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c We develop a contact network approach to study the spread of partially-immunizing infections.
c Such pathogens restructure the host contact network in a highly preferential manner.
c Leaky immunity confers greater herd immunity at moderate pathogen transmissibility than polarized immunity.
c Heterogeneous contact patterns increase the probability that a pathogen can re-invade the host population.
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a b s t r a c t

Many pathogens spread primarily via direct contact between infected and susceptible hosts. Thus, the

patterns of contacts or contact network of a population fundamentally shape the course of epidemics.

While there is a robust and growing theory for the dynamics of single epidemics in networks, we know

little about the impacts of network structure on long-term epidemic or endemic transmission.

For seasonal diseases like influenza, pathogens repeatedly return to populations with complex and

changing patterns of susceptibility and immunity acquired through prior infection. Here, we develop

two mathematical approaches for modeling consecutive seasonal outbreaks of a partially-immunizing

infection in a population with contact heterogeneity. Using methods from percolation theory we

consider both leaky immunity, where all previously infected individuals gain partial immunity,

and polarized immunity, where a fraction of previously infected individuals are fully immune.

By restructuring the epidemiologically active portion of their host population, such diseases limit the

potential of future outbreaks. We speculate that these dynamics can result in evolutionary pressure to

increase infectiousness.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Immunity acquired via infection gives an individual protection
from subsequent infection by the same or similar pathogen for
some period of time. For diseases such as measles, varicella
(chickenpox), mumps and rubella, complete immunity lasts a
lifetime. Therefore, an individual who has been infected by one of
these pathogens, once recovered, cannot be reinfected, nor
transmit the infection again. For other diseases, immunity wanes
with time, leaving previously infected individuals only partially
protected against reinfection (called partial immunity). This degra-
dation of immunity may be caused by antigenic variation in the
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circulating pathogen or loss of antibodies over time. The transi-
tion from complete to partial immunity can happen over different
timescales: over a few weeks as with norovirus and rotavirus
(White et al., 2008), over months or a few years as with influenza
(Hope-Simpson, 1992), or over many years as with pertussis
(van Boven et al., 2000). Here, we present new methods for
modeling the epidemiological consequences of partial immunity.

Although partial immunity is not well-understood, there is
evidence that partial immunity functions in one of two ways:
leaky or polarized. For a degree of partial immunity q, leaky
partial immunity implies that each immunized individual reduces
their chances of getting reinfected and infecting others by a
proportion q, whereas polarized partial immunity implies that a
fraction q of immunized individuals enjoy full protection from
reinfection and the remaining ð1�qÞ fraction are completely
susceptible. Leaky partial immunity is expected to be the more
common of the two, and more consistent with our understanding
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Fig. 1. A schematic of pathogen niche construction. Infection-acquired immunity

and pathogen evolution shape the host population and future disease dynamics.

Specifically, during an outbreak, infected individuals may acquire immunity to the

circulating strain, thereby reshaping the epidemiological structure of the popula-

tion for future outbreaks (medium gray arrow); the epidemiological structure of

the population, in turn, directly constrains future outbreak dynamics (light gray

arrow) and drives antigenic evolution of the pathogen (black arrow), thereby

indirectly fueling the spread of disease to previously immunized individuals.
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of the immune system (Kaufmann et al., 2002). Polarized partial
immunity is less common, but can occur if some individuals are
unable to mount a lasting immune response to an otherwise fully
immunizing disease. It has been observed, for example, in vaccine
and animal studies for varicella, meningococcal infection (Chaves
et al., 2007), and Hepatitis C (Bukh et al., 2008; Farci et al., 1992).

Partial immunity may impact the host in multiple ways, and
have far-reaching implications for the transmission of a disease
through a population. Specifically, it can decrease one or both of
two fundamental epidemiological quantities: infectivity, the prob-
ability that an infected individual will infect a susceptible indivi-
dual with whom he or she has contact; and susceptibility, the
probability that a susceptible individual will be infected if
exposed to disease via contact with an infected individual.
In mathematical models, the probability of transmission (trans-

missibility) during a contact between an infected and susceptible
individual is often represented as a product of the infectivity of
the infected node and the susceptibility of the susceptible node.
Partial immunity can limit transmissibility either by lowering the
probability of reinfection or reducing the degree to which an
infected individual sheds the pathogen. Both, for example, occur
in the case of influenza (Shulman, 1970; Clements et al., 1986).

Mathematical modeling of infectious disease dynamics has
been dominated by the Susceptible-Infected-Recovered (SIR)
compartmental model (Kermack and McKendrick, 1927) which
considers infectious disease transmission in a closed population
of homogeneously-mixed individuals. Contact network epide-
miology is a tractable and powerful mathematical approach that
goes beyond homogeneous-mixing and explicitly captures the
diverse patterns of interactions that underlie disease transmission
(Barbour and Mollison, 1990; Watts and Strogatz, 1998; Pastor-
Satorras and Vespignani, 2001; Meyers et al., 2005; Shirley and
Rushton, 2005; Bansal et al., 2007). In this framework, the host
population is represented by a network of individuals (each
represented by a node) and the disease-causing contacts (repre-
sented by edges) between them (Fig. 2(a)). The number of
contacts (edges) of a node is called its degree, and the distribution
of degrees throughout the network fundamentally influences
where and when a disease will spread (Meyers et al., 2005;
Newman, 2002; Bansal et al., 2007). The traditional SIR model
has been mapped to a bond percolation process on a contact
network, in which individuals independently progress through S, I,
and R stages if and when disease reaches their location in the
network (Newman, 2002). The bond percolation threshold corre-
sponds to the epidemic threshold, above which an epidemic
outbreak is possible (i.e., one that infects a non-zero fraction of
the population, in the limit of large populations); and the size of
the percolating cluster (or giant component) above this transition
corresponds to the size of the epidemic. The standard bond
percolation model for disease spread through a network, how-
ever, assumes a completely naive population without immunity
from prior epidemics (Newman, 2002).

