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The claim that phenotypic plasticity speeds up evolution towards a target phenotype is a
recent incarnation of the Baldwin effect. To differentiate this theory from earlier interpreta-
tions of Baldwin’s ideas, we name it the Baldwin expediting effect. Models that demonstrate
this effect assume an extreme fitness scenario which bestows high fitness upon a single
optimal phenotype and treats all other phenotypes as equal. In two modeling frameworks, we
demonstrate that the effects of plasticity on the rate of evolution are highly dependent on the
fitness function and population starting conditions. We argue that phenotypic plasticity does
not universally facilitate evolution. Furthermore, in cases where the Baldwin expediting effect
occurs, it is not necessarily correlated with increased fitness and therefore is not sufficient to
explain the evolutionary success of plasticity.

INTRODUCTION

In the late-nineteenth century, James Mark Baldwin
and several contemporaries sought to explain super-
ficially Lamarkian phenomena through Darwinian
theory (Baldwin, 1896; Morgan, 1896; Osborn 1896).
Their mechanism of organic selection transforms an onto-
genetically acquired trait to one that is hereditary. According
to Morgan, this process, driven entirely by natural selection,
requires a particular genetic and environmental back-
ground.

[B1] Suppose a population of plastic individuals
encounters a new environment in which phenotype @ is
necessary for survival.

[B2] Only those whose heritable plasticity encom-
passes @ are able to acquire @ and thereby survive.

[B3] There is no direct transmission of @, only
transmission of heritable factors determining the range of
plasticity.

[B4] Any new heritable variants that more directly
determine @, (i.e., variants that are less plastic and
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include @ within the range of phenotypic possibility) are
favored by natural selection. Any variants that heritably
determine only nonoptimal phenotypes are weeded out.

[B5] Ultimately a heritable variant that directly
produces @ will fix in the population.

This line of thought, now called the Baldwin effect, was
recast in the mid-twentieth century in modern genetical
terminology (Simpson, 1953; Bateson, 1963; Waddington,
1942). Premised on the differentiation of germ cells from
somatic cells (Weismann, 1893), Bateson (1963) based his
rejection of pure Larmarkism on the consensus that
somatic modifications are rarely if ever communicated
back to the germline.

Waddington’s (1942) genetic assimilation mechanisti-
cally connects the acquired and subsequent inherited
versions of a trait. In general, he claims, developmental
pathways are canalized via mutations and natural
selection to produce regular and timely responses to
environmental stimuli. Genes that replace the role of
an environmental stimulus by constitutively switching
development into a preferred pathway sometimes arise.
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Since they determine the desired phenotype more reliably
than the environment, the high fitness of these alleles will
lead to their fixation. An initially environmentally-
triggered trait can thereby become genetically produced.
Waddington’s version of the Baldwin effect has been used
to explain the origin of traits ranging from ostrich
callouses to multicellularity (Waddington, 1942; Wolpert,
1994).

The transition from [B4] to [B5] presumes that
heritability has an advantage over plasticity. In other
words, the transition away from plasticity via natural
selection relies on the fitness cost of plasticity. If plasticity
increased phenotypic options with no associated costs,
then natural selection should produce maximally plastic
organisms. Since this is not the case, scientists have sought
to identify the forces that curb plasticity. Schmalhausen
(1949) cited “erroneous” phenotypic changes as one cost of
plasticity. Other potential costs include energetic require-
ments of regulation, of sensing the environment, and of
producing biological structures and genetic side effects
such as deleterious pleiotropy of genes involved in
plasticity (DeWitt er al. 1998; Schlichting and Piglicci,
1998).

If plasticity is costly, why does it occur? This is critical
to the Baldwin effect, since the process is predicated on
initial plasticity. One explanation rests on the demands
of an ever-changing environment. Several models have
demonstrated the stability of phenotypic plasticity in a
temporally or spatially fluctuating environment (Levins,
1968; Slatkin and Lande, 1996; Moran, 1992; Ancel,
1999). Even when developmental flexibility entails fitness
costs, these models demonstrate that the ability to respond
to environmental volatility has a selective advantage.

Beginning with Hinton and Nowlan, the term Baldwin
effect has been applied to a different role for phenotypic
plasticity. This incarnation of the Baldwin effect, which
we call the Baldwin expediting effect is the following
claim: Learning or, more generally, phenotypic plasticity
expedites evolution (Hinton and Nowlan, 1987). In other
words, given an optimal phenotype (which we call the
target), a population of individuals with plasticity will
evolve towards the target in fewer generations than a
population of nonplastic individuals. A series of interest-
ing models has further demonstrated this benefit of
learning (Fontanari and Meir, 1990; Ackley and
Littman, 1991; Belew and Mitchell, 1996).

