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Although contact network models have yielded important insights into infectious disease transmission and
control throughout the last decade, researchers have just begun to explore the dynamic nature of contact
patterns and their epidemiological significance. Most network models have assumed that contacts are
static through time. Developing more realistic models of the social interactions that underlie the spread
of infectious diseases thus remains an important challenge for both data gatherers and modelers. In this
article, we review some recent data-driven and process-driven approaches that capture the dynamics of
human contact, and discuss future challenges for the field.
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1. Introduction

Many pathogens spread through host populations via close interactions. The interpersonal con-
tact patterns that underlie disease transmission among hosts can naturally be thought to form a
network, where links join individuals who interact with each other. All epidemiological models
make assumptions about the underlying network of interactions, often without explicitly stating
them. Contact network models, however, mathematically formalize this intuitive concept so that
epidemiological calculations can explicitly consider complex patterns of interactions. A node
in a contact network represents an individual host, and an edge between two nodes represents
an interaction (that has occurred at any point in time for any period) which may allow disease
transmission. A node’s degree is the number of edges (i.e. contacts) attached to it.

Much of the current work in network epidemiology is based on static contact networks, which
are graphs where nodes and edges remain fixed for the duration of the epidemic in the population.
Static networks assume that contacts are permanent and provide a useful tool for predicting the
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spread of disease through relatively stable populations [5,31]. However, social interactions are
often quite fluid: new connections form, while others dissolve, providing transient opportunities
for disease transmission. A dynamic representation of a contact network, in which nodes and
edges shift according to changes in the population, would reflect this reality more. Dynamic and
evolving networks have been studied in the context of social or technological networks in many
instances. Most have concentrated on how nodes create or change their links based on either
popularity of other nodes in the network [8], social distances from other nodes [33], or interaction
payoffs in a game-theoretic framework [57].

In the context of epidemiology, the dynamic nature of host contacts and related properties,
such as the order in which contacts occur and the concurrency (i.e. temporal overlap) of contacts,
can significantly influence the spread of disease through a population and the efficacy of various
intervention strategies. In this paper, we explore recent and ongoing efforts to characterize and
study the relationship between dynamic contact networks and disease transmission. In Section 2,
we consider a data-driven approach to dynamic network modelling. Specifically, we discuss
available dynamic contact data and methods for estimating dynamic network structure from such
data. Section 3 describes mechanistic approaches to modelling dynamic contact networks. Finally,
in Section 4, we discuss future challenges for the field of dynamic contact network epidemiology.

2. Building models from dynamic contact data

The dynamics of disease transmission through a networked population has received much
(deserved) attention in the field of mathematical epidemiology over the last two decades. Here,
we shift the focus from the dynamics of disease spreading through a network to the dynamics
of the underlying host network itself. In particular, we consider changes in individual contacts
and broad-scale flux in contact patterns that govern the structure of the network through which
disease spreads.

The number of longitudinal data sets that provide information about the timing, identity and
duration of contacts across a diverse host population is still limited, but there are many more
on the horizon. An example of a well-characterized dynamic contact network is one built from
records of cattle movement in the UK, which represents the movement of every animal between
cattle premises on a daily scale. For human beings, there have been several network-based studies
addressing the transmission of HIV and other sexually transmitted diseases (STDs) that have
revealed dynamic contact behaviour [54]. Also, a study by Read et al. [51] records both close
contacts (as measured by physical touch) and casual contacts (as measured by conversations) for
a small sample of individuals over 14 non-consecutive days, and thus provides information about
the network transmission of non-STDs.

Below, we discuss the representation of dynamic contact data and features of such data that
are relevant to the study of infectious disease. Although not the focus of this article, the field of
statistical network modelling has advanced the modelling of longitudinal network data using both
continuous-time and discrete-time Markov approaches such as dynamic exponential random graph
models [59] and latent space models [55]. Although motivated by sociological applications, these
methods can also help study the epidemiological consequences of dynamic contact patterns. There
are also useful algorithmic approaches to analyse the evolution of network structure through time
that were originally developed in the context of technological and information networks [1,36].

