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Heterogeneity in host contact patterns profoundly shapes population-level disease dynamics.
Many epidemiological models make simplifying assumptions about the patterns of disease-
causing interactions among hosts. In particular, homogeneous-mixing models assume that all
hosts have identical rates of disease-causing contacts. In recent years, several network-based
approaches have been developed to explicitly model heterogeneity in host contact patterns.
Here, we use a network perspective to quantify the extent to which real populations depart
from the homogeneous-mixing assumption, in terms of both the underlying network structure
and the resulting epidemiological dynamics. We find that human contact patterns are indeed
more heterogeneous than assumed by homogeneous-mixing models, but are not as variable as
some have speculated. We then evaluate a variety of methodologies for incorporating contact
heterogeneity, including network-based models and several modifications to the simple SIR
compartmental model. We conclude that the homogeneous-mixing compartmental model is
appropriate when host populations are nearly homogeneous, and can be modified effectively for
a few classes of non-homogeneous networks. In general, however, network models are more
intuitive and accurate for predicting disease spread through heterogeneous host populations.
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1. INTRODUCTION

Epidemics caused by the transmission of infectious
agents are marked by variation. Heterogeneities in
pathogens, host populations and the interactions
between them profoundly affect the dynamics of infec-
tion. For example, in 1984, in a study of the spread of
gonorrhoea in the United States, Hethcote and Yorke
showed that 60% of all infections were caused by a small
group of individuals making up only 2% of the entire
population (Hethcote & Yorke 1984). In 1999, a cluster
of five cases of measles in a small elementary school in
The Netherlands led to an outbreak of approximately
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3000 cases, despite the fact that 96% of the population of
The Netherlands was vaccinated against measles at the
time (Centers for Disease Control and Prevention 2000).
In the spring of 2003, two individuals travelling from
Vancouver and Toronto, respectively, were infected
almost simultaneously with SARS by a source in Hong
Kong. There were no secondary cases reported from the
individual from Vancouver; in contrast, the infected
individual from Toronto went on to infect five other
people, which led to an outbreak of 200 cases in Toronto
(Poutanen et al. 2003).

There are several epidemiologically important sources
of variability, including disease-independent host par-
ameters—age, sex, contact rate and compliance to public
health recommendations—and disease-dependent host
parameters—susceptibility to disease, transmission rate,
mode of transmission and recovery rate. In this article, we
will focus on disease-independent heterogeneity in host
contact rates. That is, the number of potentially disease-
causing interactions can vary widely across a host
population. Although this is only one aspect of host
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heterogeneity, it is an important one. Variability in
contact patterns can stem from social structure, age, sex,
spatial structure and behavioural differences. This
heterogeneity is ubiquitous at many scales and can
cause variability in disease parameters such as infectivity
and susceptibility (Hethcote & Yorke 1984; Addy et al.
1991). Such individual-level diversity can profoundly
shape population-level disease dynamics.

The simplest of the traditional mathematical models
for the spread of infectious disease typically does not
take such diversity into account, but assumes that
communities are homogeneous; that is, they are made
up of individuals who mix uniformly and randomly with
each other. This simplifying assumption makes the
analysis tractable but may not adequately reflect
reality. Despite this assumption, these homogeneous-
mizing compartmental models have proved to be robust
and predictive (Anderson & May 1992; Mollison et al.
1993). Although we will focus on the simplest compart-
mental model, we note that this approach has been
successfully extended to capture large-scale host
heterogeneities. These extensions of the simple
compartmental framework have included age-specific
contact patterns and heterogeneities induced by spatial
structure (Ball et al. 1997; Bjernstad et al. 2002;
Grenfell et al. 2002), but they do not allow for
individual-level resolution.

After nearly a century of successes with these
models, mathematical epidemiologists have turned
their attention to individual-based approaches and
specifically to network modelling. These new
approaches, spurred by the availability of data and
the maturation of network theory, reject the homo-
geneous-mixing assumption and explicitly capture the
diverse patterns of interaction that underlie disease
transmission (Barbour & Mollison 1990; Watts &
Strogatz 1998; Pastor-Satorras & Vespignani 2001;
Newman 2002; Meyers et al. 2005; Shirley &
Rushton 2005).

