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ABSTRACT

Q uasispecies are clouds of genotypes that appear in a
population at mutation–selection balance. This
concept has recently attracted the attention of
virologists, because many RNA viruses appear to

generate high levels of genetic variation that may enhance the
evolution of drug resistance and immune escape. The
literature on these important evolutionary processes is,
however, quite challenging. Here we use simple models to link
mutation–selection balance theory to the most novel
property of quasispecies: the error threshold—a mutation
rate below which populations equilibrate in a traditional
mutation–selection balance and above which the population
experiences an error catastrophe, that is, the loss of the
favored genotype through frequent deleterious mutations.
These models show that a single fitness landscape may
contain multiple, hierarchically organized error thresholds
and that an error threshold is affected by the extent of back
mutation and redundancy in the genotype-to-phenotype
map. Importantly, an error threshold is distinct from an
extinction threshold, which is the complete loss of the
population through lethal mutations. Based on this
framework, we argue that the lethal mutagenesis of a viral
infection by mutation-inducing drugs is not a true error
catastophe, but is an extinction catastrophe.

Introduction

The concept of a mutation–selection balance is one of the
oldest and most fundamental pillars of population genetics:
natural selection increases the frequency of fit variants while
mutations introduce unfit variants, giving rise to an
equilibrium distribution balanced between these two effects.
Mutation–selection balance has been invoked to explain the
persistence of undesirable genes, for example, those
underlying inbreeding depression, genetic diseases, and even
senescence. Despite the long history of the concept, some of
its consequences were only realized in 1971, when Manfred
Eigen studied mutation–selection dynamics in long genomes
[1]. He found that populations do not necessarily attain
classic mutation–selection balances in which the wild-type
allele is most common, but rather attain an equilibrium with
an abundant assemblage of mutant genotypes and a rare wild-
type. He and Peter Schuster later called this collection of
genotypes at equilibrium a quasispecies [2]. This concept
offered not only an intuitive extension of the mutation–
selection theory based on simple one- or two-locus systems,
but also a novel insight into the impact of mutation rate on
evolutionary dynamics. In particular, Eigen found that there
are states in which a trivial boost in the mutation rate can
lead to a fundamental change in the composition of
genotypes in the population. This change, a phase transition
in physics terms, is called the error catastrophe.

The error catastrophe has been applied liberally as a
metaphor for complications of high mutation rates, as likely

plagued primordial life [1] and currently challenges extant
viruses with RNA genomes [3]. The error-catastrophe model
inspired treatments to extirpate viral populations by
mutation enhancement [4,5], and the model has been
generalized to explain the attraction of populations to
mutationally robust regions of fitness landscapes [6]. The
error catastrophe has imparted a mystique to the quasispecies
concept, and much of the literature on RNA virus evolution
now uses quasispecies as an enriched synonym for a high
mutation rate. An excellent and short review of the topic and
its relationship to population genetics theory is provided by
Wilke [7].
Eigen’s insights were developed in the context of genomes

with many loci, each of which suffered mutation.
Appropriately, the quasispecies has since been considered in
this large-genome context. Yet many of its concepts are easily
illustrated in the much simpler case of few genotypes, which
is our approach here. Our results are not new, per se, but our
models should convey quasispecies and error-catastrophe
concepts to a broad audience and correct some common
misunderstandings.

The Simplest Quasispecies

Our basic model has the fewest number of genotypes
needed to demonstrate a quasispecies and an error threshold:
two [8]. Genotype A1 has fitness w1, and of those w1 offspring a
fraction 1! l1 retain the A1 genotype (Figure 1). Its mutants
are converted into the other genotype, A2, which has the
lower fitness w2. A2 reproduces its genotype with fidelity 1 !
l2, and all of its mutants die.
Quasispecies concepts address equilibia, that is, the final

distributions of genotypes in populations that have evolved to
a stable state. In the quasispecies model, mutation and
natural selection steer the population toward the equilibrium
distribution, regardless of the initial distribution of
genotypes. If the population does not start at the equilibrium,
then mutation and natural selection steer it toward
equilibrium in the quasispecies model. Mutations introduce
new types with various fitnesses while natural selection causes
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more fit variants to increase in frequency at the expense of
less fit variants. Ultimately, a population reaches a genotype
distribution at which these two forces exactly cancel each
other, leaving the genotype distribution unchanged. This
stable assemblage of genotypes has been called both a
mutation–selection balance and a quasispecies. Some authors
prefer to reserve the quasispecies concept for the mutation–
selection balance extreme in which the wild-type is rare [9].
This preference may stem from the property that, under a
high mutation rate, the quasispecies distribution as a whole
rather than a single genotype is the target of selection [2], as
illustrated below.