Compartmental Susceptible-Infected-Recovered-Susceptible
(SIRS) models extend the traditional homogeneous-mixing SIR
model to consider the eventual loss of complete immunity
acquired through infection (Hoppenstead and Waltman, 1971;
Waltman, 1974; Grassly et al., 2005). Compartmental models of
partially immunizing infections have been developed in the
context of particular pathogens such as influenza (Recker et al.,
2007; Levin et al., 2004; Nuno et al., 2008). These models include
two strains of the circulating pathogen and are either history-
based (that is, they assume leaky partial immunity) (Andreasen
et al., 1997; Ballesteros et al., 2009) or status-based models (that
is, they assume polarized immunity) (Gog and Swinton, 2002;
Ballesteros et al., 2009). While these studies have provided
valuable insights into the impacts of antigenic variation and
immunity on epidemic dynamics, they are limited by the assump-
tions of homogeneous-mixing.

Researchers have just begun to use network models to explore
the dynamics of trans-seasonal cross-immunity. While there has
been scant theoretical treatment of partially immunizing infec-
tions, network SIS models assume that individuals immediately
and completely lose immunity at the time of recovery from
infection (Pastor-Satorras and Vespignani, 2001; Eames and
Keeling, 2002). Lattice and small world network models have
also been used to study the relationship between population
structure and pathogen evolution, and most concur that connec-
tivity enhances the evolution of infectivity and virulence (Boots
and Sasaki, 1999; Boots and Mealor, 2007; Read and Keeling,
2006, 2003; Haraguchi and Sasaki, 2000).

In this paper, we extend the bond percolation framework to
incorporate infection-acquired immunity into a network model.
We model both polarized (Section 2.1) and leaky (Section 2.2)
partial immunity, and show that the two models are identical in
the cases of no immunity or complete immunity, but make very
different predictions for partial immunity. We then consider the
impact of infection-acquired immunity in a heterogeneous and
structured host population on both future epidemiological and
evolutionary dynamics. The evolution of infectiousness, virulence
and a pathogen’s antigenic characteristics are in part driven by
the epidemiological environment. Although the interactions
between contact network structure and pathogen evolution and
competition have been studied (Boots and Sasaki, 1999; Read and
Keeling, 2003; van Baalen, 2002; Buckee et al., 2004; Nunes et al.,
2006), we do not yet understand how prior outbreaks impact
future disease dynamics by shaping the immunological structure
of the underlying host contact network (Fig. 1). Feedback from an
evolving organism to its own ecological and evolutionary envir-
onment is known as ‘‘niche construction’’ (Odling-Smee et al.,
2003; Boni and Feldman, 2005); and here we use our new models
to explore niche construction by immunizing pathogens. Our
work captures the preferential impact of immunity on the highly
connected portion of the population, and highlights the difference
between waning immunity and replenishment of susceptibles
due to births, two effects that cannot be distinguished in homo-
geneous-mixing models.
2. Methods: incorporating infection-acquired immunity into
a network model

We present two mathematical approaches to modeling partial
immunity. First, we model polarized partial immunity by
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completely removing a fraction of the individuals (their nodes
and edges) who are infected during an epidemic (Fig. 2(b)) from
the network. Using the standard bond percolation model, we then
derive epidemiological quantities for a subsequent outbreak in the
immunized population. Second, we model leaky partial immunity
using a new two-type bond percolation model. The underlying
contact network topology remains intact, but nodes are classified
either as partially immune or susceptible (Fig. 2(c)). In both
models, we assume that both infectivity and susceptibility are
reduced due to immunity, but the leaky partial immunity model
can be easily adapted to consider other scenarios.

Below, we use both models to consider dynamics in three
random networks of specified degree distributions: (a) Poisson,
with degree distribution pk ¼ e�llk=k!; (b) exponential, with
degree distribution pk ¼ ð1�ekÞe�kðk�1Þ; and (c) scale-free, with
degree distribution pk ¼ k�g=zðgÞ, each with a mean degree of 10.
Bond percolation is exact on infinite random graphs of the given
structure, and all model predictions are verified using stochastic
simulations which assume a simple percolation process with
matching parameters on finite random graphs of the specified
degree structure.

