an RNA molecule. RNA provides
both a theoretically and empirically well-charac-
terized high-dimensional relation between geno-
type (sequence) and phenotype (structure). The
main algorithms for RNA folding were developed
twenty years ago (Nussinov et al., ’78; Waterman
and Smith, ’78; Zuker and Stiegler, ’81), not with
the present questions in mind but rather as a tool

Fig. 25. Context insensitivity of modules. The sequence
segments underlying the 5′ structural component (A) and the
3′ component (B) of the shapes on the left and right of Fig.
15, respectively, are embedded in random sequence contexts.
The chart shows the frequency with which the segment re-
tained its original structure if it originated in an inverse
folded, neutrally evolved, and canalized sequence.
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to assist experimentalists. This divergence of ap-
plications suggests that inscription errors (that
is, the construction of models which predetermine
the desired output) are less likely here than for
genotype–phenotype models constructed with par-
ticular definitions of epistasis, plasticity, or modu-
larity in mind.

Recent advances in RNA folding (McCaskill, ’90;
Flamm et al., ’99; Wuchty et al., ’99) enable us to
introduce and analyze a form of environment–gene
interaction which we call plasticity. The result is
a powerful model system in which concepts like
plasticity, evolvability, epistasis, and modularity
not only can be precisely defined and statistically
measured, but reveal simultaneous and pro-
foundly non-independent effects of natural selec-
tion. Although these concepts were introduced in
the study of organismal evolution, we demonstrate
that they apply to the molecular domain as well
and are optimistic that lessons from RNA may, in
turn, provide robust insight.

The secondary structure into which an RNA se-
quence folds is determined not by the primary se-
quence alone but also by environmental inputs
such as temperature and the presence of other
potentially interacting molecules. As a surrogate
for such environmental factors, we map a se-
quence to a repertoire of its thermodyanamically
most stable structures. We assume that the
Boltzmann coefficient—a variable reflecting the
thermodynamic stability of a structure relative to
all other structures within the configuration space
of a sequence—is proportional to the time that
sequence would spend in the given structure un-
der a heterogeneous environment.

The most striking outcome of our simulations
is the dramatic loss of variability that accompa-
nies the evolutionary reduction of diversity in the
plastic repertoires. Recall that variability is the
potential of a population of sequences to innovate
phenotypically. We gain a deeper understanding
of the loss of variability through two lines of in-
quiry. First we construct the causal bridge from
the assumptions of our model—point mutation, a
plastic genotype–phenotype map, and fitness
based on the average structural distance to tar-
get over all structures in a plastic repertoire—to
the observed evolutionary dead-end. Second, we
characterize in as many dimensions as possible
the typical genotype and phenotype distribution
for a steady state population evolved under the
plastic map. These two objectives are highly in-
terrelated. The link between plasticity and vari-
ability is shown by a close look at the evolving

distribution of sequences and their shape reper-
toires.

The loss of variability stems from two simple
observations:

1. The more variation in the plastic repertoire,
the less time a sequence spends in its best
structure. In this way, plasticity is costly and
is ultimately reduced by natural selection in
constant environments.

2. There is a significant overlap between the
shapes in the plastic repertoire of a sequence
and the set of minimum free energy struc-
tures of genetically proximate sequences, i.e.,
of sequences that differ from it by one muta-
tion. We call this property plastogenetic con-
gruence.

The first observation is a straightforward con-
sequence of our (biophysically motivated) plastic
fitness function. We verify the second, which rests
on the intuition that a point mutation can tip the
folding landscape of a sequence in favor of any
low-energy structure, through several statistical
assays. Phenocopies, environmentally triggered
traits that correspond to mutant phenotypes, pro-
vide evidence for the generality of plastogenetic
congruence in nature. The effects of high tempera-
ture on moth antenna morphology (Goldschmidt,
’41), of ether on Drosophila melanogaster thoracic
development (Waddington, ’42; Gibson and Hog-
ness, ’96) and of gold foil on the fibular crest in
birds (Müller, ’90) among many other environmen-
tal perturbations have been shown to mimic known
mutants or ancestral morphologies (Stearns, ’93;
Schlichting and Pigliucci, ’98). Because the alignment
between environmental variability (plasticity) and
genetic variability has met the skepticism of evo-
lutionary geneticists, it is not well-integrated into
mainstream evolutionary thinking. Our example
of the plastic RNA map illustrates its relevance to
evolutionary theory and instantiates the claim that
plastogenetic congruence is a fairly ubiquitous
property of genotype–phenotype relationships.