Here, we reconcile the historical successes of
homogeneous-mixing compartmental models with the
advantages of new individual-based approaches. We
start with a brief introduction to the contact network
framework and then translate the homogeneous-mix-
ing assumption into network terminology. Using
several real and simulated datasets of human contact
networks, we show that the homogeneous-mixing
assumption may give rough but reasonable approxi-
mations for many populations. We then characterize
the ‘epidemiological distance’ between these empirical
networks and the homogeneous-mixing assumption of
the simple model. Finally, we review and evaluate a
variety of methodologies for incorporating contact
heterogeneity, including several modifications to the
simplest compartmental framework. We emphasize
that many of the new network-based approaches are as
mathematically tractable as the simplest compart-
mental models; although the compartmental frame-
work can be extended to consider many complexities,
the elegance with which the network-based approaches
incorporate heterogeneity makes them an attractive
option for future epidemiological studies.
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2. AN INTRODUCTION TO CONTACT
NETWORKS

Many diseases spread through human populations via
close physical interactions. The interpersonal contact
patterns that underlie disease transmission can natu-
rally be thought to form a network, where links join
individuals who interact with each other. During an
outbreak, disease then spreads along these links. All
epidemiological models make assumptions about the
underlying network of interactions, often without
explicitly stating them. Contact network models,
however, mathematically formalize this intuitive con-
cept so that epidemiological calculations can explicitly
consider complex patterns of interactions.

Formally, a contact (or social) network model
explicitly represents host interactions that mediate
disease spread. A mode in a contact network represents
an individual host, and an edge between two nodes
represents an interaction that may allow disease trans-
mission. A node’s degree is the number of edges attached
to it (i.e. its number of contacts) and the degree
distribution of a network is the frequency distribution of
degrees throughout the entire population.

An exact contact network model requires knowledge of
every individual in a population and every disease-
causing contact between individuals (e.g. sneezing in the
case of airborne diseases or sexual contact in the case of
sexually transmitted diseases). For even small popu-
lations, this is typically unfeasible, and thus researchers
typically work with approximate networks. There are
several techniques for gathering the information needed
to build realistic contact network models. They include
tracing all infected individuals and their contacts during
or following an outbreak (e.g. Klovdahl et al. 1977),
surveying individuals in populations (e.g. Eubank et al.
2004) and using census (e.g. Meyers et al. 2005), social
characteristic (e.g. Halloran et al. 2002) or other collected
data (e.g. Meyers et al. 2003).

Characterizing network structure has become a multi-
disciplinary cottage industry, with researchers across
epidemiology, sociology, biology, computer science and
physics searching volumes of data for meaningful
patterns. Researchers often look for global statistical
properties in network data, and have paid special
attention to small-world networks—characterized by
high levels of both local clustering and global connectivity
(Watts & Strogatz 1998)—and scale-free networks—
characterized by degree distributions that follow a power-
law distribution with a small fraction of very highly
connected hubs (Barabdsi & Albert 1999). Scale-free
networks have been reported in many technological (e.g.
the Internet, the World Wide Web) and biological
systems (e.g. metabolic, protein interactions, transcrip-
tion regulation and protein domain; Albert et al. 1999;
Faloutsos et al. 1999; Wuchty 2001; Giot et al. 2003; Bork
et al. 2004; Hatzimanikatis et al. 2004; Luscombe et al.
2004). These highly structured networks are often
contrasted with three classes of ‘null’ networks: (i)
lattices in which all nodes have the same degree, and
any given node is connected to physically proximate
nodes, (ii) regular random networks in which all nodes
have the same degree, but any given node is connected to
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Figure 1. Examples of (a) a regular random network with 15 nodes and mean=>5, (b) a Poisson random graph with 15 nodes and
mean=>5, (c) a scale-free random graph with 100 nodes and mean=>5, (d) the Zachary Karate Club contact network (Zachary 1977)
with 34 nodes and mean=5 and (e) the sexual network for adolescents in a Midwestern US town, with 287 nodes and mean =2. (These
networks do not contain spatial information, and the layouts were chosen simply to facilitate visual comparisons.)

randomly chosen nodes throughout the network, and (iii)
Poisson random mnetworks (also called Erdos—Renyi
random graphs) in which some specified total number of
edges are assigned to nodes completely at random,
thus yielding a Poisson degree distribution across
the network.

The structures of human contact networks
undoubtedly play a crucial role in the transmission of
diseases (Pastor-Satorras & Vespignani 2001; Newman
2002; Barthélemy et al. 2004, 2005; Meyers et al. 2005;
Ferrari et al. 2006). For example, epidemiologists have
long realized that the epidemic threshold, the critical
value for the infection rate above which a disease may
spread and persist, decreases as the standard deviation
of the degree distribution increases (Hethcote &
Yorke 1984; Anderson & May 1992). The obvious
question is thus: what are the structures of real-world
contact networks?

The field has focused particularly on scale-free
random networks (May & Lloyd 2001; Dezso &
Barabasi 2002; Pastor-Satorras & Vespignani 2002),
based on the apparent ubiquity of such networks in
natural and human-made systems and a (limited) set of
studies of epidemiologically relevant contact patterns
(Liljeros et al. 2001). These networks are characterized
by the presence of hosts with anomalously high
numbers of potential disease-causing contacts, called
super-spreaders, which have important epidemiological
implications (Shen et al. 2004; Lloyd-Smith et al. 2005).
With large or infinite variance in degree, scale-free
networks can have exceedingly low or non-existent
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epidemic thresholds; this means that even the sparsest
networks are highly vulnerable to epidemics. Despite
recent popularity, however, it is not clear that realistic
epidemiological networks are generally scale-free, and
thus whether they deserve so much attention in
epidemiology. Here, we address this by characterizing
the structures of several real-world networks.