It is essential to distinguish the process of evolution toward
the mutation–selection balance from an error catastrophe, as
the two are completely different. We thus begin by briefly
illustrating the dynamic approach to mutation–selection
balance. For any combinationofmutation rates andfitnesses in
our model, a population will evolve until it reaches a unique
equilibrium distribution of A1 and A2. Figure 2 illustrates the
evolution of two populations—one that initially consisted
entirely of A1 and another that consisted almost entirely of A2.
Both eventually reach the same equilibrium proportions
because the mutation rates and fitnesses are the same for both
cases. This end-state is the mutation–selection balance,
whereby mutation continually creates A2 from A1 and natural
selection continually purges A2 in favor of A1; it is also a
quasispecies where A1 is the wild-type and A2 is the mutational
‘‘cloud’’ that persists with it. In a strict sense, equilibrium is
reached only after infinitely many generations, but the
deviation from equilibrium quickly becomes insignificant.

If a mutation rate or fitness is changed, the equilibrium
distribution changes. Thus, the analogous figure for a
different equilibrium would have the curves converging to a
different value on the vertical axis. In particular, if we
continually lower the fitness (w1) or the mutation-free
fraction of offspring (1! l1) of A1 relative to that of A2, then
the equilibrium distribution will move to progressively lower

values on the vertical axis, until it lacks A1 entirely. This
brings us to the error catastrophe.

Error Catastrophe: The ‘‘Loss’’ of A1 at Equilibrium

Error thresholds and error catastrophes are properties of
mutation–selection equilibria, and an error catastrophe is a
specific type of change in the equilibria. Consider again the
genotypes and fitnesses illustrated in Figure 1. The product
w1(1 ! l1) is the number of A1 offspring of an A1 parent; we
will refer to this product as the replacement rate of the
genotype—the product of fitness times the mutation-free
fraction of offspring. For mathematical simplicity, we assume
that this number is an absolute quantity greater than one and
that it does not change with population density. Hence, the
population is forever expanding in unlimited space (this
assumption is convenient but not necessary). For
convenience, we will continue to treat A1 and A2 as single
genotypes, but later in the paper, we will explain how they
can be treated as sets of genotypes and how additional types
can be included (e.g., A3, A4, ...).
Since A1 has a higher fitness than A2, it follows that, for small

mutation rates l1, the replacement rate of A1 is higher than
the replacement rate of A2, or w1 (1!l1). w2 (1!l2). As long
as the replacement rate of A1 exceeds that of A2, both
genotypes will be maintained at equilibrium: A1 because of its
higher replacement rate, and A2 because of mutation from A1.
If the mutation rate of A1 increases such that the mutation-
free fraction of A1 drops relative to that of A2, however, the
replacement rate inequality will eventually reverse, yielding a
simple error catastrophe: A1 is no longer maintained. The
error threshold is the point at which both genotypes have
identical replacement rates. Beyond this point, A2 has the
higher replacement rate, and A1 is absent at all equilibria—the
lack of back mutations ensures that it is not recreated from A2.
The nature of this simple error threshold and error

catastrophe is easily visualized (Figure 3). The left part of the
figure shows A1 and A2 replacement rate functions
approaching each other as the mutation rate increases toward
the error threshold. The functions cross at the error threshold,

DOI: 10.1371/journal.pcbi.0010061.g002

Figure 2. Dynamic Approach to the Quasispecies Equilibrium, for the
Genotypes Illustrated in Figure 1

Drawn for w1 ¼ 1.5, w2 ¼ 1.0, l1 ¼ 0.7, and l2 ¼ 0.6. The upper, black
curve represents a different starting condition than the lower, gray curve,
but they both equilibrate to the same value.

