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Abstract Pandemic influenza is an international public
health concern. In light of the persistent threat of H5N1
avian influenza and the recent pandemic of A/H1N1swine
influenza outbreak, public health agencies around the globe
are continuously revising their preparedness plans. The A/
H1N1 pandemic of 2009 demonstrated that influenza activ-
ity and severity might vary considerably among age groups
and locations, and the distribution of an effective influenza
vaccine may be significantly delayed and staggered. Thus,
pandemic influenza vaccine distribution policies should be
tailored to the demographic and spatial structures of com-
munities. Here, we introduce a bi-criteria decision-making
framework for vaccine distribution policies that is based on
a geospatial and demographically-structured model of pan-
demic influenza transmission within and between counties
of Arizona in the Unites States. Based on data from the
2009–2010 H1N1 pandemic, the policy predicted to reduce
overall attack rate most effectively is prioritizing counties
expected to experience the latest epidemic waves (a policy
that may be politically untenable). However, when we

consider reductions in both the attack rate and the waiting
period for those seeking vaccines, the widely adopted pro
rata policy (distributing according to population size) is also
predicted to be an effective strategy.
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1 Introduction

In June 2009, the World Health Organization (WHO) de-
clared a pandemic caused by a new strain of influenza A/
H1N1 virus. This announcement triggered planned pandem-
ic responses in the United States (US) and around the globe,
including large-scale vaccination campaigns. Vaccination is
the most effective public health intervention strategy against
many infectious agents, including the influenza virus and it
not only directly protects those who have been vaccinated,
but also reduces transmission and thereby also indirectly
offers protection against unvaccinated individuals [6, 8,
12, 18, 24, 33]. However, when the novel 2009 A/H1N1
virus emerged, the existing vaccines were not effective
against the new strain and there was minimal pre-existing
immunity in the human population, e.g. some cross immu-
nity from prior exposure to similar strains in the elderly
population [25]. During the six months leading up to the
initial distribution of an effective 2009 A/H1N1 vaccine, the
primary public health interventions included various social
distancing and hygiene measures including sporadic school
closures and antiviral treatment. Several studies have shown
that non-pharmaceutical interventions (NPI’s) alone (with-
out antiviral medication or mass vaccination) are temporary
fixes, leaving the population vulnerable to future waves of
transmission once lifted [7, 9, 12, 13, 19]. However, both
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NPI’s and antivirals can effectively delay transmission until
vaccine doses become available [3, 8, 15, 22, 23]. School
closure, a community mitigation policy, is particularly con-
troversial because of associated social and economic costs
[3, 10].

When pandemic vaccines become available, policy mak-
ers face the challenge of quickly and effectively distributing
them to their constituent communities to maximize the pub-
lic health benefit [27]. During the 2009 A/H1N1 pandemic,
the first doses became available in October 2009 in the US,
six months after the index case and well into or after the
major wave of transmission in most communities. In the US,
for example, the release of pandemic vaccines was stag-
gered with availability to 6.66% of the population by Octo-
ber 2009, and to almost 50% by February 2010.

The distribution of such limited and critical medical
resources across multiple communities is a challenging op-
erational and policy problem, not only in the United States,
but all over the world. By the time the first vaccines were
distributed in 2009, an estimated 10% of the population was
infected in the US and thus had been naturally immunized
against re-infection. Although such individuals usually no
longer benefit from vaccinations, identifying and excluding
such individuals from vaccination may be practically and
ethically difficult. Furthermore, demand for vaccines may
vary unpredictably and be correlated with local influenza
activity and/or age-specific perceptions and fears [16, 31]
and a mismatch between demand and supply may cause
social unrest [27].