2.1. Polarized partial immunity

Polarized partial immunity, sometimes known as ‘‘all-or-
nothing’’ partial immunity or perfect immunity, implies that for
a partial immunity level ð1�aÞ, a fraction ð1�aÞ of the infected
population are fully immune to reinfection (and thus transmis-
sion) and the remaining proportion a are fully vulnerable to
reinfection (and transmission to others thereafter.) In terms of a
contact network, this means that a fraction of the previously
infected nodes are now completely removed (along with their
edges) from the contact network and are no longer a part of the
transmission process. The residual network, introduced in Ferrari
et al. (2006) and Newman (2005) models this phenomenon.
Previously, we characterized the residual network as the network
made up of uninfected individuals and the edges connecting them
Ferrari et al. (2006), as we assumed that all infected individuals
epidemic

Fig. 2. Epidemiological contact networks. (a) Prior to an initial epidemic, all

individuals are fully susceptible to disease (gray nodes). Then some individuals

become infected during the epidemic (red nodes). (b) Polarized partial immunity

(at 50%) means that half of the previously infected individuals are fully protected

against reinfection, while the other half are fully susceptible again. (c) Leaky

partial immunity (at 50%) means that all nodes remain in the network, but the

edges leading to and/or from previously infected individuals are half as likely to

transmit disease (illustrated here with the lighter edges.)
had gained full immunity to infection and thus could be fully
removed (along with their edges) from the transmission chains of
future epidemics. Here, we extend the description of the residual
network to include not only uninfected nodes, but also nodes that
were previously infected but have lost immunity. We apply bond
percolation methods to this extended residual network to model
the spread of a subsequent outbreak in a population that has
already suffered an initial outbreak.

The simple Susceptible-Infectious-Recovered (SIR) bond per-
colation model allows us to derive fundamental epidemiological
quantities. These quantities are simply based on the average
transmissibility T of the pathogen (that is, the average probability
that an infected node will transmit to a susceptible contact
sometime during its infectious period) and the degree distribu-
tion of the host contact network, denoted fpðkÞg where pðkÞ is the
fraction of nodes with degree k. In particular, we can calculate the
epidemic threshold (TcÞ for a given network, above which a large-
scale epidemic is possible; this is closely related to the traditional
epidemiological quantity, R0. We can also find the expected size of
small outbreaks below this threshold and the expected size of an
epidemic above the threshold (Newman, 2002). We will apply
this method to calculate epidemic quantities for two consecutive
seasons, and use subscripts 1 and 2 to denote initial and
subsequent outbreak, respectively. Specifically, T1 and T2 denote
the average transmissibilities of the pathogen in each season,
respectively, and allow for evolution of infectiousness from one
season to the next; p1ðkÞ and p2ðkÞ denote the fraction of
susceptible nodes with k susceptible contacts prior to the first
and second seasons, respectively; and u1 and u2 denote the
fraction of contacts that remain uninfected following each out-
break (see Supplementary Information for calculation). We
assume that all nodes are susceptible prior to the first season
and that a is the proportion of infected individuals who have lost
immunity following the first season.

Next, we derive the degree distribution of the residual net-

work, that is, the susceptible portion of the network following
the initial outbreak. The probability that an individual of degree
k will remain uninfected after the first epidemic is given by
Z1ðkÞ ¼ ð1�T1þT1u1Þ

k (Meyers et al., 2005 and Supplementary
Information). For a randomly chosen individual in the network,
this probability is Z1 ¼

P
kp1ðkÞZ1ðkÞ. The nodes in the residual

network (residual nodes) include the fraction Z1 of nodes that are
not infected in the first season and the fraction ð1�Z1Þa of nodes
that are infected but rapidly lose immunity, prior to the second
outbreak. We refer to these as uninfected and re-susceptible

nodes, respectively. The edges in the residual network (residual

edges) include all edges in the original network that connect
residual nodes to each other. The proportion of residual nodes
with l residual edges just prior to the second outbreak is given
by

p2ðlÞ ¼

P
kZ l p1ðkÞðZ1ðkÞp2ðl9k,uninfectedÞþað1�Z1ðkÞÞp2ðl9k,re�susceptibleÞÞP

kp1ðkÞðZ1ðkÞþað1�Z1ðkÞÞÞ

ð1Þ

where p2ðl9k,uninfectedÞ and p2ðl9k,re-susceptibleÞ are the prob-
abilities that a residual node has l residual edges given that it
originally had degree k and given that it is uninfected or re-
susceptible, respectively, following the first season. The equa-
tions for these conditional probabilities explicitly consider the
disease status of the residual node. For uninfected nodes, we
know that none of the neighboring nodes transmitted disease to
the focal node; for re-susceptible nodes, we know that one
neighbor transmitted disease to the focal node and the focal
node may have transmitted disease to some of its other neigh-
bors. (Details provided in Supplementary Information.) Specifi-
cally, the probabilities that an uninfected or re-susceptible node



 

  