DOI: 10.1371/journal.pcbi.0010061.g001

Figure 1. Model of Two Genotypes with Forward Mutation

Each genotype Ai has its own fitness wi and mutational loss li. Mutation
is asymmetric, so that A1 gives rise to A2, but not vice versa.
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giving rise to an error catastrophe (complete loss of A1) for
higher mutation rates. The right part of the figure illustrates
that, despite the suggestive terminology (threshold and
catastrophe), an error catastrophe is the culmination of a
gradual decrease in the equilibrium frequency of A1 rather
than a dramatic one. An apt analogy is the geological
transition from mountains to plains: starting from the
mountains, the plains are approached gradually until they are
reached, at which point the plains continue in the absence of
any trace of mountains. (Note, however, that a true phase
transition does occur at the error threshold, as has been shown
by Leuthausser [10,11].) The equilibrium proportion of A1

approaches zero as the mutation rate approaches the error
threshold. Just before the threshold, the population is
dominated by the ‘‘cloud’’ of A2 mutants around a tiny fraction
of A1, and thus fulfills the standard criteria for a quasispecies.

An error threshold exists because deleterious mutations
impact some genotypes more than others (reviewed in [7]): in
this model the threshold is breached only if A1 experiences a
potentially much greater mutational loss than A2. Beyond the
error threshold this deleterious effect of mutation is
retarded: by replacing a mutation-sensitive genotype with a
mutation-robust genotype, the error catastrophe reduces the
speed at which the replacement rate drops in response to
increases in the mutation rate [7]. This outcome can be seen
in the left side of Figure 3: the A1 replacement rate function
is steeper than the A2 replacement rate function, so increases
in the mutation rate have less impact after the error
threshold. (Not only do the functions depict genotype
replacement rate, but the uppermost functions also give the

mean replacement rate in a population at equilibrium.)
Below we will specifically describe how such mutational
robustness may be achieved; we have depicted an error
catastrophe between two genotypes, but the logic is easily
extended to larger sets of mutationally connected genotypes.
Again, we emphasize that an error catastrophe is not a
process per se; rather it is a change in the equilibrium
distribution of genotypes arising under a relatively high
mutation rate. If the mutation rate of a population is
increased from below to above an error threshold, however,
then there will be a dynamical loss of A1 as the population
approaches the new equilibrium.
Three implications of this analysis are significant. First, an

error catastrophe is not equivalent to a population
extinction. Second, fitness landscapes may contain multiple
error thresholds. Third, the error threshold is affected by
finite population size, the inclusion of back mutation from
the mutant to the wild-type, and recombination. We now
discuss each of these in detail.
Error catastrophes versus population extinction. High

mutation rates can cause extinction, but not as an error
catastrophe (Figure 3). An error catastrophe takes place when
one genotype’s replacement rate exceeds another’s and thus
displaces it at the equilibrium—a replacement of one self-
sustaining genotype by another self-sustaining genotype. The
population cannot maintain the genotype with the higher
fitness, A1, since its high mutation rate causes it to have a lower
replacement rate than A2. Thus, the error threshold refers to
the loss of the highest fitness genotype in favor of other
genotypeswith lowerfitness but greatermutational robustness.

DOI: 10.1371/journal.pcbi.0010061.g003

Figure 3. The Error Threshold and Error Catastrophe

Left: replacement rates of the two genotypes in Figure 1, w1(1! l1) for A1 (solid black line extending to dashes) and w2(1! l2) for A2 (gray line). Here
we let l1¼ kl and l2¼l, with k. 1 so the two replacement rates can be plotted as lines in the same plane. Since w1 . w2, the constraint on k ensures
a higher replacement rate of A1 than of A2 at low mutation rates and the reverse at higher mutation rates. The point at which the lines intersect is the
error threshold, beyond which A1 is absent, hence the use of dashes for this part of its replacement rate function. If replacement rate drops below unity,
the population goes extinct, so the functions are not extended below one on the vertical axis.
Right: the frequency of A1 declines as the mutation rate increases until the error threshold is reached. At higher mutation rates, only A2 is present. The
decline in the frequency of A1 with l toward the error threshold may be linear (as shown here), concave, or convex, depending on parameter values.
(Right side drawn for w1 ¼ 3.0, w2 ¼ 2, and k ¼ 2.)
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In contrast, extinction occurs at the point that the best
genotype cannot reproduce itself to maintain a minimum
population size (wi[1 ! li] , 1 for all genotypes). The most
trivial example of the distinction between an error threshold
and an extinction threshold is the case in which only one
genotype exists, and all mutations are lethal. No error
catastrophe is possible because no other genotypes exist, but
extinction is obviously possible. Our model is one genotype
more complicated: mutant offspring of A1 survive as A2, but
mutants of A2 are inviable. Thus, there is not an additional
error threshold beyond A2, because the model does not allow
a third inferior genotype. An A2 population, however, will go
extinct if its net growth rate drops below one (the horizontal
axis in Figure 3). While an error threshold depends on the
relative replacement rates of the genotypes, the extinction
threshold depends on the absolute replacement rates of the
genotypes.