2.1. Representations of dynamic networks

A key question for epidemiological modelling is whether the interactions that underlie disease
transmission can be adequately captured by a static network model or whether their complex
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dynamics must be modelled explicitly. The importance of network dynamics depends on both
the timescale over which a pathogen spreads and the particular aspects of disease dynamics
one wishes to study [52,62]. For rapidly spreading pathogens that can cause acute infection, it
is often assumed that a static network description will suffice (e.g. [25,40]). This assumption
enables more straightforward mathematical calculations of disease dynamics and has been the
basis for much work in the field, to date. Specifically, static networks have provided insight into
problems of disease ecology [3,49], animal health problems related to foot and mouth disease and
scrapie [25], and public health problems related to severe acute respiratory syndrome (SARS),
walking pneumonia, influenza, and gonorrhea [4,6,19,39,40] among many others.

One common method for integrating dynamic contact information into a static network model
is to construct ‘time-integrated networks’ [16,40,43]. These models consider all contacts that may
have occurred within a relevant period of time (e.g. an average infectious period) and aggregate
these contacts into a single static contact network. However, different dynamic data can give
rise to the same aggregated static contact network (Figure 1). In addition, static network-based
simulation studies often assume that host individuals have contacts with a unique, fixed set of
individuals at all times during the simulation. This assumption not only takes identity of contacts to
be identical but also that contacts are repeated at every time step, allowing multiple opportunities
for transmission. In a recent study, Mossong et al. [41] showed that in a large-scale survey study
on contact behaviour, less than 50% of all contacts occurred on a daily basis, while approximately
10% of all contacts occurred for the first time (and possibly the last time). Similarly, Read et al. [51]
showed that approximately three quarters of the individuals met by study participants during a
14-day period were encountered only on one of those days.

Using UK cattle movement data,Vernon and Keeling [60] compare several static network repre-
sentations as approximations to a full dynamic network (some of which we illustrate in Figure 1).
For livestock movement, the most common representation models cattle premises as graph nodes,
and movements between premises as edges. A natural static network approximation of the full
dynamic network of cattle movement is a weighted static network in which movements are aggre-
gated over some period of time and the frequency of movements are represented as weights on

Figure 1. Static network models of dynamic networks. (a)–(d) are sequential ‘snapshots’ of a dynamic network of
contacts (lines) between individuals (circles). (e) A static network representation of the network, where edges denote
the existence of a contact in the dynamic network. (f) A weighted network representation, where the edge weights (line
thickness) indicate the number of times any two individuals are in contact. (g) Another weighted network representation,
where weights represent the number of consecutive times any two individuals are in contact.
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edges. The authors find that this simple approximation fails to reproduce the distribution of epi-
demic sizes produced by the corresponding full dynamic network model (which produces a wider
distribution) and thus caution against such simplifications when making detailed epidemiological
predictions.

Another approach which incorporates intrinsic temporal structure into static network epidemic
models is the use of line graphs. This approach was developed in the context of human STDs
(sexually transmitted diseases) to represent concurrency of sexual relationships between sexually
active individuals, and it was applied more recently in [28] to incorporate the temporal sequence
of movements between cattle premises into a static graph representation of UK cattle move-
ment. In this case, nodes represent movements (not premises) characterized by source, target,
and date of movement; and edges between these movement nodes occur when the movement
target for one node is the movement source for another on the same or later date. These network
models not only capture spatial relationships in the data (similar to other models), but also repre-
sent temporal sequence relationships, and prove to be computationally more efficient than other
models [28].

Although the methods just described provide valuable steps towards adequate and tractable
representations of dynamic network data, none are able to incorporate all of the important structural
properties. Below, we discuss some of these properties and consider their importance for infectious
disease epidemiology.

2.2. Epidemiological significance of dynamic contact patterns

For acute, close-contact infections of human beings, the dynamics of physical contacts may criti-
cally influence the extent and rate of spread. A contact, or series of contacts, can be characterized
by the following features: the duration of one contact between two specific individuals; the fre-
quency of contact events between two specific individuals; the order of contacts between pairs of
individuals within a larger group; the concurrency (that is, temporal overlap) contacts between a
particular individual and a set of other individuals; and the rate at which the identity of a contact
partner changes.

Several studies have investigated the impacts of such temporal features on epidemiological
processes. The work of Smieszek et al. [58] suggests that higher frequencies of repeated contacts
reduces epidemic size, and that this effect is stronger with low numbers of contacts or a low-
transmission probability. Read et al. [51] demonstrated that both high regularity and duration of
contacts have the same effect, using an empirical data set of physical contacts. On the other hand,
high concurrency of contacts, which has been studied intensely in the context of sexually trans-
mitted infections, leads to both faster-growing outbreaks and larger final epidemic sizes. (Recent
work, however, has sparked controversy on the role of concurrency in driving HIV epidemics in
Africa [37]). Traditional static network models predict a direct relationship between the proba-
bility of transmission between individuals and the extent of an outbreak. The results of Volz and
Meyers [62], however, suggest that the evolution of network structure through contact turnover
can produce more complex patterns of disease spread, changing our fundamental understanding
of disease dynamics [22].