We limit our discussion to random networks with
arbitrary degree distributions, including random
networks with regular, Poisson, exponential and
scale-free degree distributions (figure 1). These
classes of networks have been well studied with
respect to the spread of epidemics and are represen-
tatives of a spectrum of network structures. We focus
exclusively on the epidemiological impact of the
degree distribution, although other network charac-
teristics such as clustering (Watts & Strogatz 1998;
Keeling 1999; Moore & Newman 2000; Petermann &
Rios 2004) and degree correlations (Boguna et al.
2003) are also important.

We will also focus exclusively on static networks, i.e.
networks in which contacts are assumed to be fixed
during the infectious period of an individual. The
permanence of contacts captured by static networks
offers a more realistic model of human contact
behaviour than that by traditional epidemiological
models. However, a recent study (Volz & Meyers
submitted) suggests that static networks may only be
an approximate model for diseases that spread slowly
relative to the rate at which individuals change the
numbers and identities of their contacts.
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3. ANETWORK INTERPRETATION OF
HOMOGENEOUS-MIXING MODELS

Traditional epidemiological models implicitly assume
that contact patterns are highly homogeneous. The
most basic model in epidemiology is the SIR compart-
mental model for the ‘simple’ epidemic without demo-
graphic processes of birth and death (Kermack &
McKendrick 1991; Anderson & May 1992). This model
describes the dynamics of a single epidemic, during the
course of which each individual is in one of three disjoint
states (or compartments) at any given time: not yet
infected and susceptible to disease (S); infected and
infectious (I); or recovered and neither able to spread
disease nor be reinfected (R). The number of individuals
in each of these classes is described by the following set
of differential equations:

ds

— =28

dt '

dr

=Ml (3.1)
dR

—_— I

ETILEE

where A is the rate at which susceptible individuals
become infected (i.e. the force of infection) and v is the
recovery rate for infected individuals. (The constant
recovery rate, v, yields an exponential distribution of
infectious periods.)

The parameter A can be thought of as a composite of
three factors: A= ay7, where « is the number of
individuals with which a susceptible individual has
effective contact; ¢,= I(¢)/N is the proportion of
contacts that are infectious; and 7 is the per contact
rate at which disease is transmitted between an
infectious and susceptible individual (Keeling &
Eames 2005). This model assumes homogeneous-mix-
ing among individuals. Taken literally, the assumption
means that at any point in time, every susceptible
individual has an equal probability of contacting every
other individual in the population. Taken more loosely,
it is sufficient for all susceptible individuals to have
comparable contact patterns (a) and encounter
infected individuals at a rate corresponding to the
overall prevalence (1, = I(t)/N).

We suggest that the standard equations given above
can be approximately mapped to a network model in
which all individuals have identical numbers of
contacts—a regular random network. Consider a
regular random network with homogeneous degree k.
Suppose that disease spreads from infected nodes to
susceptible contacts with a rate of 7. Because contacts
are random, we can assume that the fraction of contacts
that are infected is equal to the fraction of infected
individuals in the network as a whole, or ;= I(t)/N.
Then, the force of infection on any given susceptible
individual will be A’ = ki,7’, which is equal to that given
by the homogeneous-mixing compartmental model
with «=kand 7=17'. This mapping is only approximate
because the two models view effective contact differ-
ently. In compartmental models, the identity of a
contact is determined randomly and instantaneously
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for each transmission event; in static network models,
on the other hand, the identities of contacts are chosen
randomly but remain fixed for the length of an
individual’s infectious period. The models thus yield
different values for the basic reproductive ratio and
expected equilibrium values (Keeling & Grenfell 2000).

Some authors have argued that the homogeneous-
mixing assumption translates into a network where every
individual is connected to every other individual in the
population (a complete network; Aparicio & Pascual
2007; Roy & Pascual 2006). In fact, a complete network is
just a regular random network in which each individual
contacts all N—1 other individuals, and thus is one of
many valid (regular) network interpretations of the
equations above. The force of infection in a complete
network is A’ =(N—1),7. For most populations,
however, it is unrealistic to imagine that individuals are
in constant contact with all other individuals. Thus, it is
more realistic to interpret the edges in the complete
network as ‘possible’ contacts and the transmission term
7’ as a combined effective contact and transmission rate.