There are several possible relationships between error
thresholds and extinction thresholds. The genotype with
highest fitness in this model (A1) can disappear through either
an error catastrophe or a population extinction, but A2 can
disappear only through extinction. Depending on the values
of w1, w2, and l2, the rate of mutation l1 at which A1 would be
lost to A2 in an error catastrophe may be less than or greater
than the value of l1 at which the population would go extinct.
If the error threshold lies beyond the extinction value, then as
l1 increases, the A1þ A2 population will go extinct of its own
accord before a true error catastrophe can happen, because
the population has disappeared before the mutation rate

rises high enough for the error catastrophe (Figure 4, right). If
the opposite is true, then A1 will be displaced by A2 in an
error catastrophe before the replacement rate of either type
drops below one (Figure 4, left).
Multiple error thresholds. The model implies that multiple

error thresholdsmay exist in afitness landscape. For example, a
fitness landscapemay includemultipleAiwith associatedwi and
li (Figure 5). With an appropriate hierarchy of mutation rates,
error thresholds could operate sequentially, so that as
mutation rates increase, the population drops from one Ai to
thenext, then to thenext, and soon [12]. It is alsopossible for an
error catastrophe to jump over an intermediate peak [13]. For
example, if the mutation rate at which the error threshold is

DOI: 10.1371/journal.pcbi.0010061.g004

Figure 4. Extinction versus Error Catastrophe

Left: the error threshold is crossed at a lower mutation rate (l) than the extinction threshold.
Right: the extinction threshold is crossed before the error threshold.
Otherwise as in Figure 3.

DOI: 10.1371/journal.pcbi.0010061.g005

Figure 5. Model of Several Genotypes with Forward Mutation

Each genotype Ai has its own fitness wi and mutational loss li so that
error thresholds can exist between each pair of genotypes.
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crossed between A1 and A2 exceeds the mutation rate for the
error threshold between A2 to A3, then a transition will occur
from A1 to A3, skipping the intermediate in which A1 has
disappeared butA2 remains (see below). The interplay between
extinction catastrophes and error catastrophes can likewise
add interesting complexity to the model.

Implications of finite population size, back mutation,
and recombination. Our model assumes deterministic
dynamics and ignores the stochastic effects of finite
population sizes. We have argued that populations will
equilibrate either to a combination of A1 and A2 or to A2

exclusively. This equilibration strictly requires an infinite
amount of time in an infinite population. In a finite
population, as long as the effective population size times the
mutation rate is significantly bigger than one (Nl $ 1), the
finite population behaves similarly to the infinite population,
except that the error threshold is not as sharp. In particular,
the lack of back mutations ensures that random events will
eventually cause the loss of genotype A1 from the population,
so that only genotype A2 remains. If A2 represents multiple
types of mutants, then this random loss of A1 is Muller’s
ratchet [14,15]. Beyond the error threshold, this transition is
simply much faster, because selection favors it. The threshold
is also altered by the introduction of back mutations from A2

to A1, as described in Box 1.
When Nl % 1, the above description does not hold.

Mutations occur so rarely, that the population is very likely to
fix or lose each mutation before the next one arises. In this
case, it no longer makes sense to talk about a quasispecies—
there is no mutation–selection balance, but instead a fixed
type, the wild-type, with possibly some recent mutants. The
wild-type essentially undergoes a random walk in genotype
space, in which it tends to ‘‘hang out’’ more often in areas
with high fitness [16]. Sella and Hirsh [16] showed that
population size rather than mutation rate is the critical
randomizing factor: the smaller the population size, the less
the population is able to maintain genotypes with high fitness.