These studies indicate that the dynamics of physical contacts can profoundly influence the
spread of disease and should thus be incorporated into our epidemiological models. In a sense,
contact patterns lie on a spectrum. At one extreme is infinitely fluid populations in which contacts
are instantaneous and chosen randomly, in other words, mass-action populations. At the other
extreme is rigid populations in which all contacts are permanent, in other words, static network
populations. In between lie a range of dynamic networks in which contacts may be of variable
duration and concurrency [62].
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3. Modelling dynamic contact processes

How can a contact network change? What can drive these changes? The alternative to a data-driven
approach to modelling dynamic contacts is a mechanistic process-driven approach. In this section,
we identify three classes of network dynamics (Figure 2) that are relevant to infectious disease
epidemiology and review modelling approaches that incorporate these processes mechanistically.
There are several ways in which network topology can change: the complete addition or removal
of a node along with all of its edges, the addition or removal of an edge, or the rewiring of nodes
by switching the destination(s) of one or more edges. While these changes occur at the scale
of interaction between individuals, they may also have farther reaching impacts on larger-scale
network structures and properties (such as clustering and centrality measures, or path length).

3.1. Extrinsic forces on network structure

Extrinsic processes, independent of the host-pathogen interaction, can reshape a host population.
These include: (a) demographic changes, such as births and deaths that create and remove nodes
and edges, respectively, or aging which can rewire a network through behavioural changes; (b)
changes in social relationships which may add, remove, or rewire edges; (c) migration or host
mobility, which may add or remove nodes and/or rewire edges; (d) seasonal changes in host social
behaviour and contact rates, such as school sessions and holidays; (e) long-term socially or eco-
nomically driven changes, such as changes that can be observed in livestock movement patterns
over time [53] or the proliferation of air travel and subsequent changes in global transport networks.
These changes may occur over a range of timescales; and their importance depends on the relative
timescale of within-host infection dynamics and between-host disease spread and recurrence.

The most well-studied example of an extrinsic change driving disease dynamics is the replenish-
ment of susceptibles by new births. Following a large disease outbreak which depletes a susceptible

Figure 2. Classes of network dynamics. Extrinsic changes: (a) Births add new nodes and edges to a network and deaths
remove them, while migration events can add and remove nodes and edges; (b) changes in social behaviour or seasonal
patterns in mixing can add or remove edges, or rewire existing edges. Pathogen-mediated changes: (c) if infection confers
subsequent immunity, recovered and immune individuals are removed from the epidemiologically active portion of the
network; (d) when individuals withdraw from social interaction due to infection, their contacts (edges) decrease. Public
health-mediated changes: (e) vaccination removes nodes and their connecting edges from the population; (f) avoidance
of infected individuals may reduce contacts or replace contacts to infected nodes with contacts to susceptible nodes; (g)
while school or workplace closures directly reduce contacts that would have otherwise occurred, they may inadvertently
decrease social distances by causing new contacts to form elsewhere.
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host population to a level where disease transmission is no longer sustained (that is, below an epi-
demic threshold), a subsequent outbreak may become possible only after an influx of new births.
The apparently regular recurrence of childhood disease outbreaks is thought to be maintained by
the constant replenishment of susceptible populations through new births (e.g. [15,26]).

Recently, infectious disease modellers have focused on the epidemiological impacts of mobility
and travel patterns (particularly due to air travel). The work of Colizza et al. [17] and Viboud
et al. [61] has shown that global connectivity patterns drive the diffusion of infectious diseases on
large scales. Most of these models, however, do not consider dynamic changes in individual-level
network connectivity.