In their seminal paper, Hinton and Nowlan (1987)
offer the Baldwin expediting effect as an alternative
explanation for the existence of plasticity. They write,
“The most common argument in favor of learning is that
some aspects of the environment are unpredictable, so it
is positively advantageous to leave some decisions to
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learning rather than specifying them genetically (e.g.,
Harley, 1981). This argument is clearly correct and is one
good reason for having a learning mechanism, but it
is different from the Baldwin effect which applies to
complex co-adaptations to predictable aspects of the
environment.” Implicit here is the evolutionary claim
that plasticity arose and is maintained because it
accelerates evolution. To test this proposition, one must
assess the evolutionary success of plasticity in a popula-
tion consisting of both plastic and nonplastic individuals.
The model frameworks that demonstrate the Baldwin
expediting effect, however, consider populations evolving
under plastic (or learning) genotype—phenotype maps
independent from those evolving under nonplastic (or
nonlearning) genotype—phenotype maps. We will show
that the expediting effects of plasticity sometimes occur in
regions of phenotype space where plasticity conveys
lower fitness than non plasticity. Thus the claim that the
Baldwin expediting effect underlies the presence of
plasticity seems to rely on group selection.

The Baldwin expediting effect models start with a
simple unimodal jagged fitness function (Fig. 1) and a
simple one-to-one mapping from genotype to phenotype.
They introduce plasticity (or learning) as a change in
the genotype—phenotype map. In each case, the new
genotype—phenotype map smoothes the fitness function
(Fig. 1). The Baldwin expediting effect rests on a com-
parison of populations that lie in the tails of these fitness
functions. Natural selection will favor variants in the
plastic population that lie closer to the optimum, where-
as natural selection will be ineffective in the nonplastic
population. The plastic genotype—phenotype map thereby
provides evolutionary forsight. In the words of John
Maynard Smith (1987), “finding the optimal neural set in
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FIG. 1. Plasticity smooths the fitness function: Nonplastic (dark)
vs plastic (light) fitness functions. The target phenotype here is 0.
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the absence of learning is like searching for a needle in a
haystack. With learning, it is like searching for the needle
when someone tells you when you are getting close.”

We do not take issue with the claim that (some forms
of) plasticity smooth the fitness function. This phenomenon
appears also in studies of the evolution between two fitness
peaks. Increases in phenotypic variance eliminate otherwise
uncrossable valleys (Wright, 1931; Lande, 1980; Whitlock,
1997). Rather, we claim that “smoothness” does not
necessarily translate into higher fitness or increased
evolutionary velocity.

Besides the shape of the fitness function and the smooth-
ing effects of plasticity, the Baldwin expediting effect makes
three critical assumptions which we do not address further.
Each considers evolution in a constant environment, a fit-
ness cost of plasticity that is either integrated into the
genotype-phenotype map or is imposed externally, and a
correlation between the phenotypes accessible through
plasticity and the phenotypes accessible through genetic
evolution (See Anderson, 1997, for further treatment). A
relatively stable environment is necessary for a population
to ultimately converge on the optimal phenotype through
an evolutionary reduction of plasticity. As discussed
above, numerous models have demonstrated that plasti-
city is maintained under environmental volatility. Also,
the inevitability of maximal plasticity in the absence of a
fitness cost supports the second requirement, costly plasti-
city. Finally, several authors have analyzed the third as-
sumption, termed neighborhood correlation (Mayley, 1997)
and plastogenetic congruence (Ancel and Fontana, 2000).

We will demonstrate that although the Baldwin
expediting effect occurs for a certain class of models, it is
highly dependent on the shape of the fitness function, the
formulation of plasticity, and the initial distribution of
genotypes across the population. In two modeling frame-
works we consider the rapidity of evolution towards a
target in populations with and without plasticity. The
first model, a quantitative genetics conception, treats
plasticity as a nonevolving parameter applied uniformly
across the population. We reject the Baldwin expediting
effect in this context by demonstrating that plasticity
uniformly slows evolution. The second model presents
plasticity as an evolvable attribute that entails fitness
costs. Here, the relationship between plasticity and the
rate of evolution is much more complex.

QUANTITATIVE GENETICS MODEL

The evolution of plasticity has been approached from
several mathematical perspectives including optimality
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theory, quantitative genetics, and multi-locus population
genetic theory. First we show that a simple quantitative
genetics model of plasticity precludes the Baldwin
expediting effect.

We begin with a nonplastic single-locus quantitative
genetics model. An individual is described by its genotypic
value g which maps one-to-one onto a real-valued pheno-
type ¢,. For analytical simplicity let ¢, = g € R. Its fitness is
a Gaussian function centered on an optimal phenotype g,

1

ws(g) =7
T

—(g— gon) /28
e Zopt) 7/ ,

where the variance S determines the strength of the
selection.