Figure 2a,b demonstrates that, indeed, the dynamics
predicted by the homogeneous-mixing compartmental
model are a close approximation to stochastic
simulations of disease transmission through a regular
random network. The predicted final size of an outbreak
(figure 2a) is shown as a function of T, the per contact
probability of transmission integrated over the entire
infectious period of an infected individual. We generated
these and all other random networks described in §5
using the configuration model (Molloy & Reed 1995).
The stochastic epidemiological simulations are based on
a discrete-time, chain binomial, SIR model (Bailey
1957). (See appendix A in the electronic supplementary
material for further details.)

4. HETEROGENEITY IN EMPIRICAL CONTACT
NETWORKS

The homogeneous-mixing assumption is reasonable
when contact patterns in populations are random and
homogeneous; that is, they resemble a regular random
network. The contact patterns in real populations,
however, may be more heterogeneous than assumed by
the simple models. Figure 2c¢—h illustrates that the
simple models become inadequate as contact patterns
become more variable. The predictions of the homo-
geneous-mixing model are more reasonable for a
Poisson random network (figure 2¢,d)—which is more
variable than a regular random network, but less so
than an exponential or scale-free network—than they
are for networks with more variation (figure 2e-h).
Here, we quantify the heterogeneity found in realistic
contact networks and its epidemiological implications.

4.1. Statistical analysis of realistic networks

Using datasets from the literature, we characterize the
variation found in real-world contact networks. In
particular, we determine the shape of the degree
distributions in six empirical (or semi-empirical) social
networks. Network characterizations are often based on
graphical methods for fitting data to theoretical
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Figure 2. A comparison of the homogeneous-mixing compartmental and network models on various random networks. The
networks each have 10 000 nodes and a mean degree of 10, with regular, Poisson, exponential and scale-free degree distributions,
respectively. (b,d,f,h) Grey lines, individual simulation runs; dotted black line, the median of values from the simulations. The
homogeneous-mixing model is as described in §3. The four network-based models are the pair approximation model (Keeling
1999), percolation model (Newman 2002), heterogeneous-mixing model (Moreno et al. 2002) and dynamical PGF model (Volz
in press). In (a,c), all curves overlap. In (b), curves for homogeneous-mixing, pair approximation and dynamical PGF overlap. In
(d-h), curves for homogeneous-mixing and pair approximation overlap. In (e,g), curves for dynamical PGF and percolation
completely overlap. (Percolation does not provide dynamical predictions and is thus not graphed in (b), (d), ( f) or (h).)

distributions. This approach, however, can be flawed,
especially if the data are transformed to a log-log scale
(Goldstein et al. 2004). For each of our datasets, we
evaluate four one-parameter candidate distributions
(Poisson, exponential, pure power law and truncated
power law) using maximum-likelihood estimation (MLE)
to fit the distribution parameters. MLE avoids the
problems of visual/graphical fitting methods and more
accurately estimates the distribution parameters. We
then use the Akaike information criterion (AIC) to select
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the most appropriate distribution for the data (see
appendix B in the electronic supplementary material for
further methodological details).

Our datasets are chosen from the limited set of
empirical contact networks available in the literature
and include several different scales and types of
contacts. The first is an urban contact network model
based on demographic information for the city of
Vancouver, British Columbia (Meyers et al. 2005).
The second is another urban contact network model
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Figure 3. Statistical fitting of empirical datasets: (a) Vancouver urban network (Meyers et al. 2005), (b) Portland urban network
(Eubank et al. 2004; Del Valle et al. 2006), (¢) Zachary Karate Club network (Zachary 1977), (d ) Atlanta high school syphilis network
(Rothenberg et al. 1998), (e) Midwest town adolescents network (Bearman et al. 2004), and ( f) Colorado Springs risk network
(Potterat et al. 2002). All datasets fit best to the exponential distribution with the parameter values given as follows: (a) A=13.11+
9.9X1073, (b)) A=15.9442.2X10 "% (¢) A=4.07+7.8 X103, (d) 21=2.72+1.4X 10" % () A=1.46+2.8 X 10" %, and ( f) A=1.47+

2.8X 1077 (along with standard error in the parameter estimate).

developed for the city of Portland, Oregon based
on surveys and other demographic and geographical
data (Eubank et al. 2004; Del Valle et al. 2006). The
third dataset describes social ties (which may be used
as a proxy for disease-causing contacts) among
members of a university karate club (Zachary 1977).
The final three studies provide sexual contact patterns
within different adolescent populations (Rothenberg
et al. 1998; Potterat et al. 2002; Bearman et al. 2004).

Sampling bias in data collection is an important
concern in the study of empirical contact networks, and
its impact has yet to be understood for epidemiological
applications. Preliminary work by Stumpf et al. (2005)
has shown that scale-free networks are especially prone
to sampling errors. In fitting the datasets above to ideal
distributions, we have not made any additional adjust-
ments to correct for possible sampling biases (beyond
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those made in the original studies), which may obscure
the true structure of the population.