The severity and contagiousness of influenza varies con-
siderably among strains. For example, the 1918 flu pandem-
ic was notoriously severe, with case fatality rates (CFR)
estimated around 2% [5]; the 2009 A/H1N1 was relatively
mild, with an estimated average CFR of 0.159% in adults
[26]. For any given influenza strain, transmission and mor-
tality rates also differ among age groups [2, 26]. If severity
and transmission are not strongly correlated, intervention
strategies that effectively reduce mortality may be different
than those that reduce prevalence [12]. Thus the design of
intervention policy should carefully consider age-structured
characteristics of the disease, the demographic make-up of
the target population, and the desired outcomes of the inter-
vention. Although there will be considerable uncertainty
about the age-specific transmission and case fatality rates
early in a pandemic, accurate estimates of these values are
likely to become available in the months leading up to the
vaccination campaign.

Prior optimization studies have shown that both deaths
and hospitalizations can be minimized by prioritizing the
vaccination of school-aged children (5–17), young adults
(18–44), and people at high-risk of severe infections [20,
21]. It has also been suggested, that high-risk populations
should be the first priority when vaccine supplies are

severely limited and/or there is significant uncertainty about
severity of the epidemic [2].

Here, we introduce a complementary bi-criteria decision
framework for vaccine policy-making that uses a dynamic
and demographically structured geospatial model of pan-
demic spread to forecast the effects of various vaccine
distribution policies. This framework integrates critical
inputs, such as early estimates of age-specific transmission
and mortality rates, information about the trajectories of the
ongoing pandemic in various locations, and the expected
schedule of vaccine availability. It evaluates policies accord-
ing to multiple public health outcomes including the
expected cumulative attack rate, maximum prevalence, total
mortality, while considering waiting times for vaccines. In
addition, we apply our approach to evaluate several county-
level vaccine distribution priorities for of the state of Ari-
zona, based on disease characteristics and vaccine availabil-
ity estimated for the 2009–2010 A/H1N1 influenza
pandemic.

2 Mathematical model

We use a compartmental, age-structured and geospatial model
of influenza transmission to estimate the spatiotemporal dy-
namics of pandemic influenza [1, 17]. The model considers
multiple communities with different demographic composi-
tions, broken into several age classes: preschool age children
(0–4 years), school age children (5–19 years), adults (20–
64 years) and older adults (65+ years). Disease spread within
each community is modeled as an age-structured mass action
model in which each age group is divided into several disease
status compartments (Fig. 1). We assume homogeneous mix-
ing within each age group and use published estimates to
model mixing rates between age groups [6]. Each simulated
pandemic begins with a single case introduced into an entirely
susceptible population, e.g., into Yuma County, as occurred
during the A/H1N1 pandemic. We analyze all possible sites of
introduction (15 counties of Arizona) in addition to various
transmissibility scenarios.

Specifically, within each community (i) and for each age
group (j), the model tracks the changing numbers of sus-
ceptible Sij(t), exposed Eij(t), infected Iij(t), effectively vac-
cinated Vij(t), protected Pij(t), ineffectively vaccinated Uij(t),
recovered Rij(t), and deceased Dij(t) individuals, as influenza
spreads.

The dynamics are governed by the following equations,
which contain disease transmission, progression and vacci-
nation parameters defined in Table 1.

d SijðtÞ
dt

¼ �lijðtÞΩ SijðtÞ
� �� vijðtÞΩ SijðtÞ

� � ð1Þ
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d VijðtÞ
dt

¼ " vijðtÞΩ SijðtÞ
� �� η Ω VijðtÞ

� �

� lijðtÞΩ VijðtÞ
� � ð2Þ

d UijðtÞ
dt

¼ 1� "ð ÞvijðtÞΩ SijðtÞ
� �� lijðtÞΩ UijðtÞ

� � ð3Þ

d PijðtÞ
dt

¼ η Ω VijðtÞ
� � ð4Þ

d EijðtÞ
dt

¼ lijðtÞ Ω SijðtÞ
� �þΩ VijðtÞ

� �þΩ UijðtÞ
� �� �� σ Ω EijðtÞ

� �
ð5Þ

d IijðtÞ
dt

¼ σ Ω EijðtÞ
� �� g jIijðtÞ ð6Þ

d RijðtÞ
dt

¼ g jIijðtÞ ð7Þ

d DijðtÞ
dt

¼ 1� g j
� �

IijðtÞ ð8Þ

The Ω terms in the equations model interactions between
individuals in different communities, based on inter-
community commuting patterns. We assume that only indi-
viduals in the adult age group commute. Let I be the set of
communities (in this case, the counties of the state of Ari-
zona) and let T 0 (ti,l) be a symmetric matrix where ti,l is the
total number of adult individuals in county i travelling to
county l. The values of T are based on daily commuting
patterns between communities [30]. We label Ω : RI ! RI