Plasticity increases the range of phenotypes and
thereby may reduce the distance from an individual’s
phenotype to g,,. To add plasticity to our model, then,
we can add a variance component to individual pheno-
types. Since the convolution of two normal distributions
N(0, ;) and N(O, V,) is the normal distribution
N(0, V', + V), then this is equivalent to augmenting the
variance S, which effectively weakens selection. (See, for
example, Cavalli-Sforza and Feldman, 1976 and Anderson,
1995).

Figure 2 gives two fitness maps with different plasticities.
The fitness graph for the nonplastic population is the curve
with the higher peak. Near the target phenotype, gy,
plasticity lowers fitness, while the opposite is true further
from the target. Under this model then, there is a cost to
plasticity. Far from the target, the benefits of experiencing
higher fitness phenotypes outweigh the cost of plasticity.
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FIG. 2. Plasticity smooths the quantitative genetics fitness function:
Nonplastic (light) vs plastic (dark) fitness functions.
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Near the target, however, plasticity reduces fitness and is
therefore detrimental.

We assume an initially Gaussian population genotype
frequency distribution centered at ¢, with variance V.
So the probability density of individuals with genotype g
is

1

J2Vm

Assume that discrete generations are nonoverlapping.
Then the distribution of genotypes at t = 1 can be written
as follows.

e~ (g—c)’2Vy

Jfo(g)=

_ fo®)-ws(g)
§ folg) wy(g) dg

— o!(S(g =)+ V(8 gop) D2V S

—(g—cp)?2 Voe—(8— Zopt) /28

fi(g)

For simplicity, assume g, = 0. Then

filg) oc e —(Sg2—2Sgey+ Sk + Vyg2)/2V, S
_ e—(gZ(S+ V,) — 2Sgcy + Sed) 22V S - 1/(S+ Vo)/1/(S + V)

oc e~ (&= (S/S+Vy) )22V S/(Vy + S))

(Cavalli-Sforza and Feldman, 1976 and Lande, 1980). By
similar reasoning, in general

fAg) o e (&= (S/(S+V,_y)) 6171)2/2((V,,15)/(V,,1+S)).

Now we turn to the question of the speed of evolution.
From this recursive formulation, we have expressions for
the movement of the population mean towards the target
gopt =0 and of the population variance towards 0. In
particular, the mean at time ¢ is ¢,=Sc¢,_1/(S+ V,_;)
and the variance at time ¢t is V,=V,_S/(V,_{+ ),
from which we derive the closed forms:

(75s)
c,=c
O\ + S

V,= )
tVo+S

and

We further calculate dc,/dS = cq(tV,/(1Vy + S)*) which
implies that dc,/dS has the same sign as c,, and dV,/dS
=tV3/(tVy+S)*>0. Recall that in this model an
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increase in plasticity is tantamount to an increase in S. At
any time ¢ then, increased plasticity (higher S) entails a
wider population variance and a mean genotype further
from the target. In other words, plasticity both slows
down the movement of the population mean towards the
target and hinders the convergence of the population
variance to 0.

Within this infinite-population-size, Gaussian-distri-
bution framework, the rapidity with which a population
approaches a target both varies with the initial genotypic
distribution and is always greater for a low plasticity
population than for a high plasticity population. Note
that this model differs significantly from Baldwin
expediting effect models, in that here the extent of pheno-
typic plasticity cannot evolve. It is imposed uniformly
across the population and through time. Next we describe
a model that, like earlier models, permits plasticity itself
to evolve.

NORM OF REACTION MODEL

Through a second model, we address the evolution of
plasticity more explicitly. See Ancel (1999) for a detailed
analysis of this model system. Let ®=[ —1, 1] be the
space of all phenotypes. For a nonplastic population, an
individual i is defined by a genotype g; that maps one-to-
one onto a single point phenotype p; in @. We model
plasticity by replacing the point genotype—phenotype
with a norm of reaction. In the plastic case, an individual
i is defined by a genotype that maps to an interval of
phenotypic possibilities: g; — p,=[4;, 1;] =@ where 4;
and 71, represent the lower and upper bounds of the norm
of reaction, respectively. In the following analysis, all
populations reproduce asexually. Figure 3 illustrates
nonplastic and plastic populations.

For simplicity, we consider only a finite set of pheno-
types in @. In particular, let v be the size of intervals
between phenotypes. In the following numerical analysis,
we set v=0.025. Then phenotype space consists in 41
discrete points @' = { —1, —0.975, —0.95, —0.925, ..., 1}.
Nonplastic individuals assume a fixed one of these
phenotypic values, whereas plastic individuals can
assume norms of reaction with endpoints in the subset
{—1, =095, —09, .., 1}. In this way we can compare
any individual norms of reaction to the nonplastic
phenotype lying at its midpoint. For example we can
compare p;=[ —0.4, —0.05] to the nonplastic pheno-
type p;= —0.225.