Our analysis suggests that all six populations fit an
exponential degree distribution best, based on the AIC
(figure 3). We note that this is the best choice only among
the four single-parameter distributions considered, and
that other multiple-parameter distributions like gamma
or beta distributions might yield even better approxi-
mations of the data. Although the exact shape of these
distributions may be uncertain given the small sample
sizes, our analysis suggests generally that the variability
found in these realistic contact networks appears to lie
somewhere between the homogeneity assumed by homo-
geneous-mixing models and the high heterogeneity of
scale-free networks. Recently, Amaral et al. (2000) found
similarly that adolescent friendship networks have
exponentially shaped or Gaussian degree distributions.
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with the mean of the network. All epidemiological calculations in (b) assume the probability of transmission 7'=0.25.

4.2. Quantifying deviation from assumptions
of homogeneity

Given the nearly exponential shape of the empirical
contact networks we have considered, we next quantify
the epidemiological distance between exponential
networks and the homogeneous-mixing model (equiva-
lently, a regular random network) using a structural
approach. Starting with a regular random network, we
use a greedy rewiring procedure to gradually generate an
exponentially distributed network. In particular, we
iteratively select a random edge in the network, and
change its destination to a new node (chosen in
proportion to its degree). This process reduces the
degree of the original destination node and increases the
degree of the new destination node (which already had
high degree), and thus progressively increases
the variance in the degree distribution. (Details on the
rewiring algorithm can be found in appendix C in the
electronic supplementary material.)

We monitor the structural evolution of the network
during the rewiring process in terms of the coefficient of
variation (CV) in degree—the standard deviation in
degree divided by the mean degree. We have observed
that when the CV reaches 1, which is the CV of an
exponential degree distribution, the modified networks
have approximately exponential degree distributions
(appendix C in the electronic supplementary material).

In figure 4, we show the impact of rewiring on both the
structure of the network (figure 4a) and the resulting
epidemiological dynamics (figure 4b). For any given
network created by rewiring, we define its structural
distance from the original regular network as the
probability that a randomly selected edge has been
rewired. This is estimated by 1 —(1 —1/m)", where m is
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the number of edges in the network and ris the number of
rewiring events so far. We show results for networks with
mean degrees varying from (k) =8 to 16, which spans part
of the range of contact patterns observed in the realistic
networks discussed in §4.1. Figure 4a illustrates that the
structural progression towards exponential networks
slows as the mean degree of the network increases.

We define the epidemiological distance to the target
(exponential) network as the relative discrepancy
between the expected size of an epidemic on the current
network and the expected size of an epidemic on the
target network, based on stochastic simulations. We
use these quantities to characterize the rate at which
epidemiological behaviour changes as a function of
structure (contact heterogeneity). Figure 4b illustrates
the epidemiological consequences of rewiring for a
particular probability of transmission (7=0.25). The
y-intercept values in figure 4b (structural distance=0)
indicate the amount of error realized if one uses a
homogeneous-mixing model to make predictions on an
exponential network. For example, in a population with
a mean degree of 8, the homogeneous-mixing model has
a 17% error in the prediction for final size of epidemic;
while for a network with a mean degree of 16 (such as
the urban contact network for Portland, Oregon
discussed in §4.1), the error is approximately 8%. In
general, for a given probability of transmission, the
discrepancy between the homogeneous-mixing model
and the true epidemiology decreases as the mean degree
increases. Thus, for highly connected exponential
networks, the homogeneous-mixing compartmental
models may offer reasonable approximations.

As rewiring progresses, the degree distribution of the
network approaches an exponential distribution, and
the epidemiological behaviour of the network
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approaches that of an exponential network, at first
slowly and then rapidly. The shape of the curves in
figure 4b indicates that essentially the entire network
must be restructured before the epidemiological con-
sequences begin to resemble those of an exponential
network. In other words, epidemiological models
(beyond those that make the homogeneous-mixing
assumption) need to incorporate almost all of the
variation of the true network in order to reduce the
error in the epidemiological predictions even slightly.

5. ANALYTICAL APPROACHES FOR
INCORPORATING HETEROGENEITY

Asthe tail of a network’s degree distribution grows, i.e. as
the variability in the number of contacts increases,
disease dynamics increasingly differ from those predicted
by homogeneous-mixing models in two respects. First,
early in an outbreak, the probability of a contact between
a susceptible and infected individual is higher than
expected because outbreaks are initially biased towards
individuals who have high numbers of contacts and are
thus epidemiologically vulnerable. Second, late in an
outbreak, the reverse occurs, and disease-causing con-
tacts are fewer than expected because the newly infected
and remaining susceptible populations tend to have low
numbers of contacts. Figure 5 illustrates this changing
distribution of contacts in the susceptible and infectious
populations over the course of an outbreak. As the disease
spreads, not only does the average number of contacts per
infected individual change, but also the variability in the
number of contacts decreases. Consequently, the homo-
geneous-mixing models underestimate disease burden
early in the outbreak and overestimate it towards the end,
as illustrated in figure 2d,f,h.
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5.1. Network and other individual-based models