to be the transport operator defined on the susceptible,
exposed and vaccinated compartments as given in (9–12)
[28]:For j0Adults

Ω SijðtÞ
� � ¼ SijðtÞ þ

X
l2K:;l

tl;:
SljðtÞ
Nlj

� �
�

X
i2Ki;:

ti;:
SijðtÞ
Nij

� �
ð9Þ

Ω EijðtÞ
� � ¼ EijðtÞ þ

X
l2K:;l

tl;:
EljðtÞ
Nlj

� �
�

X
i2Ki;:

ti;:
EijðtÞ
Nij

� �

ð10Þ

Fig. 1 Diagram of mass action
model for influenza
transmission within a
community. In each
compartment, the subscripts i
and j indicate location (county)
and age group, respectively.
*Dashed arrows indicate the
inflow of individuals from other
counties

Table 1 Parameter notations and definitions

Notations and definitions of parameters

α Transmission probability per contact: Proportion of contacts between infected and susceptible individuals that lead to infection

βjk Age Specific Contact Rate: Proportion of contacts of an individual in age group j occurring with individuals in age group k

λij Force of Infection: Transmission rate of age group j in community i lij ¼ a
P4
k¼1

bjk Eik ðtÞþIik ðtÞð Þ
Ni

8i; j; kð Þ 2 J , J is the set of age
groups Ni ¼

P
j
Nij(see below for Nij)

1/γj Infectious Period: Expected duration of infectious period prior to recovery or death

1/σ Incubation Period: Expected time between initial infection to clinical onset of the disease

1- γj Case fatality rate

vij(t) Vaccination rate for age group j in county i at time t

ε Vaccine Efficacy: Probability that a vaccinated individual will become fully protected.

1/η Vaccine pre-protection period: Expected time between vaccination and full protection against infection

Nij Number of people in county i and age group j
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Ω VijðtÞ
� � ¼ VijðtÞ þ

X
l2K:;l

tl;:
VljðtÞ
Nlj

� �
�

X
i2Ki;:

ti;:
VijðtÞ
Nij

� �

ð11Þ

Ω UijðtÞ
� � ¼ UijðtÞ þ

X
l2K:;l

tl;:
UljðtÞ
Nlj

� �
�

X
i2Ki;:

ti;:
UijðtÞ
Nij

� �

ð12Þ
We assume, susceptible, exposed and vaccinated (both

effectively and ineffectively) individuals travel, but symp-
tomatic infectious individuals are likely to stay in their
own communities and do not travel. The values in the
matrix T are based on US census data regarding work-
commuting patterns between counties [30], and all pairs
of counties in Arizona have commuters moving between
them.

3 Model parameters

In our model, we assume parameter values that are
based on published estimates (see Table 2). The daily
average contacts among individuals of various age
groups are based on published estimates in [32]. These
are the expected number of daily contacts that an indi-
vidual is assumed to have in his/her own age group and
also with the individuals from other age groups. School-
age children have the highest contact rates and older
adults (≥65) have the lowest contact rates. Other
disease-specific parameters (i.e., age-specific transmis-
sion rates, age-specific mortality rates, latency period,

and infectious period) are based on published estimates
for 2009 A/H1N1 influenza and correspond to a repro-
duction number of R001.4 [11, 26]. A sensitivity anal-
ysis on the basic reproduction number is also presented,
by calibrating model parameters to achieve R001.2, 1.6,
1.8, 2.0, 2.2, in addition to R001.4. We assume a
vaccine efficacy of 80% and vaccine protection rate of
10% (i.e., on average it takes ten days for effectively
vaccinated individuals to be immunized) [6]. The numb-
ers of individuals in each age group for each county in
the state is based on the census data and given in
Appendix A [30].