There have been numerous studies investigating the network structures underlying the spread
for sexually transmitted infectious diseases. Early work modelling STI (sexually transmitted infec-
tion) dynamics involved stochastic models which included partnership dynamics and transmission
probabilities that depended on both the contact rate in a pair and the duration of partnership [18,34].
The work of Altman [2] extends the classical susceptible-infections-recovered (SIR) epidemic
model to allow for disease transmission through a population with dynamic extended duration
partnerships. This model did not allow for heterogeneous network structure, but did incorpo-
rate varying numbers of concurrent partners across the population. Eames and Keeling [19]
have developed a pair-approximation framework to study serial monogamy in a population
and includes heterogeneity in numbers of concurrent contacts. Their model is based on the
novel idea of potential versus active partnerships: individuals are embedded in a fixed set of
potential sexual partnerships, which may or may not be active; passive partnerships become
active and occur one at a time. In addition to the variables counting numbers of individuals
(e.g. [S] for susceptible individuals) and pairs of individuals (e.g. [SI] for susceptible-infected
pairs) as in the standard SIS pair-approximation model [30], Eames and Keeling further label
individuals with numbers of potential partners and the type of partnership (i.e. active or pas-
sive). So, for example, susceptible individuals with n potential partners who are in an active
relationship would be tracked by [Sn

A] . In addition, relationships activate and deactivate at hetero-
geneous rates αn,m and ρn,m between individuals with n and m partners. This approach cleverly
incorporates partnership formation and dissolution as well as disease transmission and recov-
ery, but is limited by the high dimensionality of the mathematical system (which has on the
order of d2

max equations, where dmax is the highest number of contacts for any individual in the
population).

Recently, Volz and Meyers [62,63] have developed a simple ODE framework called the neigh-
bour exchange (NE) model to model SIR dynamics in a class of dynamic networks where
individuals have a characteristic behaviour (i.e. contact number) but the identities of their contacts
change over time (at a constant rate ρ). The NE model incorporates a continuous-time version
of the concept of edge-rewiring [38,65]: an edge rewiring consists of removing two edges (A–B
and C–D) and replacing them with the reciprocal pair of edges (A– and B–D). Altering the rate,
ρ, at which random edge rewirings occur allows the model to capture different levels of mixing
and to smoothly interpolate between static network models and mass-action models. Volz and
Meyers [63] have used the model to rigorously explore the use of static versus dynamic networks,
and found that a static network approach offers a reasonable approximation only for relatively
static populations (low ρ). Their paper also demonstrates how one might estimate empirical con-
tact and mixing rates from sociological data, using a sexual contact data set from a high school
in Atlanta, Georgia that experienced a syphilis outbreak [62]. They define tij to be the duration
of contact between individual i and individual j , and estimate a mean contact duration from the
data, 〈tij 〉. The NE model assumes that contacts turnover at a constant rate, ρ, and thus that the
duration of contact should be exponentially distributed with mean 1/ρ which they estimate by
〈tij 〉. Extensions of the Volz and Meyers model might include heterogeneity in the number of
concurrent contacts as well as correlations in edge rewiring.
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3.2. Impacts of public health intervention on network structure

The second class of structural changes are those caused by the public or animal health interventions
and control. Changes may be mediated either by individual choice or health policy and can have
local and or population scale effects. Interventions such as closing schools and other public places
attempts to eliminate potential contacts between individuals in a population, thereby pruning a
large number of edges from the underlying contact network. Interventions such as immuniza-
tion and the use of antibacterial or antiviral drugs can potentially remove immunized or treated
individuals, along with all their contacts, from the chains of transmission. The structural impacts
and effectiveness of such intervention strategies has been studied extensively using static network
approaches [4,6,19,35,39,40,47,48]. For infectious respiratory diseases, Pourbohloul et al. [48]
describe a general network-based framework for evaluating large-scale mitigation strategies. They
focus on the epidemic threshold Tc, which is a critical transmission probability, above which epi-
demics are possible and below which epidemics are highly unlikely. The value of the threshold
depends on the structure of the host contact network. In general, sparser networks have higher
epidemic thresholds and are thus less vulnerable to the spread of disease. The paper asserts that
a primary goal of public health measures should be to raise the epidemic threshold of the popu-
lation above the transmissibility of the circulating pathogen, thereby mitigating the epidemic or
averting it entirely. This can be achieved through transmission-reducing interventions, such as the
use of face masks, gloves, gowns, and handwashing, which reduce the probability of transmission
along each edge of the network where the control is carried out but do not fundamentally alter
the topology of the network; or it can be achieved through contact-reducing interventions, such
as school closures, social distancing, or vaccination, that result in pruning the network through
the removal of contacts (i.e. edges) for individuals participating in the intervention.