Incorporating these heterogeneities into analytical
models of disease spread has proved to be a critical
challenge. Differential equations-based models enjoy
the advantages of being tractable, yielding to sensi-
tivity analysis and providing temporal behaviour, but
they often lack attention to detail in the underlying
process. Individual-based models allow individual-level
heterogeneities to be taken into account and can prove
to be very useful in making public health decisions, but
can often be intractable. Despite the challenges, many
powerful analytical approaches have been developed in
recent years to make predictions of disease spread in
heterogeneous populations. We review some of these
approaches here.

Percolation theory methods are based on generating
functions, and only require the degree distribution of the
network and the average transmissibility T of the
pathogen, i.e. the probability that an infected individual
will transmit disease to a susceptible contact during his
or her infectious period. These methods are very general
and mathematically tractable. They provide excellent
final-state predictions, but do not predict the dynamics
of an outbreak (Moore & Newman 2000; Newman 2002;
Meyers et al. 2003, 2005, 2006). Pair approximation
methods (Keeling 1999) are based on a differential
equation model of counting the number of pairs of
individuals in each disease class. These methods are
particularly useful for networks with clustering or
spatial networks. There are many useful extensions of
pair approximation methods for networks with various
structures (e.g. Eames & Keeling 2002), but we consider
only the simplest of these models in the analysis below.
Moreno et al. (2002) and Pastor-Satorras & Vespignani
(2002) have developed a dynamical framework based on
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Figure 6. Epidemiological predictions with ‘modifications’ to the homogeneous-mixing compartmental model on three classes of
networks. The networks each have 10 000 nodes and a mean degree of 10, with Poisson, exponential and scale-free degree
distributions, respectively. (b,d, f) Grey lines, individual simulation runs; black line, the median of values from the simulations.
‘Homogeneous-mixing’ refers to the homogeneous-mixing compartmental model described in §3. Predictions from the
modifications by Aparicio & Pascual (2007) and Stroud et al. (2006) are shown. ‘Our modification’ refers to the modified force of

infection parameter (4;) described in §5.2.

a system of degree-based differential equations. These
models track numbers of individuals in each disease
state for each degree class (there are 3k differential
equations in the system for an SIR model, where k is
the number of unique degree classes). Finally, Volz
(in press) has developed a powerful probability gener-
ating function (PGF)-based differential equation model
that accurately tracks global epidemiological dynamics
in complex random networks (we give details of each of
these approaches in appendix D in the electronic
supplementary material).

In figure 2, we compare the predictions of these four
network-based methods for four different types of random
networks: regular; Poisson; exponential; and scale-free.
The networks are generated using the configuration
model (Molloy & Reed 1995) and the parameters for the
degree distributions are chosen so that each network has
an identical average degree of 10. In particular, let p; be
the probability that a randomly chosen node has degree k.

J. R. Soc. Interface (2007)

All nodes in the regular network have degree k=10; the
Poisson degree distribution is given by p,=e 70" /k!,
where 8 =10; the exponential degree distribution is given
by pp=(1—e /e V) where #=9.49; and the
scale-free degree distribution is given by p, = k~’/¢(0),
where §=1.875 and {(6) is the Riemann zeta function.
We thereby hold network density constant and
investigate only the effects of contact heterogeneity on
disease dynamics.

The predictions from these models are compared with
stochastic simulations of disease transmission on the
same networks in terms of both the total burden of
morbidity in the population (figure 2a,c,e,g, dotted black
line) and the disease incidence dynamics (figure 2b,d,f,h,
grey lines). Accurate predictions of these quantities
are critical to efficient and timely implementation of
public health measures. Generally, the homogeneous-
mixing model does not perform as well as the other
methods on complex random graphs. The percolation,



888 Homogeneous and network epidemiological models

S. Bansal et al.

heterogeneous-mixing and the dynamical PGF-based
methods generally perform well, but may require more
information (namely the degree distribution) than the
other methods. Recall, however, that the realistic net-
works described above were reasonably approximated by
single-parameter exponential degree distributions.
Whenever a network closely resembles a random network
with an idealized, low-parameter degree distribution,
these methods do not require many parameters, if any
more than the corresponding compartmental models.

5.2. Modified compartmental models

We have argued that the homogeneous-mixing compart-
mental model essentially assumes that contact patterns
within a population form a regular random network, and
shown that real-world contact patterns often exhibit
more heterogeneity. The homogeneous-mixing compart-
mental model fails to make accurate predictions for such
networks because it does not account for the evolving
structure of the population (figure 5). In particular,
when there is significant variability in contact rates,
contacts between infected and susceptible individuals
will initially be more frequent than predicted by
homogeneous-mixing models.