4 Vaccine distribution strategies and timing

We evaluated four strategies of vaccine distribution to the
15 counties of Arizona: (1) pro rata (simultaneously pro-
portional to their population size): (2) sequential by popu-
lation size: (3) sequential by estimated order of pandemic
peaks: and (4) reverse sequential by estimated order of
pandemic peaks. Our analysis takes into account the demo-
graphics of counties and the geospatial dynamics of influ-
enza. We evaluated the efficacies of these resource
allocation strategies in terms of the expected disease prev-
alence and mortality rates.

Pro rata This is the most common prioritization for distri-
bution of emergency medical resources to multiple geo-
graphic locations. The available stocks of vaccines are
distributed simultaneously; this policy minimizes controver-
sy for local authorities and is thus politically favorable.

Table 2 Model parameter values and sources

Disease-related parameters References

Transmission Probability 0.01 (R001.4) Presanis et al. [26], Fraser et al. [11]

Infectious Period 6 days (for all age groups) Gojovic et al. [14]

Incubation Period 4 days (for all age groups) Tuite et al. [29]

Infected Mortality Rate Preschool Children School Age Children Adults Older Adults Presanis et al. [26]
Values 0.026% 0.010% 0.159% 0.090%

Social contact parameters by age group References

Preschool School-aged Adults Older adults Wallinga et al. [32]
Preschool 24.16 2.54 4.93 1.64

School-aged 2.54 32.04 7.25 2.14

Adults 4.93 7.25 10.81 3.58

Older adults 1.64 2.14 3.58 7.75

Vaccination parameters References

Vaccine Protection Rate 0.10 (for all age groups) Chowell et al. [6]

Vaccine Supply Data Given in Fig. 2 CDC [4]

Vaccine Efficacy 0.80 Chowell et al. [6]

Target Coverage 50% -

178 O.M. Araz et al.

Author's personal copy



However, because disease spread is dynamic and unpredict-
able, this policy may provide vaccines to communities un-
necessarily (e.g., after a major epidemic wave) or fail to
provide sufficient vaccines when needed.

Sequential by population Under this policy, vaccines are
delivered to counties one at a time, in order of population
size. Distribution to a given county begins only after target
coverage is met in the higher priority county.

Sequential by peak Vaccines are delivered to counties one at
a time, each time fulfilling target coverage before proceed-
ing to the next county. Priority is given according to the
expected timing of the pandemic peak within each county.
To estimate peak times, we ran our disease transmission
model 15 times, each time starting the pandemic with an
index case in one of the counties of Arizona (Appendix B).
For each introduction scenario, counties are then prioritized
from the earliest expected pandemic peak to the latest
expected pandemic peak.

Reverse sequential by peak This policy is identical to se-
quential by peak, except that the ordering of counties is
reversed. Vaccines are distributed starting from the county
expected to experience the latest peak and ending with the
county expected to experience the earliest peak.

We consider several scenarios for the timing of vaccine
availability. Each is a variation of the actual vaccine release
schedule for Arizona during the 2009 A/H1N1 pandemic [4]
(Fig. 2). During the 2009 pandemic, small quantities of
effective vaccines became available approximately 150 days
after the index case was infected. Additional doses became
available in the ensuing weeks. Our model assumes that
vij(t)00 for t<150 and vij(t)0v

*
ij(t) for t ≥150 where v*ij(t)

is the rate of vaccination at time t based on the allocated

vaccines to age group j in county i under the current policy
and vaccine availability.