Under the conditions studied here, natural se-
lection reduces plasticity. Plastogenetic congruence
then implies that a drop in diversity in the plas-
tic repertoire entails a drop in the diversity of
minimum free energy structures in the one-error
neighborhood (the set of one-error mutants of a
given sequence). Natural selection on plasticity
indirectly curtails phenotypic novelty accessible
by mutation, and hence the potential to evolve.

Through idealized models of a plastic popula-
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tion, we formalize this explanation for the decline
in evolvability. These models become analytically
tractable under the assumption that the plasto-
genetic congruence is perfect. In other words, the
plastic repertoire for any given sequence is ex-
actly the set of minimum free energy structures
in the one-error neighborhood. As the fraction of
one-error mutants with identical minimum free
energy structure (neutrality) increases, the abil-
ity to evolve decreases.

The models formally connect mutation rate, the
topography of a phenotype space and evolvability.
Assuming that the population has reached a neu-
tral network relatively close to the target shape,
we identify three phases of equilibrium distribu-
tions: the exploration catastrophe, when the popu-
lation is concentrated in a highly neutral region
and so cannot access phenotypic novelty; the er-
ror catastrophe, when the population falls off the
neutral network into the rest of genotype space
with on average much lower fitness; and the ideal
phase, when the population remains in regions of
the neutral network that have mutational access
to the rest of phenotype space. The fate of the
population as mutation increases depends on the
structure of the neutral network. For some, in-
creasing mutation rate takes the population from
the exploration catastrophe through the ideal
phase to the error catastrophe. For many neutral
networks, however, the exploration threshold ex-
ceeds the error threshold. Upon increasing muta-
tion rate, a population goes immediately from an
exploration catastrophe to an error catastrophe.
Simulation suggests that this is the predicament
of our steady state RNA populations under the
plastic map.

Plastogenetic congruence is a robust statistical
feature of the RNA folding map from sequences
to secondary structures with broad population ge-
netic implications. In particular, it instantiates the
hypothesis put forward by Wagner et al. (’97) that
genetic canalization—buffering against phenotypic
effects of mutation—occurs as a byproduct of en-
vironmental canalization—the evolution of resil-
ience to environmental perturbation.

In meeting the second objective, a character-
ization of the phenotypic consequences of natu-
ral selection, we discovered a second, equally
remarkable byproduct of environmental canaliza-
tion: modularity. By modules we do not mean a
syntactical property of structures (which is trivial
in RNA) but rather autonomous components that
maintain their structural integrity across a broad
range of environmental and genetic contexts and

that lose integrity through sudden and discrete
steps without affecting the remaining structure.
Modularity manifests itself as a resistance to sus-
tained environmental or genetic perturbation, and
the dissolution of modules translates into sharp
and well separated phase transitions. In section
5, we compare thermophysical, genetic and kinetic
aspects of modularity across sequences that were
generated by different processes but share the
same minimum free energy structure. Modular-
ity appears thermophysically as distinct melting
temperatures of structural components that van-
ish upon melting, leaving an open chain segment,
rather than a different structural arrangement.
Modularity appears kinetically as a single primary
folding funnel over the configurational landscape
of a sequence. There is little probability of mis-
folding because the folding of a modular compo-
nent does not interfere with the folding of other
components. Modularity appears genetically as cas-
sette-like behavior, by which modular structural
components have a markedly increased probabil-
ity of maintaining their integrity if transplanted
into different sequence contexts. This agrees with
the principles of RNA architecture discovered
through recent crystallizations of catalytic RNAs
[e.g., Cech et al. (’94); for an overview see Westhof
et al. (’96)].

Modularity is both a manifestation of evolution-
ary lock-in, and provides the basic tool for escap-
ing it. The evolutionary stability of modules makes
them, in conjunction with their context-insensi-
tivity (transposability), natural building blocks for
constructing novelty at a higher combinatorial
level (Wagner and Altenberg, ’96). The shift to-
ward a combinatorics of modular elements to es-
cape evolutionary lock-in appears to be less of a
convenient ad hoc innovation in evolutionary pro-
cess than the only route left, once modules arise
as a byproduct of environmental canalization in
a constant environment.

Throughout this work, we hold the temperature
and target shape constant, and find an intuitive
evolutionary loss of plasticity and some surprising
corrollaries. What happens, though, when the en-
vironment is not constant? In particular, what con-
ditions favor the maintenance of plasticity? We
hope to analyze several modes of environmental
variability: temperature heterogeneity, target fluc-
tuations, and joint folds with co-occuring molecules.
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