Fig. 3. The probability generating functions give the numbers of A and B contacts

for each type of vertex (top). The four excess degree distributions give the

numbers of each type of contact for a vertex chosen by following a uniform

random edge (bottom).
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has l residual edges, given that it had k edges in the original
network (prior to the first season), with kZ l, are given by

p2ðl9k,uninfectedÞ ¼
k

l

� �
ðu1þð1�u1ÞaÞlðð1�u1Þð1�aÞÞk�l

p2ðl9k,re-susceptibleÞ ¼

ð1�aÞtðk�1Þ l¼ 0

a k�1
l�1

� �
sðl�1Þtðk�1Þ�ðl�1Þ

� �
þð1�aÞ k�1

l

� �
sltðk�1Þ�l

� �
lA ½1,k�1�

asðk�1Þ l¼ k

8>>>><
>>>>:

where, s¼ ðu1ð1�T1Þð1�aÞþaÞ and t¼ ðð1�u1þT1u1Þð1�aÞÞ are
the probabilities that a random edge of a re-susceptible node
(other than the edge connecting to the neighbor that originally
infected the re-susceptible node) is residual or non-residual,
respectively. p2ðl9k,re-susceptibleÞ explicitly assumes that each
re-susceptible node was infected by one of its neighbors during
the initial epidemic. This transmitting neighbor was necessarily
infected during the first epidemic, and subsequently lost immu-
nity with probability a for the case l¼k or retained immunity
with probability (1�a) for the case l¼0. We note that
p2ðl90,re-susceptibleÞ ¼ 0, since nodes without contacts in the
original network cannot be infected.

The residual degree distribution fp2ðlÞg thus reflects the epide-
miologically active portion of the population following the initial
epidemic. Although the residual network differs from the original
contact network in degree distribution, component structure and
other topological characteristics, it is still reasonable to model it
as a semi-random graph using bond percolation methods
(Newman, 2002), even if the original network is a non-random
empirical network (see Supplementary Information).

Next, we use standard bond percolation techniques (Newman,
2002) to derive key epidemiological quantities for a subsequent
outbreak. First we present an equation for the epidemic threshold,
that is, the critical value of transmissibility above which a second
epidemic is possible, given that previously infected individuals
have polarized immunity. It is a function of the residual degree
distribution fp2ðlÞg, which incorporates the original network
topology and the loss of immunity, a, and is given by

ðTc
2Þpolar ¼

P
llp2ðlÞP

llðl�1Þp2ðlÞ
:

If the second outbreak strain is below this threshold, then there
are only small outbreaks, which, on average, have size

/sSpolar ¼ 1þ
T2
P

llp2ðlÞ

1�T2=ðT
c
2Þpolar

:

Above the epidemic threshold, we may have large-scale epi-
demics with expected size

1�
X

l

p2ðlÞu
l
2

where u2 is the probability that a random edge in the residual
network leads to a node which was uninfected in the second
outbreak (see Supplementary Information). Thus the overall
proportion of the population expected to become infected during
a second epidemic, assuming polarized partial immunity at a level
ð1�aÞ is given by

ðS2Þpolar ¼ ðZ1það1�Z1ÞÞ 1�
X

l

p2ðlÞu
l
2

 !

where Z1 represents the size of the population which was
uninfected in the first outbreak and að1�Z1Þ is the proportion of
the population that was infected in the previous outbreak but has
lost immunity.
2.2. Leaky partial immunity

To model leaky partial immunity, we reduce the probabilities
of reinfection and transmission for all nodes infected in the first
epidemic. Rather than deleting nodes and attached edges entirely
(as above), we introduce a two-type percolation approach in
which the parameters of disease transmission depend on the
epidemiological history of both nodes involved in any contact.

2.2.1. Two-type percolation

The standard bond percolation model of Newman (2002)
assumes that, all nodes of a given degree k are homogeneous
with respect to disease susceptibility and all edges are homo-
geneous (probabilities of transmission along edges are i.i.d.
random variables with mean T). We extend the basic model to
allow for two types of nodes, we call them A and B; and four types
of edges, AA, AB, BA, BB, connecting all combinations of nodes.
Allard et al. (2009) also discuss a general extension of this type.
We use pij to denote the joint probability that a uniform random
type A node has i edges leading to other type A nodes and j edges
leading to type B nodes (where i the A-degree of the node and j

the B-degree of the node). Similarly, qij denotes the joint prob-
ability of a type B node having an A-degree of i and a B-degree of j.
The multivariate probability generating functions (PGFs) for these
probability distributions are given by

f Aðx,yÞ ¼
X

pijx
iyj

f Bðx,yÞ ¼
X

qijx
iyj:

While fA and fB describe the distribution of degrees of
randomly chosen A and B nodes, the degree of a node reached
by following a randomly chosen edge is measured by the its
excess degree (Newman, 2002). The PGFs for the A-excess degree
and the B-excess degree of A and B nodes are given by

f AAðx,yÞ ¼

P
ipijx

i�1yjP
ipij

, f BAðx,yÞ ¼

P
jpijx

iyj�1P
jpij

f ABðx,yÞ ¼

P
iqijx

i�1yjP
iqij

, f BBðx,yÞ ¼

P
jqijx

iyj�1P
jqij

as illustrated in Fig. 3.
Having formalized the structure of the contact network in

PGFs, we can now derive the distributions for the number of
infected edges, which are edges over which disease has been
successfully transmitted. We assume that for each edge type (XY),
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transmission probabilities are i.i.d. random variables with
averages denoted TXY, and that these values can vary among the
four edge types. Then the PGFs for the number of infected
(‘‘occupied’’) edges emanating from a node of type A and B are,
respectively

f Aðx,y; TAA,TABÞ ¼ f Aðð1þðx�1ÞTAAÞ,ð1þðy�1ÞTABÞÞ

f Bðx,y; TBA,TBBÞ ¼ f Bðð1þðx�1ÞTBAÞ,ð1þðy�1ÞTBBÞÞ:

Each of these generating functions was derived following the
arguments outlined in Newman (2002) for the simple bond
percolation SIR model. We can similarly derive the PGFs for the
number of infected excess edges emanating from a node of type A

(B), at which we arrived by following a uniform random edge
from a node of type A (B):

f AAðx,y; TAA,TABÞ ¼ f AAðð1þðx�1ÞTAAÞ,ð1þðy�1ÞTABÞÞ

f BAðx,y; TAA,TABÞ ¼ f BAðð1þðx�1ÞTAAÞ,ð1þðy�1ÞTABÞÞ

f ABðx,y; TBA,TBBÞ ¼ f ABðð1þðx�1ÞTBAÞ,ð1þðy�1ÞTBBÞÞ

f BBðx,y; TBA,TBBÞ ¼ f BBðð1þðx�1ÞTBAÞ,ð1þðy�1ÞTBBÞÞ:

The PGFs for outbreak sizes starting from a node of type A or B,
respectively, are then given by

FAðx,y; TAA,TABÞ ¼ xf AðFAAðx,y; fTgÞ,FABðx,y; fTgÞ; TAA,TABÞ

FBðx,y; TBA,TBBÞ ¼ yf BðFBAðx,y; fTgÞ,FBBðx,y; fTgÞ; TBA,TBBÞ

where FAA and FBA are the PGFs for the outbreak size distribution
starting from an (infected) node of type A which has been reached
by following an edge from another (infected) node of type A or B,
respectively. Similarly, FAB and FBB are the PGFs for the outbreak
size distribution starting from an (infected) node of type B which
has been reached by following an edge from another (infected)
node of type A or B, respectively. These PGFs are as follows:

FAAðx,y; fTgÞ ¼ xf AAðFAAðx,y; fTgÞ,FABðx,y; fTgÞ; TAA,TABÞ

FBAðx,y; fTgÞ ¼ xf BAðFBAðx,y; fTgÞ,FBBðx,y; fTgÞ; TAA,TABÞ

FABðx,y; fTgÞ ¼ yf ABðFBAðx,y; fTgÞ,FBBðx,y; fTgÞ; TBA,TBBÞ

FBBðx,y; fTgÞ ¼ yf BBðFBAðx,y; fTgÞ,FBBðx,y; fTgÞ; TBA,TBBÞ

Again following the method of Newman (2002), we can derive
the expected size of a small outbreak and the epidemic threshold
(given in the Supplementary Information). The expected numbers
of A and B nodes infected in a small outbreak are found by taking
partial derivatives of the PGF for the outbreak size distribution

/sSA ¼
@FA

@x

����
x ¼ 1,y ¼ 1

þ
@FB

@x

����
x ¼ 1,y ¼ 1

/sSB ¼
@FA

@y

����
x ¼ 1,y ¼ 1

þ
@FB

@y

����
x ¼ 1,y ¼ 1

:

Finally, we can find the size of a large-scale epidemic among A

nodes and among B nodes as:

SAðTAA,TABÞ ¼ 1�FAð1;1; TAA,TABÞ

¼ 1�
X

pijð1þða�1ÞTAAÞ
i
ð1þðc�1ÞTABÞ

j
ð2Þ

SBðTBA,TBBÞ ¼ 1�FBBð1;1; TBA,TBBÞ

¼ 1�
X

qijð1þðb�1ÞTBAÞ
i
ð1þðd�1ÞTBBÞ

j
ð3Þ

where a¼ FAAð1;1; fTgÞ, b¼ FBAð1;1; fTgÞ, c¼ FABð1;1; fTgÞ, d¼ FBB

ð1;1; fTgÞ. The probability of a large-scale epidemic can be derived
similarly. The numerical values for the size and probability of an
outbreak will be equal if TAB ¼ TBA. Further details are provided in
the Supplementary Information.
This two-type percolation model provides a general frame-
work for modeling pathogens with variable transmissibility and
host populations with immunological heterogeneity.
2.2.2. Modeling leaky immunity with two-type percolation

We now apply the two-type percolation method to model
leaky partial immunity. In this model, type A nodes represent
individuals who were not infected in the initial epidemic and thus
have no prior immunity, and type B nodes represent those who
were infected and maintain partial immunity (at a level 1�a).
(Note that a gives the fraction of immunity lost in both models.)
Here, we assume that prior immunity causes equivalent reduc-
tions in both infectivity and susceptibility (a), but the approach
can be extended easily to include more complex models of
immunity. Specifically, during the subsequent epidemic, type A
individuals (previously uninfected) have a susceptibility of one
and an infectivity of T2, while type B individuals (previously
infected) have a susceptibility of a and an infectivity of T2a.
Correspondingly, TAA ¼ T2, TAB ¼ T2a, TBA ¼ T2a, and TBB ¼ T2a2.