Although there are several powerful network-based
analytical methods for predicting disease transmission
on complex networks, it would still be desirable to
develop a method that works within the simple
compartmental framework (Levin & Durrett 1996;
Diekmann et al. 1998). If successful, this would help
bridge the conceptual gaps between the new and old
methods and offer an appealing alternative to research-
ers already comfortable with this methodology. Several
epidemiologists have taken steps in this direction
(Severo 1969; Liu et al. 1987; Heathcote & Nicholls
1990; Hochberg 1991; Keeling 2005; Aparicio & Pascual
2007; Stroud et al. 2006; Roy & Pascual 2006).

The most recent effort has been the most direct one:
Aparicio & Pascual (2007) have modified the homo-
geneous-mixing compartmental model with a network-
based approximation of the reproductive ratio, R, and
have demonstrated the success of the approach on
Poisson and small-world random networks. Although
effective for these particular networks, the modification
does not capture the evolution of contact patterns that
occurs over the course of an outbreak. Figure 6 compares
this approach with the homogeneous-mixing compart-
mental model. Aparicio and Pascual do not actually
discuss adaptations of their model to exponential or scale-
free networks. To evaluate its performance on such
networks, we have inserted analytical estimates of R,
based on the specific structures of these networks (Meyers
et al. 2005). That is, Ry= (7/7+ v)((k*)— (k)/(k)),
where 7 is the average probability of infection per contact
and time step; v is the recovery probability; and (k) and
(k‘z) are the average degree and average squared degree in
the networks, respectively. As seen in figure 6¢—f, the
modification based on the expected number of secondary
cases early in the outbreak gives a gross overestimate of
epidemiological predictions.

A different class of approaches to bridge the gap
between homogeneous and individual-based models uses
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epidemic data. Keeling (2005) suggests modifying the
transmission term to be a function of time, 8(¢), and
fitting this time-dependent term to case-reporting data.
Keeling has shown that this approach works well, given
sufficient epidemiological data. Using a model similar to
those introduced by Severo (1969), Liu et al. (1987) and
Hochberg (1991), Roy & Pascual (2006) suggest modify-
ing the infection term of the homogeneous-mixing
compartmental model to be 7k S? I, where the ‘hetero-
geneity parameters’ k, p and ¢ are estimated via least-
squares fitting to simulation data. They demonstrate the
success of this approach on small-world networks.
Similarly, Stroud et al. (2006) modify the term represent-
ing the proportion of susceptibles in the homogeneous-
mixing model with an empirical exponent (S/N)”, where
v is estimated from simulation data. They successfully
demonstrate this approach on several urban contact
networks (Stroud et al. 2006). We choose to evaluate the
Stroud model as a representative of this class of
modifications (figure 6).

Figure 6 shows that neither of the tested modifi-
cations succeeds in capturing the disease dynamics
across all network classes and probabilities of trans-
mission. These efforts to account for contact hetero-
geneity seem somewhat ad hoc, and not justified from
‘first principles’. A flexible modification to the simple
framework must be able to capture the evolving
distributions of contacts illustrated in figure 5. During
the course of an epidemic, the epidemiologically active
portion of the network (individuals who are either
susceptible or infectious) shrinks and changes in
contact structure. The nature of this change funda-
mentally depends on the initial network structure.
The homogeneous-mixing compartmental model takes
into account the changing densities of the epidemiologi-
cally active individuals in the population (changing
values of S and ¢;), but not the changing distribution of
contacts among epidemiologically active individuals
(constant a).

Looking closer at figure 5, we observe that, in
heterogeneous networks, the average degree of infected
nodes is initially significantly higher than the average
degree in the network as a whole (all four networks have
an average degree of 10). This is because high-degree
nodes are more likely to be infected than low-degree
nodes. This value decreases as the epidemic progresses
and high-degree nodes recover from disease and thereby
are removed from the epidemiologically active portion of
the network. The average degree among susceptible
nodes likewise decreases owing to the removal of high-
degree nodes. This figure also sheds light on the mapping
of the homogeneous-mixing compartmental model onto
the regular random network model as discussed in §3. The
contact structure of the regular random graph cannot
change since all nodes have identical numbers of contacts.