5 Model outcome measures

We consider four health outcome measures to evaluate the
vaccination policies: (1) Cumulative Attack Rate (CAR), that
is, the proportion of the statewide population infected during
the pandemic, (2) total mortality, that is, the proportion of the
statewide population that died from influenza infection during
the pandemic, (3) peak prevalence, that is, the maximum pro-
portion of the population infected at any given time during the
season, and (4) average vaccine waiting time for a community.
We use these outcome measures to perform decision analyses
for early pandemic vaccine distribution decisions, when limited
information about the spreading strain is available.

6 Results

6.1 Base case scenario

For the base case scenario (i.e., no vaccination), we assume
that the pandemic begins with a single infectious school-aged
individual introduced into one of the counties of Arizona (see
Fig. 3 for simulated epidemic curves of the scenario with an
initial case in Yuma County). Averaging across results from all
15 county-of-introduction scenarios, the model predicts a mean
statewide cumulative attack rate (CAR) of 29.99% with stan-
dard deviation (SD) of 2.73, mean statewide mortality rates of
0.008%, 0.004%, 0.042%, and 0.014% in the four age groups
from youngest to oldest, respectively, and an overall mean cu-
mulativemortality of 0.028%with SD of 0.0025. Themean peak
in statewide prevalence is 5.18% with SD of 0.95, occurring on
average of 108 days with SD of 7.57 after the initial introduction.

Fig. 2 Pandemic vaccine
supply scenarios for Arizona. All
scenarios are shifted versions
of the actual vaccine availability
during the 2009 A/H1N1
pandemic (black curve) [4]
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6.2 Vaccine distribution strategies

We initially report model results for each of the four vaccina-
tion policies, assuming that vaccines become available
according to the schedule that occurred during the 2009 A/
H1N1 pandemic, and averaging results over all 15 county-of-
introduction scenarios. Figures 4 and 5 show the average age-
specific statewide CAR’s, mortality rates, and peak prevalence
predicted for the base case and the various vaccination strat-
egies with a R001.4 as it was in the 2009 A/H1N1 pandemic.

Pro rata Dimitrov et al. [8] suggest that a pro rata distribu-
tion strategy for limited supplies of antiviral medications is
close to optimal in terms of minimizing the number of cases.
However, whereas antivirals are typically used only as
short-term options to treat active cases of influenza or as
prophylactic measuring during disease outbreaks, vaccines
provide long-lasting protection. Thus, the optimal distribu-
tion strategies for antivirals and vaccines may differ. Under
the pro rata vaccine distribution and for 2009 A/H1N1
transmissibility scenario, our model predicts decreases in
average statewide CAR, mortality rate, and peak prevalence
to 22.52% (SD 2.05), 0.0213% (SD 0.0019), and 5.01% (SD
0.92). The peak is predicted to occur, on average, 103 days
after the initial infection (SD 6.43).

Sequential by population Under this policy, available vac-
cines are allocated to one county at a time in order of

population size (from largest to smallest), covering 50% of
a given county’s population before proceeding to the next
priority county. This policy may be highly controversial
under a severe pandemic scenario, as all communities may
demand access to vaccine doses as soon as they become
available. The model predicts that, this strategy will reduce
the mean statewide CAR to 22.98% (SD 2.10), mortality
rate to 0.0218% (SD 0.0019), and peak statewide prevalence
to 3.25% (SD 0.62), and cause the peak to occur, on aver-
age, 102 days after the index case (SD 6.02) for the 2009 A/
H1N1 pandemic scenario.

Sequential by peak This strategy orders counties according
to the expected timing of the pandemic peak and allocates
the available vaccines accordingly. In this case for 2009 A/
H1N1 pandemic scenario, the statewide average CAR, mor-
tality rate, and peak prevalence are predicted to be 22.90%
(SD 2.09), 0.0217% (SD 0.0018), and 3.26% (SD .60), 104
(SD 7.01) days after introduction, respectively.