The joint degree distributions for a randomly chosen unin-
fected (type A) and infected (type B) node connecting to i

uninfected and j infected nodes are respectively given by

pij ¼
p1ðiþ jÞZ1ðiþ jÞ iþ j

i

� �
ðu1Þ

i
ð1�u1Þ

jP
kp1ðkÞZ1ðkÞ

qij ¼
p1ðiþ jÞð1�Z1ðiþ jÞÞ iþ j�1

i

� �
ðu1ð1�T1ÞÞ

i
ðð1�u1Þþu1T1Þ

j�1P
kp1ðkÞð1�Z1ðkÞÞ

:

pij describes the probability of an uninfected node of original
degree (iþ j) having i uninfected neighbors and j infected neigh-
bors. The probability of a node being uninfected and having
original degree (iþ j) is calculated as Z1ðiþ jÞp1ðiþ jÞ. Such an
uninfected node would have i uninfected neighbors (with prob-
ability u1) and j infected neighbors (with probability ð1�u1Þ).
Similarly, qij describes the probability of an infected node of
original degree (iþ j) having i uninfected neighbors and j infected
neighbors. The probability of a node being infected and having
original degree (iþ j) is calculated as ð1�Z1ðiþ jÞÞp1ðiþ jÞ. Such an
infected node would have i uninfected neighbors (with probabil-
ity u1ð1�T1Þ); j�1 infected neighbors who were either
(a) infected by another source (with probability ð1�u1Þ), or
(b) infected by the node in question (with probability u1T1);
and one additional infected neighbor who infected the node in
question. We note that qi0 ¼ 0 because an infected node must
have at least one infected neighbor.

Using the quantities derived above, we can model epidemics
that leave varying levels of individual-level partial immunity.
Using Eqs. (2) and (3), for example, we can solve for the size of the
epidemic in a second epidemic with (individual-level) leaky
partial immunity, ð1�aÞ

ðS2Þleaky ¼ ðZ1ÞSAðT2,T2aÞþð1�Z1ÞSBðT2a,T2a2Þ:

We derive the epidemic threshold, ðTc
2Þleaky, and the average

size of small outbreaks, /sSleaky, for the leaky immunity model in
the Supplementary Information.
2.3. Comparison to homogeneous-mixing models with immunity

We compare our network model to homogeneous-mixing
mean-field (compartmental) models with polarized and leaky
immunity. Compartmental SIR dynamics are given by

dS=dt¼�
/kSbSI

N
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dI=dt¼
/kSbSI

N
�gI

where b is the transmission rate, g is the recovery rate, /kS gives
the mean degree of the population, Sð0Þ ¼ S0�1, Ið0Þ ¼ 1 and
S¼N�Sð1Þ gives the final epidemic size for a population of size N.

To model polarized immunity at a level a, we use these
equations for two consecutive seasons. First, an initial epidemic
occurs in a naive population ðS0 ¼NÞ with b¼ b1, resulting in a
final epidemic size S; then a second epidemic occurs with
S0 ¼ ðN�SÞþaS, Ið0Þ ¼ 1, and b¼ b2.

To model leaky immunity at a level a, we use these equations
to model the first seasons. As with polarized immunity, the initial
epidemic occurs in a naive population ðS0 ¼NÞ with b¼ b1,
resulting in an epidemic of size S. However, prior to the second
season, we split the population into two subpopulations: pre-
viously uninfected and previously infected individuals. The SIR
dynamics during a second epidemic in the two subpopulations is
then given by

dSi=dt¼�
X

BijIj

� �
Si=N

dIi=dt¼
X

BijSj

� �
Ii=N�gIi

for i¼1,2 corresponding to the previously uninfected and previously
infected populations, respectively, S1ð0Þ ¼N�S, S2ð0Þ ¼S and

B¼/kSb2

1 a
a a2

	 


describing the reduction in susceptibility and infectivity due to leaky
immunity for each pair of interactions.

When comparing these models to our network-based models,
we let b¼ Tg=ð1�TÞ where T is the pathogen transmissibility.
3. Results

3.1. Impact of one epidemic on the next

We have introduced two distinct mathematical approaches for
modeling the epidemiological consequences of naturally acquired
immunity. The polarized immunity model probabilistically removes
nodes and edges corresponding to the fraction (a) of infected nodes
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networks: mean field (black); and Poisson (red), exponential (blue), and power law (gre

(a¼ 1), (b) partial immunity (a¼ 0:5), and (c) full immunity (a¼ 0), and for a range of se

cases).
expected to lose immunity entirely. The leaky immunity model
tracks the epidemiological history of all individuals and reduces the
infectivity and susceptibility of all previously infected nodes by a
fraction (a). By adjusting a, both models can explore the entire range
of immunity from none to complete. At a¼ 1, these model the
absence or complete loss of immunity and thus would apply when
the second season strain is entirely antigenically distinct from the
prior strain. At a¼ 0, these model full immunity or no loss of prior
immunity and might apply when a secondary epidemic is caused by
the same or very similar pathogen as caused the first epidemic.
Values of a between 0 and 1 represent partial immunity to the
second pathogen, with the level of protection increasing as a
approaches 0. Note that the total susceptibility and total transmis-
sibility over the entire network is equal in the two immunity models
(see Supplementary Information).