Mutations occur at a rate u per individual per genera-
tion. For nonplastic populations, a mutation to g;
changes the phenotype to either p,+v or p,—v. For
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FIG. 3. Populations in the norm of reaction model: Nonplastic
populations consist in point-valued phenotypes (top) and plastic popu-
lations consist in interval-valued norm of reactions (bottom). Each x;
represents either a point value of an individual phenotype (top) or the
range from which a phenotype is drawn (bottom).

plastic populations, mutations alter the upper and lower
bounds of the norms of reaction. Each mutation is either
an increment or a decrement to A; or 1; of size 2v for
some i. Note that such mutations shift the midpoint of a
norm of reaction by =+ v. Mutations affect the upper or
lower bounds and cause shrinking and expansion with
equal frequency as described by Table 1.

Fitness is a function of both phenotype and norm of
reaction length. For nonplastic individuals, fitness is
determined by w(p;) where w: @ - R™*. The fitness of a
comparable plastic individual is Q(p;) =max(w(p)|pe
pi)-x(1p;]) where : [0, 1] - R™ U {0} is a monotonically

TABLE 1

Mutation Rates

Old p;(p;) New p;(p;) Effect on p,(p,) Rate

Nonplastic  p; pi—V shift left Tu
Di pi+v shift right L u
Plastic  [4; Y,] [A:+2v 1] shrink tu
[A: Y1 [A:i—2v, Y] extend Lu ifA,=2,
0 if,=0
(2 Y] [4n Yi+2v]  extend  LuifY,<1—2,
0 ifr,=1
(2 X,] [4nYi—2v]  shrink  u
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decreasing function that assesses the cost of phenotypic
plasticity. In other words, we assume that plastic
individuals will settle on the most fit phenotype within
their norms of reaction and that this flexibility is costly
in terms that increase with the size of the norm of
reaction.

THE EXTREME CASE

First we treat the extreme fitness scenario found in the
Baldwin expediting effect models. Consider the fitness
landscape depicted in Fig. 4A where

w( )—{I—HC i p=Popis
PI= otherwise.

A single optimal phenotype, in this case p,, = 0, enjoys
relative fitness 1 4 x while all others have relative fitness
of 1. Figure 4B displays the comparable fitness function
for a plastic population given by

(1+K)~<1—|2p|> i pop €0,

2—1p|
2

Q(p)=

otherwise.

where p is a norm of reaction.

The cost of plasticity, namely multiplication by 1 — %,
increases with norm of reaction length. In the extremes:
a norm of reaction containing a single point will have a
plasticity factor of 1 — 9= 1 which imposes no cost and a
maximal norm of reaction containing the entire pheno-
type space will have a plasticity factor of 1 —3 =0 which
yields an overall fitness of zero. See Fig. 5 for an illustra-
tion of this fitness function.

The evolutionary trajectory of a nonplastic population
towards the optimal phenotype breaks down into two
episodes:

[NPI] The finite population moves at random
through phenotype space until an individual mutates to
the optimal type.

[NP2] At that point the lineage of the optimal
individual will rapidly come to dominate the population.

Through a two-part analysis we can approximate these
times for a finite population. We label the time taken in
[NP1] and [ NP2], 75p; and 7,p,, respectively.

If we assume that the population starts with a normal
distribution of genotypes, then we can track movement



312

(A)
2 -
1.5
fitness 1
0.5
0 -0.5 0 0.5 1
phenotype
(B)
&
%
SS8S
1.5 ISSSSSS
SR ,
fitness 1 83

77

""iil'l";‘.l‘,

R

-0.5
lower bound

FIG. 4. Plasticity smooths the extreme norm of reaction fitness
function: (A) Nonplastic vs (B) plastic fitness functions (right). In this
case, kx=1. The x- and y-axes indicate phenotype and the z-axis
represents fitness. The phenotype of a nonplastic individual is the
average of the x-value and the y-value. The norm of reaction for
the associated plastic individual has the x-value as a lower bound and
the y-value as an upper bound.

through phenotype space via the evolution of the distri-
bution variance. Let X'={x,, x5, X3, .., Xy} represent
the population, where each x, denotes an individual
genotype. Individuals in the population move as inde-
pendent identical unbiased random walks.