Reverse sequential by peak By prioritizing counties from
the latest expected peak to the earliest, we may increase the
likelihood that vaccines are allocated to locations where
vaccine-induced immunity can still avert a significant num-
ber of infections and deaths. Indeed, again for 2009 A/H1N1
pandemic scenario, the model predicts that this policy will
lead to the largest reduction in statewide average CAR to
21.18% (1.93 SD) and mortality rate to 0.020% (SD

Fig. 3 Simulated epidemic
time series for Arizona counties
without vaccination (base case).
These prevalence curves are
based on an initial introduction
in Yuma County and the
parameters values given in
Table 2
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0.0018). The expected peak statewide prevalence is compa-
rable to that estimated for the other two sequential policies
(mean 3.39%, SD 0.65), occurring, on average, 105 days
into the pandemic (SD 7.15).

Overall, for R001.4 scenario, the reverse sequential by
peak policy is predicted to achieve the largest reduction in
average CAR (by 11.39%) and mortality (by 0.043%) for
the whole population and also for each of the four age
groups. Same result holds for all other transmissibility
scenarios as well (see Appendix D). The sequential by
population policy is predicted to achieve the largest reduc-
tion in peak prevalence for the population as a whole, and
for the adult and preschool population. The sequential by
peak policy is predicted to be most effective in reducing
peak prevalence in the school age and older adult
populations.

6.3 Alternative availability schedules

The development and distribution of an effective pandemic
flu vaccine is constrained by manufacturing capacity, the
novelty of virus, and other logistical and technological dif-
ficulties. The availability of vaccines is therefore variable
and somewhat uncertain. Here, we compare the average
performance of the four vaccination policies under four
other distribution schedules, averaged over all 15 county-
of-introduction scenarios. Table 3 compares the CAR’s and
peak prevalence predicted under each vaccine availability
scenario for R001.4.

Earlier vaccination decreases the expected CAR for each
vaccine distribution strategy. The reverse sequential by peak
policy is predicted to yield the largest reduction in CAR for
all distribution schedules. Furthermore, our simulation

Fig. 4 Predicted epidemic
curves for R001.4 scenario and
under the four different vaccine
distribution policies: pro rata,
sequential by population,
sequential by peak, and reverse
sequential peak. See Appendix
C for predicted epidemic curves
by age group

Fig. 5 Age-specific impacts of
the four vaccination strategies
on mortality rates (top), peak
prevalence (middle), and attack
rates (bottom). All results
represent the average results of
all the initial case location
scenarios for R001.4 (2009 A/
H1N1) scenario
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experiments show that earlier vaccination is also predicted
to decrease the peak prevalence under all four policies, with
the lowest peaks consistently predicted for the sequential
vaccination by population policy.

7 Bi-criteria evaluation of vaccination strategies

In addition to health outcomes, decision makers are also
concerned with the political applicability of various options.
To address this concern, we calculate the average waiting time
for vaccines under the four different policies. When ti (s) is the
number of days into the pandemic that vaccines become
available in county i under scenario s, pi is the number of

people living in county i, I be the set of all counties in the state,
and N is the total population of the state the average waiting
time for vaccines under scenario s is given by

TðsÞ ¼
P
i2I

pitiðsÞ
N

ð13Þ

Assuming that vaccines become available according to
the 2009 A/H1N1 schedule (i.e., R001.4), the model pre-
dicts average waiting times for vaccines of 150, 188.76,
211.24, and 248.60 days for pro rata, reverse sequential by
peak, sequential by population, and sequential by peak
policies, respectively.

Table 3 Predicted impacts of
vaccination policies under
different vaccine supply sched-
ules for the 2009 A/H1N1
transmissibility scenario

Schedule Pro rata Sequential by
population

Sequential
by peak

Reverse sequential
by peak

Average CAR (%)

2009 schedule 22.52 22.98 22.90 21.18

1 month earlier 17.16 16.41 17.59 15.01

2 months earlier 15.31 13.97 15.34 13.22

1 month later 22.90 23.59 23.59 22.23

2 months later 24.45 25.45 26.18 23.49

Peak Prevalence (%)