In theory, the simple compartmental model can be
modified to capture this structural evolution. We recall
that the equation describing the dynamics of infected
individuals in the homogeneous-mixing compartmental
model is

I
=Syl
di RED
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where A= at,7. Our discussion above suggests that «,
which was originally defined as the number of contacts
for a typical node (i.e. the average degree in the original
network (k)), should be modified to give the average
number of contacts among currently susceptible nodes,
as given by

0‘1 = <k>5(z‘,)-

We must also modify ¢, from the fraction of currently
infected individuals to the fraction of all edges
(contacts) that lead to infected individuals. The total
number of edges leading to infected individuals at time ¢
is I(t)(k) ), where (k) is the average degree among
currently infected nodes, and the number of all contacts
in the network is N(k), where (k) is the average degree
in the original network. Thus, we define

L)k _ . (k) r(s)
N(k) © (k)

With these modifications to the model parameters, we
can redefine the force of infection as

(k) s (k) 1) s
(k) "

This modification to the standard compartmental
model (replacing the force of infection term A with 1})
is both flexible and theoretically motivated. The exact
form of A}, however, depends on the contact structure of
the population and can be found with one of two
methods. One could use analytical methods borrowed
from network modelling to estimate (or calculate
exactly) the function Aj. This would mean, however,
that an entire set of network equations would have to be
embedded within the compartmental framework,
defeating the purpose of a simple modification. Another
option would be to simulate exactly a full epidemic on
the contact network, and estimate A} by fitting linear or
quadratic functions to the values of (k) g and (k) as
a function of outbreak size from the simulation data.
Figure 6 shows that this option indeed performs better
than existing modifications, but is cumbersome in
comparison with the latest generation of network
models. Thus, we do not advocate its general use, but
present it simply to provide insight into the
mechanisms of infection during an epidemic.

!
Ly =

! !/
At = o T =

6. CONCLUSION

Homogeneous-mixing models have had a long history of
success (Anderson & May 1992) and continue to
produce valuable results. Until recently, individual-
based models have been considered computationally
prohibitive and unnecessary, given the flexibility of the
compartmental framework to analytically divide hosts
into multiple demographic classes. With the recent
development of several powerful analytical approaches
to model disease spread through heterogeneous popu-
lations, however, we must ask: what have the simplest
models been missing, if anything and which models
should we use in the future?

The answer to the first question is not as bleak as one
might fear. Epidemiologists have recently focused on
scale-free contact networks made up of a chaste
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majority and a small, highly promiscuous minority.
Human contact patterns indeed exhibit more hetero-
geneity than assumed by homogeneous-mixing models,
but they do not appear generally to be scale-free.
The diverse populations we considered above have
exponentially distributed contact patterns (figure 3).
The epidemiological behaviour of exponential networks
is typically much closer to the predictions of the
homogeneous-mixing models than that of scale-free
networks, although this depends on the transmission
rate of the pathogen (figure 2).

The answer to the second question, in some cases, is
a matter of taste. For many studies, there is a single
population (and thus a contact network) under
consideration. If the network is close to homogeneous,
the homogeneous-mixing compartmental model is a
reasonable choice, although network models are equally
tractable, and can be reduced to a few parameters by
assuming an idealized approximation for the degree
distribution (figure 2). If the population is hetero-
geneous, but falls into a few specific classes of networks,
there may be simple modifications to the homogeneous-
mixing compartmental framework that perform quite
well (e.g. Aparicio & Pascual 2007), and again one has a
choice of frameworks (figure 6). If, however, the
network is exponential or scale-free, or perhaps is not
well approximated by any of these common distri-
butions, then neither the homogeneous-mixing model
nor the modifications can adequately capture the
evolving structure of the host network (figure 5).

We have not considered several classes of more
complex compartmental models that incorporate var-
ious sources of heterogeneity in the host population.
Through additional parameters, these may perform
better than the simple models on complex host
networks, or be more easily adapted to do so. For
example, Hethcote and Yorke successfully modelled the
spread of gonorrhoea by dividing populations into
several homogeneously mixed groups based on gender
and sexual activity (Hethcote & Yorke 1984). Ander-
son and May evaluated vaccination programmes for
childhood infections using age-structured models, in
which the transmission term is replaced by a ‘who
acquires infection from whom’ matrix of transmission
rates (Anderson & May 1985). Bjornstad and Grenfell
have developed the time-series SIR (TSIR) framework
to model seasonal changes in contact patterns that
influence the spread of measles (Bjornstad et al. 2002;
Grenfell et al. 2002). Ball and colleagues introduced a
general patch model in which hosts mix at high rates
locally and at low rates globally (Ball et al. 1997).
Although these approaches have been highly successful,
we note that several of them require an a priori
categorization of individuals into epidemiological type
classes (e.g. by age, sex or location). In general, it may
be difficult to identify epidemiologically meaningful
groupings, particularly for a newly emerging disease.

When contacts are heterogeneous, it thus makes sense
to consider the growing toolkit of tractable network-
based methods that explicitly consider individual-level
contact patterns and can predict the changing structure
of a contact network as disease spreads through it. These
methods may appear intimidating, but are actually
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intuitive upon closer inspection. They enable straightfor-
ward mathematical calculations of disease transmission
dynamics through non-standard populations, and allow
detailed demographic predictions that can serve as vital
input to public health decisions.
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