If no individual has the optimal phenotype, then fitness
will be constant across the population, and individuals will

—  Q(p)=02-0472=08

Q(p,) = (14K)((2-0.8)/2) = (1+%)0.6

f T T T T T T T T T 1

-1 -08 popt 04 02 0 02 04 06 08 1

/

Optimal Phenotype

FIG. 5. Fitness of two plastic individuals: One norm of reaction con-
tains p,,, (bottom line) and the other does not (top line).
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have equal probability of representation in the next
generation. We model the transition of genotypes with
the simplifying assumption that all lineages are main-
tained in subsequent generations. For a given i, the
genotype x; will either be transmitted unchanged to the
next generation or mutate with probability x. Let b be a
random variable describing the per generation changes in
genotype where

v with probability % ,
b=<0 with probability 1 — x, and

v with probabilityg.
We find the expectation and variance of b:

E(b)=v-'%+0~(1—,u)—v-'%=0

V(b) =[E(b)]* — E(b%) = E(b?)

2

=(v)2'%—|—02-(1—,u)+(—v)2 -

(SRS

Consider x;, an individual genotype at generation 7.
Then x;  =x;+ b represents the genotype of the lineage
at time ¢+ 1. We use this formulation to compute the
changes in the variance and expectation of the x,’s
through time.

E(xt+l) ZE()C,+b) :E(xt) +E(b)

E(xt) = e(xt) = E(xo)

V(x,+b)=V(x,)+ V(b)+2Couv(b, x,)
V(x,)+ V(b)

V(x,51)

since the x; and b are independent. Continuing,
V(x, 1) =V(x,)+Vu=V(x,)=V(xg) + v
Now we derive the time until the first individual mutates

to the optimal genotype. The frequency of optimal
individuals in the population at generation ¢ is given by

"~ o 1 2
fr(popt) Zfr(o) = . ¢ (Ex)I/2Vx,)
2nV(x,)
_ 1 o — EC0)Y/2(V(xg) + (V)
V21(V(xg)) + 1 v
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FIG. 6. Times from previous equilibrium to first encounter with
the new optimal phenotype: (A) Nonplastic 7 p, and (B) plastic 7.

For a population of size N, the time until the first
encounter with p,, is the minimum time 7z such that
S popt) > ~- For example, if a population with N = 1000,
1 =0.1, and v = 0.05 begins with E(x,) = —0.5 and V(x,)
=0.01, then the time until the first optimal phenotype
arises is approximately 7, = 88 generations. Figure 6(A)
graphs 7., for initial variances V(x,)e [0.001, 0.01]
and initial means E(x,)e[ —1, —0.5].

The second evolutionary episode consists of the newly
optimal lineage overtaking the population. We estimate
the timing of this transition. Let the variable O, be the
frequency of individuals in the optimal class at time ¢
since the first encounter with p,,, and let R,=1-0,
be the frequency of the remaining population at time .
Then O,y = O Pop) /(09 Po) + RW(x # pogy)) =
O,(1+x)/(0O,(1+k)+ R,1)), and similarly R, , =R,/
(O(1+x)+R,). These yield the ratio O,,,/R,, =
O,(1 +k)/R,, and therefore O,/R,=(0,/Ry)(1 +k)'=
(1/(N—1))(1+ k)", since the optimal lineage begins with
a single individual. Neglecting mutation, the time until
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all individuals are optimal is approximately 7yp,=
log N(N —1)/log(1 +x) which depends only on the
population size and the relative fitness of the optimal
type. For N = 1000 and x =2, that is, optimal individuals
are three times as fit as nonoptimal individuals, 7yp, =
19.9 generations. For N = 10* and N = 10° the times from
[NP1] until [NP2] are only 7yp, =26.5 and tp, =
33.2, respectively. Note that the search time, 7,p;, is
approximately three times longer than the convergence
time, T p,.

The effect of plasticity on the fitness map is to give
direction to the evolving population as illustrated in
Fig. 4. Norms of reaction containing the optimum have
higher fitness than those that do not. For optimum-con-
taining norms of reaction, fitness increases as the size of
the norm of reaction decreases. In this model, the evolu-
tion of a plastic population towards a target occurs in
three stages:

[P1] The population wanders in phenotype space
until a single individual has a norm of reaction that
contains the optimal phenotype.

[P2] Once the individual encounters the optimum,
its lineage will quickly dominate the population.

[P3] Selection will narrow the norms of reaction
around the optimum.

We use 7py, Tpy, and 7p5 to denote the timing of
each evolutionary episode. A detailed analysis of these
processes appears in an earlier paper and is omitted here
(Ancel, 1999). (Belew (1990) presents a comparable dis-
section of the Hinton and Nowlan model dynamics.) It is
only during the first stage, finding the optimum, that
plasticity expedites the evolutionary trajectory. Figure
6A displays the time until a plastic population first
encounters a new optimum given the mean and variance
of the initial normal distribution. A comparison with
Figure 6B illustrates an early expediting effect of
plasticity.