2009 schedule 5.01 3.25 3.26 3.39

1 month earlier 4.02 3.18 3.19 3.24

2 months earlier 3.67 3.09 3.081 3.163

1 month later 5.06 3.95 3.37 3.45

2 months later 5.63 4.032 3.78 3.98

Fig. 6 Bi-criteria comparison
of vaccine distribution
strategies considering cases
averted and average waiting
time for vaccines. Red line
indicates efficient frontier
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In Fig. 6, we present a bi-criteria comparison of the four
vaccine distribution policies, based on the percent of cases
averted relative to the base case scenario and the average
waiting time for vaccines for 2009 A/H1N1 transmissibility
scenario. The pro rata and reverse sequential by peak form
the efficient frontier (all non-dominated and effective strat-
egies). This finding suggests that, of the four policies, these
two policies are expected to satisfy both objectives of short-
ening the statewide waiting time for vaccines and reducing
disease prevalence. This result holds for reproduction numb-
ers (R0) ranging from 1.2 to 2.2 (see Appendix D).

8 Conclusions

In this paper, we modeled four different policies for distrib-
uting vaccines to multiple communities within a state during
an influenza pandemic. We assessed the impact of these
policies on influenza prevalence and mortality, and sought
policies that are likely to reduce the public health impact of
influenza pandemic without causing long waiting times for
vaccines. Our model used published, data-driven estimates
for disease progression parameters, age-specific contact
rates, and geographic (inter-county) movement patterns for
the state of Arizona. All results are averaged over the 15
possible county-of-introduction scenarios for Arizona, and
were robust across several different schedules for vaccine
availability and a range of plausible reproduction numbers
for pandemic influenza.

Our analyses show that if vaccines are not available until
late in an epidemic, there is an advantage in prioritizing the
communities that are expected to experience the latest
waves of transmission. While for the epidemics considered
in this paper, this strategy is expected to yield the lowest
overall prevalence and mortality rates across all delivery
schedules, prioritizing counties by population size is
expected to cause the largest reduction in overall peak
prevalence and a pro rata policy is expected to entail the
shortest average waiting time for vaccines, in addition to
having results close to the (presumably less politically-
acceptable) alternative policies.

During the early days of an influenza pandemic, public
health officials will make rapid policy decisions that aim to
protect individuals while minimizing the political controver-
sy resulting from their decisions. We demonstrate a bi-
criteria decision analysis approach for balancing the two
considerations (specifically expected cases averted and
expected waiting time for vaccines), which can be extended
to other combinations of epidemiological and socio-political
criteria. Among the small set of policy options we consid-
ered, two policies—pro rata distribution and prioritization of
communities expected to experience late epidemic—are
predicted to balance both objectives of curbing the spread
of the disease while limiting unmet demand for vaccines.
Our methods can be easily extended to consider other pan-
demic conditions that may affect the outcome of a vaccina-
tion campaign, for example, significant amounts of age-
specific cross immunity or heterogeneous use of antiviral-
based and non-pharmaceutical interventions.

Appendix A

Fig. 7 Graph showing
population break-down for the
15 counties of Arizona
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Appendix B

Fig. 8 Graph showing
prioritization of counties based
on timing of local epidemic
peak. The vertical axis
corresponds to the 15 different
county-of-origin scenarios.
Each row shows the rank or-
dering of counties from the one
predicted to have the earliest
peak (magenta) to the one pre-
dicted to have the latest peak
(dark green) under the given
county-of-origin scenario
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Appendix C

Preschool population 

School-aged population

Adult population 

Older adult population

Fig. 9 Prevalence curves predicted for each age group under different vaccination policies, from youngest (top) to oldest (bottom) for 2009 A/
H1N1 scenario (i.e. R001.4). C1. Preschool population. C2. School-aged population. C3. Adult population. C4. Older adult population
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Appendix D

Fig. 10 Bi-criteria comparison of vaccine distribution strategies under different transmissibility scenarios (i.e., R001.2, 1.4, 1.6, 1.8, 2.0 and 2.2).
Red line indicates efficient frontiers for each scenario
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