Individual-level avoidance behaviour has also been studied using epidemiological network
models with edge rewiring, and has been shown to impact epidemic size and timing [27,56,66].
These models mimic illness avoidance by replacing infected contacts of susceptible individu-
als with other randomly chosen susceptible individuals. Edge rewiring is not done completely
randomly as in the NE model, but instead depends on the changing epidemiological status of
nodes in the network. Using a pair-approximation framework, Gross et al. [27] show that such
adaptive rewiring leads to modular network structure (consisting of highly intraconnected but
only loosely interconnected sub-networks), a wide degree distribution and degree assortavity
(a positive correlation in degree between pairs of linked nodes). This reveals two means by
which avoidance behaviour can counterintuitively exacerbate epidemics: degree correlations can
decrease the effectiveness of targeted vaccination; and high intraconnectivity of the susceptible
cluster enables the persistence of epidemics even below the epidemic threshold [27]. However,
Shaw and Schwartz [56] show that infections are reduced due to self-isolation, and that for an
appropriate choice of parameters, bistability between the disease-free equilibrium and endemic
state can be observed, in contrast to SIS dynamics in static networks where either a single attract-
ing endemic or disease-free state exists. In another model [66], susceptible-infective contacts are
broken (rather than rewired) and later reconnected at random. This also leads to bistability and
other dynamics not observed in static network models. While these models are quite interest-
ing, it is not yet clear if and how they pertain to real-world behavioural responses to ongoing
epidemics.

3.3. Pathogen-mediated changes in network structure

While extrinsic processes and public health interventions can alter the contact network over which
a pathogen spreads, and can have significant impact on disease consequences, pathogen spread
itself can also alter the host contact structure. We differentiate pathogen-mediated changes from
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Figure 3. The topological impact of various dynamic processes in an urban contact network. We measure structural
impact in terms of node degree (i.e. number of edges) (left panels) and clustering coefficient (i.e. the propensity of
triangles, measured as the fraction of triples for a node that are closed) (right panels) across the network. In the top panels,
we compare random vaccination and school closure. In the bottom panels, we compare infection-acquired immunity (a
pathogen-mediated change) to avoidance-behaviour (a public-health measure).

interventions such as avoidance behaviour (which are clearly also driven by the disease spread)
by defining them in terms of change occurring at infected nodes and their edges. This focus on
infected rather than susceptibles proves to have a crucially different impact on network topology
(Figure 3). Immunizing pathogens such as measles and influenza in human beings or foot and
mouth disease virus in livestock confer resistance to reinfection by the same pathogen, making
recovered individuals irrelevant in future chains of transmission. In the simplest case of a naive
population and a fully immunizing pathogen, disease outbreaks restructure the epidemiologically
active portion of their host population by effectively removing infected individuals (the node and
all connecting edges) from the network. This particular change in network topology is mediated
by pathogen spread and is preferentially removes highly connected individuals in the network
[3,10,23,45]. This and more complex structural change due to naturally acquired immunity can
be studied by calculating the structures of the residual networks made up of remaining susceptible
individuals and the contacts between them [3,23,49]. Ferrari et al. [23] characterized the structural
evolution of a network due to an epidemic in terms of frailty (the degree to which highly connected
individuals are more vulnerable to infection) and interference (the extent to which the epidemic
cuts off connectivity among the susceptible population that remains following an epidemic).
Specifically, at the end of an epidemic, frailty is given by the scaled difference between the
mean degree of remaining susceptible nodes and the mean degree of the original network; and
interference is the scaled difference in the mean degree of remaining susceptible nodes and the
average number of connections among the remaining susceptible nodes. The evolution of the
susceptible network over the course of an epidemic differs among the classes of networks; frailty,
relative to interference, accounts for an increasing component of network evolution on networks
with greater variance in contacts.
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An epidemic can profoundly reshape a contact network, and thereby impact the potential for
future disease emergence as well as the disease dynamics and the viability of various intervention
strategies should future outbreaks occur [3,44]. A recent analysis of historical data from twentieth
century influenza pandemics demonstrated that infection-acquired immunity can indeed lead to
a significant structural change in the host contact structure and shift the burden of disease to
different portions of the population [6]. In the longer term, repeated epidemics and demographic
processes as well as adaptation of the pathogen may lead to the co-evolution of pathogen and host
network structure [3,49,50].

Pathogens may also restructure their host contact network by mediating changes in host
behaviour. A well-known example is that of rabies causing infected hosts to be aggressive and
more likely to bite (thus increasing chances of transmission). In contrast, the common cold is
thought to cause infected hosts to refrain ‘voluntarily’ from social interaction (thus decreasing
chances of transmission). Although alterations of host behaviour have been widely studied from
a disease ecology perspective, little data exist about the individual-level impact of this change
on network structure. It is unknown, for example, if change in contact behaviour due to disease
symptoms leads to a reduction in contacts or a rewiring of contacts, or both. A better understand-
ing of such behaviours and of their impacts on network structure might allow us to design more
effective public health measures.