We ignored the effect of recombination, as does most of
the literature on the error catastrophe. The effect of
recombination on the quasispecies can be very complicated.
A surprising result is that recombination can make a
genotype more vulnerable to an error catastrophe, causing
the error threshold to occur at a lower mutation rate [17].
Although a full explanation of this effect does not seem to
have been provided, one contributing factor is that, close to
the error threshold, the quasispecies contains mainly
mutants, and very few individuals of type A1. Therefore, most
individuals of type A1 will mate with those of type A2. If our
model is interpreted as a single-locus model, recombination
would make no difference. But if A2 is a collection of
genotypes with mutations at possibly many loci and A1 is the
mutation-free class, then recombination could decrease the
rate at which A1 parents have A1 offspring and thus cause the
error threshold to occur earlier [17]. Recombination might
also operate in the reverse direction, however, if A2 genotypes
frequently recombine to create A1 offspring. A greater
exploration of this problem is warranted.

Survival of the Flattest

Error thresholds require that some genotypes or
phenotypes are more sensitive to mutation than others.

Box 1. Back Mutation

Our model of two genotypes ignored back mutation, hence A1 could
not be regenerated once lost from the population (see Figure 1). The
absence of back mutations is often assumed in models of population
genetics (e.g., the ‘‘infinite alleles’’ and ‘‘infinite sites’’ models of
population genetics [42,43]). This assumption offers analytical
convenience and is perhaps an approximate interpretation of asexual
genomes, in which an ‘‘allele’’ can be considered the entire suite of
mutations in a genome; a new mutation, which can occur anywhere in
the genome, is unlikely to recreate a former allelic state. Nonetheless,
since back mutations can occur in many systems, it is useful to study
their effect on the error threshold. In particular, they present a special
challenge to the concept of an error threshold: when back mutations
occur, the wild-type genome is never strictly lost in a deterministic sense.
What, then, is the counterpart to a strict error threshold? To approach
this question, we return to the simple model in Figure 6.

At this point we use simple matrix algebra to explore the problem.
Assuming discrete time steps, let ni be the number of individuals with
genotype Ai ; mutation precedes reproduction, so the fitness wi accrues
to an individual after its genotype experiences any mutation (the model
is just as easily constructed with mutation occurring after reproduction).
Two equations describe the system:

n19 ¼ n1ðw1½1! l1(Þ þ n2ðw1l3Þ ð1Þ

n29 ¼ n1ðw2l1Þ þ n2ðw2½1! l2(Þ ð2Þ

The system can then be described with the aid of the transition matrix:

M ¼ w1ð1! l1Þ w1l3
w2l1 w2ð1! l2Þ

! "
ð3Þ

so that ðn91; n92Þ ¼ ðn1; n2ÞM. The only new parameter with respect to
our earlier model is l3, which allows for back mutation and cannot
exceed l2. If we set l3 ¼ 0, then these equations describe our earlier
model exactly (in Figure 1). To evaluate the long term behavior of the
system, we consider n1(t) and n2(t) as t becomes arbitrarily large; that is,
we calculate (n1, n2) M

t for large t. The standard method for evaluating
long-term behavior in such a linear system is to consider the eigenvalues
of the system, found as the values of k satisfying

k2 ! kðw1½1! l1( þ w2½1! l2(Þ
þ ðw1w2½1! l1(½1! l2( ! w1w2l1l2Þ ¼ 0 ð4Þ

To establish a baseline, we first assume no back mutation (l3 ¼ 0).
Equation 4 then yields the solutions

k1 ¼ w1ð1! l1Þ ð5Þ

k2 ¼ w2ð1! l2Þ ð6Þ

These two eigenvalues are the respective replacement rates of A1 and A2
described in Figure 3. Importantly, k1 is larger for some mutation rates,
but k2 is larger for others, and it is the intersection of the eigenvalues
that gives rise to the error threshold. This simple picture appears to
change fundamentally with even a small level of back mutation. When l3
. 0, the two eigenvalues become

k1 ¼
x þ y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx ! yÞ2 þ 4w1w2l1l3

q

2
ð7Þ

k2 ¼
x þ y !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx ! yÞ2 þ 4w1w2l1l3