When we consider the latter stages of evolution to the
target, however, the plastic population is slower than the
nonplastic population. Large norms of reaction are more
likely to contain the optimal phenotype than small
norms of reaction. The first individual to have the
optimal phenotype within its norm of reaction is there-
fore probably an individual with a large norm of reaction
relative to the rest of the population. Importing the
analysis of the nonplastic population, we find 7p,=
log N(N —1)/log(22(0)/Q2(R)) where (O) is the estimated
fitness of the optimal lineage and Q(R) is the average fitness
of the remaining population (Ancel, 1999). Because norm
of reaction length is costly and the optimal lineage
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endures a larger plasticity cost than the average of the
remaining population, then Q(0O)/Q(R)=(1+ x)
(2—=1po)/(2—=1pgrl) > 1+ K, which implies that 7 yp, =
log N(N —1)/log(1 +x) <log N(N —1)/log(Q(0)/
Q(R))=1p,.

The final step, [ P3] is a burden for the plastic popula-
tion alone. We find that 7,5 decreases as the cost of
plasticity increases and as the mutation rate increases
(Ancel, 1999). In this model, plastic populations always
spend less time in [ P1 ] than comparable nonplastic pop-
ulations spend in [ NP1]. Yet they spend more time in
[P2] than the nonplastic population spends in [ NP2].
Overall, plasticity will only expedite evolutionif 7y p; — 7 p;
> (Tpa+Tp3) —Typa, In other words, if the relative
rapidity of the initial search outweighs the subsequent
impediments to convergence on the new phenotype.
Hence there is a paradox: a high cost to plasticity
expedites 7 p5 (narrowing of the norms of reaction to the
new optimum), yet a low cost to plasticity expedites 7 p,
and 7p, (finding the new optimum, then shifting over to
the new optimum). The Baldwin expediting effect will
therefore take place in this model only when the cost of
plasticity satisfies these strict constraints and when the
mutation rate is sufficiently high.

EVOLUTIONARY RATE
APPROXIMATIONS

In the next version of the evolving plasticity model, we
assume Gaussian fitness functions. That is, w(p)=
(1/o J27z) e~ (P=9%27 where ¢ is the optimal pheno-
type and o indicates the strength of selection. Again we
compare populations of nonplastic single-point pheno-
types to populations of plastic interval-valued norms of
reactions. As above, the fitness of a nonplastic individual
is just w(p,) and the fitness of a plastic individual is
Q(p;)=max(w(p) [pep,)-(1—1p;l/2).

The addition of plasticity dramatically alters the shape
of the fitness landscapes. Consider the pairs of fitness
functions depicted in Fig. 7. These are slightly modified
versions of w and Q2 described above. The light mesh
surface displays the fitness function for a plastic popula-
tion, whereas the dark surface graphs that for a nonplastic
population. For a plastic population, the x- and y-axes
are the lower and upper bounds of the norm of reaction.
These bounds are sufficient to calculate an individual’s
fitness, which plots in the z-direction. For example the
point (—1,1,0) means the individual with norm of
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reaction p;,=[ —1,1] has fitness (p;)=0. In other
words, the plastic population graph is of the function

Q" (x, y)—>max(w(p) [pe[x, y])-x(y—x).

Recall that w is a Gaussian function described above.
Here we use the cost function y: a+— 1 — § since the maxi-
mum length for a norm of reaction is a = 2.

In the case of the nonplastic graphs, the x- and y-axes
have a different meaning. Here the phenotype of an

(A)

fitness

[y

fitness

OO0 oo

fitness

o O O O

-1
-0.5

0 upperbound

lowerbound

FIG. 7. Plasticity smooths the Gaussian norm of reaction fitness
functions: Nonplastic (dark surface) vs plastic (light surface) fitness
functions. (A) 6 =0.1, (B) 6 =0.3, and (C) 0 =0.5.
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individual is taken to be the midpoint between the x-value
and the y-value. For example the point (—0.5,0.5, 1)
means the individual with phenotype p,=—23t%3=0
has fitness w(p,)=1. That is, the graphs depict the
function

, X+y
wi(x, y)—w <2>

Through these graphs we compare the fitness of a plastic
individual to that of a nonplastic individual, where the
phenotype of the latter is the norm of reaction midpoint
of the former. A visual survey reveals that plasticity
improves fitness in some regions of phenotype space, but
not all. As the fitness function becomes more peaked, the
regions in which plasticity has a selective advantage
expand. This may have implications for when plasticity
can invade a nonplastic population, and vice versa,
but does not say anything about the relative speeds of
evolution.

In this graphical format, evolutionarily adjacent types,
i.e., phenotypes that are separated by single mutations,
lie next to each other in the x-y plane. So evolutionary
trajectories are continuous on the surface of the graph.
The norms of the gradients of the fitness functions, |Vw'||
and ||VQ'|, give the slopes in the z-direction of the
steepest paths towards the target. If we assume relatively
homogeneous populations, that is populations consisting
of genetically similar individuals, then for any location in
phenotype space, the norms of the gradients roughly
approximate the rapidity of evolution there.