3.4. Topological impact of changes

Each of the dynamical processes described above causes one or more topological changes to the
underlying: node additions/deletions, edge addition/deletions, or edge rewirings. The magnitude
and nature of the changes, however, can significantly impact large-scale topological features of
the network (and thereby influence disease dynamics). In Figure 3, we consider a few of these
perturbations using a synthetic respiratory-disease contact network based on data fromVancouver,
Canada [40]. We measure structural impact in terms of the distribution of node degrees (i.e.
number of edges) and clustering coefficients (i.e. the propensity of triangles) across the network.
In the top panel, we consider the effect of random vaccination versus school closure as a targeted
contact-reducing intervention. While random vaccination makes the degree of all vaccinated
nodes zero and shifts the entire degree distribution to the left, it has only a small impact on the
clustering coefficient distribution. School closure, on the other hand, affects the network structure
through high-degree individuals such as children and school staff [4] and thus dramatically alters
the degree distribution and shifts the clustering coefficient distribution slightly to the right: high
contact individuals lose contacts and switch into lower degree classes and existing contacts appear
relatively more clustered due to the reduction in edges. In the lower panel of Figure 3, we compare
two processes driven by disease spread, avoidance behaviour, and infection-acquired immunity.
The network change centred at susceptible nodes (avoidance behaviour) has little effect on network
topology, while the one focused on infected nodes (infection-acquired immunity) drastically
breaks down network connectivity, reducing both average degree and clustering.

Although Figure 3 provides some insight into the topological signatures left behind by each
of these dynamic processes, we stress that the epidemiological consequences of each process is
less obvious. Results showed in [23], for example, demonstrate that infection-acquired immunity
due to a prior epidemic results in greater population protection in a heterogeneously structured
population, while random vaccination leads to smaller epidemics in highly structured small-world
populations. While much of the discussion of network epidemiology has focused on connectivity
as measured by degree, these results suggest that higher order structural properties, such as
clustering, can have important implications for the epidemiological evolution and robustness of
populations.
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4. Discussion

The field of network epidemiology has matured in the last decade; and dynamic network modelling
stands as a major challenge for both data gatherers and modellers going forward. On the data
collection side, there are very few studies that provide data on contact patterns relevant to the
spread of human infectious disease [12,13,20,41,46,51,64]. Collecting detailed and longitudinal
contact data sufficient to construct a dynamic network represents a significantly greater challenge
[29,51]. A unique example of a data set sufficient for estimating dynamic network structure
includes extensive records of livestock movement among agricultural premises throughout the
UK and other European nations [7,14,32,42]. This has resulted from a large-scale effort to trace
livestock movements for the purposes of disease surveillance and control, and has been made
possible by a technological passport system for livestock. Similarly rich data sets may emerge
from the development and use of human tracking devices (e.g. cell phones, GPS, RFID, etc.) [9,24].
These technologies provide population scale data from which dynamic interaction patterns can
be inferred, and the use of such data for epidemiological modelling may be very informative if
disease-causing contacts are inferred appropriately from the proximity data.

As data revealing to dynamic contact patterns are slowly becoming available, modellers need
to improve the analytical and computational toolkit with which we study disease dynamics in
complex populations. Recent analytic models of infectious diseases spreading through particular
classes of dynamic networks (e.g. [11,52,62]) provide important initial steps in this direction,
but we still lack a mathematical framework that tractably handles a broad range of realistic
dynamic networks. While some have argued that agent-based simulations may reduce the need
for analytical models of this kind [21], agent-based approaches face significant algorithmic and
computational problems with respect to network representation, measurement of topological fea-
tures, and dynamical models for pathogen spread. Advances in data-driven analytic modelling
would avert some of these challenges while providing a general understanding of the relationship
between contact dynamics and disease spread.

Through collection and analysis of better data, and analytic modelling of disease dynamics in
dynamic networks, the field can address two relevant questions: (1) how does network topology
evolve in response to various intrinsic and extrinsic processes? and (2) how do these topological
changes influence the spread and evolution of infectious disease pathogens? In addition, such work
will allow us to identify situations in which the dynamic nature of a contact network will matter
and thus should be explicitly estimated, modelled, and/or targeted by public health measures.
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