In Fig. 4, we compare the predicted sizes of a second epidemic
for both the polarized and leaky models against simulations for a
Poisson, exponential and scale-free random network (of the same
mean degree) and under the conditions of no prior immunity
(a¼ 1), partial immunity (a¼ 0:5), and full immunity (a¼ 0) for
values of transmissibility between 0 and 0.5. There is a strong
congruence between our analytical calculations and their corre-
sponding simulations. Assuming no immunity (Fig. 4(a)), the two
models simplify to the standard bond percolation model on the
original network, and thus make identical predictions. Assuming
full immunity (Fig. 4(c)), the polarized immunity model removes
all previously infected nodes (and the corresponding edges)
before the second outbreak; and the leaky immunity model sets
transmissibility along all edges leading from and to previously
infected nodes to zero, thus de-activating those nodes entirely.
Consequently, the models also converge at this extreme. The two
models are, however, fundamentally different for any level of
intermediate partial immunity between ð0oao1Þ as they
assume different models of immunological protection. At a¼ 0:5
(Fig. 4(b)), leaky immunity confers greater herd immunity than
polarized immunity at low values of transmissibility, while the
reverse is true for more infectious pathogens. The makeup of the
previously infected population is identical in both models and
biased towards high degree individuals. When the pathogen is
only mildly contagious, partial protection may be sufficient to
prevent infection for most hosts. Thus, leaky immunity (where all
previously infected hosts have some immunity) may yield a
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smissibility
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greater number of protected hosts than polarized immunity
(where a fraction of previously infected hosts have full immu-
nity). When the pathogen is more highly contagious, however, the
reverse may be true, that is, leaky immunity may leave many
more previously infected hosts insufficiently protected than
polarized immunity. We find further that network heterogeneity
acts consistently across different levels of immunity. The Poisson
network has the most homogeneous degree distribution followed
by the exponential network and finally the scale-free network
with considerable heterogeneity. Holding mean degree constant,
variance in degree increases the vulnerability of the population
(allowing epidemics to occur at lower rates of transmissibility),
yet generally reduces the ultimate size of epidemics when they
occur. At high levels of immunity, the susceptible network at the
start of the second season becomes more sparse and homoge-
neous. Thus the impact of network variance on the second
epidemic diminishes as immunity increases, that is, as a-0.
(We elaborate further on these results in the Supplementary
Information.)

We explore intermediate levels of immunity further in Fig. 5,
and again find reasonable agreement between our analytic pre-
dictions and simulations. As expected, increasing levels of immu-
nity (from left to right) decrease the epidemic potential of a
second outbreak. At these intermediate values of transmissibility
(T1 ¼ 0:15 and T2 ¼ 0:3), leaky immunity tends to confer lower
herd immunity than polarized immunity, except at extremely
high levels of immunity. The level of immunity at which the
predicted epidemic sizes for two immunity models cross repre-
sents the point at which leaky partial immunity for all prior cases
effectively protects more individuals than the complete removal
of a fraction of those cases. This transition point occurs at a higher
level of immunity in the exponential network than the Poisson
network, and never occurs in the scale-free network, perhaps
because the immunized individuals in the more heterogeneous
networks tend to have anomalously high numbers of contacts
thus limiting the efficacy of partial protection.

Figs. 4 (black curves) and 5(a) also show predictions of the
mean-field models of polarized and leaky immunity. For full
immunity ða¼ 0Þ and no immunity ða¼ 1Þ the two homoge-
neous-mixing models make identical predictions: at a¼ 1, both
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with mean degree of 10, at transmissibilities T1 ¼ 0:15 and T2 ¼ 0:3.
models reduce to S0 ¼N and a homogeneous transmission rate b;
and at a¼ 0, both models reduce to one population of size
S0 ¼N�S and transmission rate b. However, at an intermediate
level of immunity (a¼ 0:5), the mass action models predict that
polarized immunity consistently provides more herd protection
than leaky immunity (in contrast to the network model prediction
of a threshold above which polarized immunity provides greater
protection than leaky immunity and below which the reverse is
true). A similar discrepancy between the models occurs in Fig. 5:
in the mass action model (Fig. 5(a)), polarized immunity consis-
tently offers more population-level protection than leaky immu-
nity over all levels of immunity for a fixed intermediate value of
transmissibility (T2 ¼ 0:3). The early (low immunity and low
transmissibility) advantage of leaky immunity in the network
model stems from the preferential infection and resulting immu-
nization of the highest degree (most connected) individuals. In
the compartmental model, all individuals have identical contact
rates and thus leaky immunity loses this advantage and the
reduced effective population size under polarized immunity
model always gives a lower final epidemic size. As discussed in
Bansal et al. (2007), the compartmental model is equivalent to a
network model in which all individuals have identical degree. Of
the three networks considered here, it is most similar to although
not identical to the relatively homogeneous Poisson network
model, as seen in Figs. 4 and 5.

3.2. Pathogen re-invasion and immune escape

When a pathogen enters a population that has experienced a
prior outbreak, its success will depend on the extent and pattern
of naturally-acquired immunity in the host population. The new
pathogen may not be able to invade unless it is significantly
different from the original strain. If it is antigenically distinct from
the prior strain, then prior immunity may be irrelevant; if it is
more transmissible than the original strain, then it may have the
potential to reach previously unexposed individuals.