Figure 8 plots [|[Vw'| and ||VQ'| for comparable non-
plastic and plastic populations, respectively. The dark
surface that dips to (—a, a,0) for all ae [0, 1] in each
illustration is |[Vw'|| for the nonplastic population, while
the lighter surface represents the plastic population. As ¢
increases, the region of phenotype space in which
plasticity provides for faster evolution increases. A com-
parison of Figs. 7 and 8 demonstrates that relative rates
of evolution do not correspond to relative fitnesses.
Furthermore, the claim that plasticity expedites evolu-
tion does not generally hold in this analytical framework.

This analysis alone is unsatisfying. Take, for example,
the values of |[Vw'(—1,1)|| and |[VQ'(—1, 1)|. In all
three graphs, |[VQ'(—1, 1) > |Vw'(—1,1)| suggesting
the rate of plastic evolution is faster than nonplastic
evolution in this region of phenotype space. But the non-
plastic population is already at the target while the
plastic population is merely centered at the target. So the
rate comparison alone can be misleading.
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FIG. 8. Gradient estimates of evolutionary rates: Nonplastic [|Vw/||
(dark surface) vs plastic |VQ| (light surface) for (A)o=0.1, (B)
o =0.3,and (C) 6 =0.5. The x- and y-axes indicate the phenotype of the
homogeneous starting population. The z-axis depicts the norms of the
gradients of the fitness functions, an approximation for the time until
the population converges on the optimal phenotype.

We now extend this line of analysis to remedy the
previous objection. We suggest that the length of the path
from any given point in phenotype space to the target
along the fitness surface is a better indication of the
evolutionary rate. The gradients serve as vector fields
which determine the most direct trajectory to the target.
We numerically solve the system of equations given by
the gradients and the starting phenotypes to determine
the path and time to the target. For example, a plastic



316

FIG. 9. Solving the gradient equations to estimate the time until
the population converges on the optimal phenotype: Differences in the
evolutionary time to target for a plastic population and a nonplastic
population. (A) 0 =0.5, (B) 6 =0.1, and (C) ¢ =0.2. The pale surfaces
depict the plane (x, y, 0).

population beginning at phenotype p =[ 0.1, 0.3] follows
the path given by the system:

ox _max(x,0) e 72— (y—x)) /2
ot 402ﬁ

e*(min(\min(O, ) 4+ max(0, x)|, x|, |y]))%/2a2

ZJﬁ ’

+
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oy min(y,0)e 72— (y—x)) /2

or 4¢3 ﬁ

e — (min(|min(0, y) + max(0, x)|, |x|, |¥])) %252

2aﬁ ’

1(0)=0.3.

+
x(0)=0.1 and

We use (2—(y—x)) as a cost of plasticity because the
norm of reaction length is ( y — x) which has a maximum
length of 2.

Figure 9 depicts differences between path lengths to
the target. We graph 4z, which is the time taken for a
plastic population to reach the target minus the time
taken for a comparable nonplastic population to reach
the target. We assume the population moves as a single
point across the fitness surface and that starting pheno-
types are given by the x- and y-axes. The graph is positive
where plastic populations take longer to reach the target
and negative where plasticity expedites evolution. The
plane at 47 =0 divides the graph into these two domains.
Populations starting near the target are generally better
off without plasticity, and likewise populations starting
far from the target seem to greatly benefit from plasticity.
As the fitness landscape becomes more peaked, the
region in which plasticity is detrimental diminishes.

These observations support the claim that plasticity
accelerates evolution in much of phenotype space. The
Hinton and Nowlan model (1987) demonstrates a loss of
plasticity as the populations nears the target. The regions
in which plasticity appears advantageous in our graphi-
cal analysis therefore do not do much damage to the
Baldwin expediting effect. In the next section we discuss
the drawbacks to this analysis.

SIMULATION RESULTS

We compare evolutionary simulations to the gradient
analysis. Simulations reveal the limitations of representing
a population as a point on a fitness graph. As discussed
above, the evolution of a plastic population towards a
target breaks down into three epochs. While the first one,
the initial search for the optimal type, might be amenable
to the point population approximation, the latter two
can only be treated with a closer look at the within-
population evolutionary dynamics. An analysis of 7p,,
the time until the lineage of the first optimal individual
takes over, requires a model that places the individual
within a population distribution context. The subsequent
time until the norms of reaction converge on the optimal
phenotype depends entirely on the cost of plasticity and
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the mutation rate and not on the underlying fitness
landscape. We compare simulations of plastic and non-
plastic populations to demonstrate the burden on plastic
populations of this final component of evolution which is
not reflected in the gradient framework. The disparities
between the two approaches suggest that the smoothness
of fitness surfaces does not sufficiently indicate the speed
of evolution.
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Each simulation begins with a uniform population of
N=1000 asexual individuals; population size then
remains constant at N = 1000; the optimal phenotype is
Popt =0 and mutation occurs according to Table I at a
rate u =0.1. Figure 10 graphs the times for each of the
components of the evolutionary trajectory. The axes
represent the genotypes of the starting population. For
plastic populations, the x- and y-axes indicate the lower
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FIG. 10. Simulation results: The dark and light plots represent the plastic and nonplastic populations, respectively. 71, time to first encounter
with the optimal phenotype; 72, time until 95 % of the population either has the optimal phenotype (nonplastic population) or has a norm of reaction
containing the optimal phenotype (plastic population); and 7 3, time to average norm of reaction within a 5 % neighborhood of the optimal (plastic)
or population average phenotype lies within a 5% neighborhood of the optimal (nonplastic). Note that for the nonplastic population 72 ~ 7'3. The

fitness functions have (A) 6 =0.1, (B) 6 =0.2, and (C) ¢ =0.3.
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and upper bound of the initial norm of reaction. For non-
plastic populations, the starting genotype equals the
average of the x- and y-values.

The graphs in the first column indicate the time until
the first individual encounters the optimum phenotype.
The plastic population (light mesh) generally takes less
time to find the optimum than the nonplastic population.
Recall that the first encounter means that one individual
has the optimal phenotype in the nonplastic case and
that one individual has the optimal phenotype within its
norm of reaction in the plastic case.

The second column shows the time until most of the
population attains the optimal phenotype. For the
nonplastic population, this is the time until 95% of
individuals have the optimal phenotype. For the plastic
population, this is the time until 95% of norms of reac-
tion contain the optimal phenotype. Plasticity shows a
slight expediting effect for a subset of starting conditions.
In particular, only those populations that started with
norms of reaction containing p,, =0 still outpace the
nonplastic population. Other populations have lost their
lead.

Finally we illustrate the time until the average norm of
reaction lies within a small neighborhood of the optimal
phenotype for the plastic population. In particular, the
light graphs in the third column show the time until
[=3N  [;>pope—01=—0.1 and a=Y" | [;<po.+
0.1=0.1. For the nonplastic population we graph
the time until pj=3Y | p,€[popt— 0.1, popi +0.1] =
[—0.1,0.1].

In accordance with our analysis for the extreme case,
plasticity expedites the first part of evolution for highly
peaked fitness functions. As we smooth the fitness map,
1.e., increase the variance of the Gaussian function, the
early benefits of plasticity remain, but time taken to first
encounter with the optimal phenotype increases. Also
predicted earlier, plasticity does worse in the second and
third phases of the trajectory than nonplasticity. The
disadvantage of plasticity in the third stage diminishes
slightly as the fitness function become wider.

CONCLUSIONS

The Baldwin expediting effect fails under a simple
quantitative genetic characterization of plasticity. Other
studies of evolutionary rates have further demonstrated
that the effects of plasticity are highly dependent on the
conception of plasticity. Whitlock, for example, models
the evolution of niche breadth as a product of evolutionary
rate trade-offs. The model’s predictions about specialism
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and generalism can easily be translated into claims about
nonplasticity and plasticity. His primary result is that
benefit of specialization, and analogously of non-
plasticity, is a faster rate of evolution (Whitlock, 1996).

Plasticity seems to expedite evolution under restrictive
conditions. We can state sufficient conditions for a
limited version of the Baldwin expediting effect. These
criteria must be less ambitious than the general claim
that plasticity accelerates evolution.

[BEE1] Plasticity expedites the search from an initial
population distribution to the first encounter with the
optimum phenotype.

[BEE2] [BEEI1] is observed for initial genotype
distributions sufficiently distant from the target.

In our evolving plasticity model there is a large class of
fitness maps under which these conditions hold. For the
extreme case and highly peaked Gaussian fitness func-
tions, both analysis and simulation exhibit this restricted
Baldwin expediting effect. As the kurtosis drops, the
effect dissipates.

Evolution towards an ideal phenotype, however, involves
more than the initial search. In many cases plasticity retards
evolution from the first encounter until fixation of the
population on an optimal phenotype. When plasticity is
not sufficiently costly, it protects suboptimal phenotypes
from elimination by natural selection. On the other hand,
when plasticity is too costly, it fails to provide an advan-
tage in the initial search. Furthermore, the regions of
phenotype space in which plasticity speeds evolution are
frequently regions in which a plastic individual is less fit
than its nonplastic counterpart. These observations
undermine the Baldwin expediting effect as an explana-
tion for the evolutionary maintenance of phenotypic
plasticity.
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