Fig. 6 indicates the minimum transmissibility required for the
new strain to cause an epidemic (that is, its critical transmissi-
bility T2c

), as a function of the transmissibility of the original
strain (T1) and the level of leaky immunity (a). The leakier the
immunity (high a) and the lower the infectiousness of the original
strain (low T1), the more vulnerable the population to a second
epidemic (light coloration in Fig. 6). Generally the homogeneous
Poisson network is less vulnerable to re-invasion than the
heterogeneous scale-free network. The blue curves in Fig. 6 show
combinations of T1 and a where the epidemic threshold for the
new strain equals the transmissibility of the original strain
(T2c
¼ T1, see Supplementary Information) and have two comple-

mentary interpretations. First, if we assume that the new strain is
exactly as transmissible as the original strain (T ¼ T2 ¼ T1), then
the curves indicate the critical level of cross-immunity (acðTÞ)
below which the strain can never re-invade and above which the
strain can re-invade with some probability that increases with a.
This threshold indicates the extent of antigenic evolution
(or intrinsic decay in immune response) required for a second
epidemic to occur. The more heterogeneous the contact patterns
(scale-free versus Poisson network), the lower the amount of
immune escape required for a pathogen of the same transmissi-
bility to re-invade. Second, if we assume a fixed level of immune
decay (a), then the curves indicate the critical initial transmissi-
bility (T1) above which it is possible for the original strain or a
similarly infectious variant to invade. Below this transmission
rate, the network topology and preexisting immunity prevent the
re-emergence of the pathogen and only permit epidemics of more
transmissible variants. The polarized immunity model yields
similar results (Supplementary Information).
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A well-known hypothesis in the theory of pathogen evolution
is that increases in virulence correlate positively with increases in
transmissibility (Anderson and May, 1982; Ewald, 1987; Bull,
1994; Frank, 1996). If true, Fig. 6 suggests that naturally acquired
immunity, by opening niches for more infectious variants, may
indirectly lead to the evolution of greater virulence. This is
consistent with a previous study showing that host populations
with high levels of immunity maintain more virulent pathogens
than naive host populations (Gandon et al., 2001). In addition,
Fig. 6 also suggests that more homogeneous host contact patterns
(i.e. small variability in numbers of contacts) enhance the evolu-
tion of more virulent pathogens. This complements the results of
Boots and Sasaki (1999) and other studies that have shown that
global connectivity in spatially structured host populations fos-
ters the evolution of pathogen virulence.
4. Discussion and conclusion

In this work, we have considered the impact of infectious
disease outbreaks on the future spread and evolution of the
pathogen. We have compared two standard models for immunity,
polarized and leaky, and found that the extent of herd immunity
varies with the pathogen transmissibility and the degree and
nature of immunity. Leaky immunity is expected to confer greater
herd immunity at moderate levels of pathogen infectiousness
across all levels of partial immunity, whereas polarized immunity
is expected to be more effected at higher transmissibilities.

The evolution of new antigenic characteristics that escape
prior immunity in a pathogen and the evolution of higher
transmissibility in a pathogen both depend on genetic variation.
Thus, the more infections there are in the first season, the greater
the opportunity for evolutionary change (Boni et al., 2004). This
poses a trade-off for the pathogen: a large initial epidemic may
generate variation that fuels evolution yet wipes out the suscep-
tible pool for the subsequent season; while a small initial out-
break leaves a large fraction of the network susceptible to future
transmission yet may fail to generate sufficient antigenic or other
variation for future adaptation. We have shown that the trade-off
between generating immunity via infections and escaping immu-
nity via antigenic drift will depend not only on the size of the
susceptible population, but also on its connectivity. Although we
have focused primarily on the role of antigenic drift, these models
also apply to loss of immunity through decay in immunological
memory, as occurs following pertussis and measles infections
(Mossong and Muller, 2003; van Boven et al., 2000).

Our work suggests that contact heterogeneity can have far-
reaching impacts on disease dynamics and evolution. Our models
reveal that pathogens restructure their host population networks
in a highly preferential manner, that does not resemble an
unbiased random process. Thus, in contrast to the predictions of
mean-field models (Grenfell et al., 2002; Broutin et al., 2010), our
analyses suggest that the replenishment of susceptibles through
waning immunity differs fundamentally from the introduction of
susceptibles through births.

This analysis also has implications for public health interven-
tion strategies. Contact-reducing interventions (e.g., patient quar-
antine and social distancing) and vaccination often result in
complete removal of a fraction of individuals from the network
(akin to polarized immunity), whereas transmission-reducing
interventions (e.g., face-masks and other hygienic precautions)
typically reduce transmissibility along edges leading to and from
a fraction of individuals (akin to leaky immunity) (Pourbohloul
et al., 2005). These results thus suggest that contact reductions
will be more effective than a comparable degree of transmission
reductions at higher levels of pathogen infectiousness.

Much epidemiological work, particularly the analysis of inter-
vention strategies, ignores the immunological history of the host
population. Thus our effort to incorporate host immune history
into a flexible individual-based network model will potentially
advance our understanding of the epidemiological and evolution-
ary dynamics of partially immunizing infections such as influenza,
pertussis, or rotavirus. However, these provide just an initial step
in this direction, as the models consider only two consecutive
seasons and do not take into account longer-term interactions or
changes in the structure of the contact network between seasons.
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