q

2
ð8Þ

where x ¼ w1(1 ! l1) and y ¼ w2(1 ! l2).
Whereas a transition from k1 to k2 as the dominant eigenvalue

occurred at x ¼ y in the absence of back mutation, now k1 remains
superior at all values of x and y. As l3 approaches arbitrarily close to zero,
the eigenvalues approach each other but do not cross. Thus, there is no
strict error threshold unless l3 equals zero exactly. Yet as l3 approaches
zero, the system appears more and more like that with no back mutation
(Figure 7). So the mathematical discontinuity between systems with and
without back mutation does not obviously translate into a meaningful
biological distinction, but large amounts of back mutation do change
the picture.
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Biologically, many phenotypes have the property that they
can be produced by multiple, mutationally related genotypes,
and mutational robustness is known to vary among protein
and nucleic acid sequences [13,18–22]. The set of genotypes
for a particular phenotype is called its neutral network [23].
Since mutations within a neutral network preserve the
phenotype, this genetic redundancy can reduce the
phenotypic mutation rate without altering the underlying
genetic mutation rate. As discussed above, a lower rate of

phenotypic mutations (e.g., A1 to A2) leads to a higher net
replacement rate of the phenotype.
Here we illustrate how the breadth of a neutral network—

the number of and mutational connectivity among genotypes
contained within it—affects the competitiveness of the
phenotype. In particular, ‘‘survival of the flattest’’ refers to
the ability of inferior phenotypes with large neutral networks
to displace superior phenotypes with smaller neutral
networks. This phenomenon was recently demonstrated in
digital life simulations and simulated RNA molecules [6,24].
We explore the impact of neutrality on the error threshold

with a simple extension of our previous model, this time
allowing two genotypes to have the phenotype A2 (Figure 8).
This creates a minimal neutral network of two genotypes. In
the absence of back mutation (l3 ¼ 0), the error threshold is
unaffected by the ‘‘network’’ and is the same as with a single
A2 genotype: A2 here has exactly the same properties as the A2

in Figure 1, so the A1/A2 error threshold is the same as in
Figure 1. Yet the error threshold does change when back
mutation is allowed from the second A2 genotype (A*2 ) to the
first (A2). Back mutation provides a mutational ‘‘connectivity’’
among both genotypes in the neutral network and renders
the network more competitive against A1. This connectivity
serves to bolster the frequency of the left A2 genotype at the
expense of the right A2. Since only the right peak experiences
mutations off the neutral network (at rate l2), this shift
increases the overall replacement rate of A2, allowing A2 to
more easily supplant A1. Higher rates of back mutation
increase this effect (Figure 9, top) and also retard the
extinction of A2. (As we discuss later, allowing an infinite
succession of A2 genotypes without back mutation has the
same effect on the error threshold as abolishing the forward
mutation rate of a single A2 genotype, since the population
will never mutate off the A2 neutral network.)
This model can also be extended to demonstrate the

impact of neutral network size on the error threshold. In this
case, we add A2 genotypes into the middle of the neutral
network, each with forward mutation rate l2 and back
mutation rate l3. Figure 9 (bottom) shows that as the number

DOI: 10.1371/journal.pcbi.0010061.g006

Figure 6. Model of Two Genotypes with Back Mutation, l3
As in Figure 1, except that some of the mutations away from A2 recreate
genotype A1. The total mutation rate of A2 is still l2, so the back
mutation rate cannot exceed this value (i.e., l3 + l2).

DOI: 10.1371/journal.pcbi.0010061.g007

Figure 7. Eigenvalues When a Small Level of Back Mutation Occurs

In contrast to the case of no back mutation in Figure 3, the eigenvalues
here do not cross but change slope as they approach each other. The
dark curves (upper) correspond to the maximum eigenvalue (k1) and the
light curves (lower) to the smaller eigenvalue. The thick, outer curves are
drawn for a back mutation rate of l3¼0.05, and the thin, inner curves for
l3 ¼ 0.001. The effect of increasing back mutation is clearly seen as
increasing the minimum distance between the eigenvalue functions.
Other parameters are the same as for the right side of Figure 3: w1¼ 3.0,
w2 ¼ 2, and k ¼ 2.

DOI: 10.1371/journal.pcbi.0010061.g008

Figure 8. Model of Three Genotypes with a Simple Neutral Network

Both A2 genotypes have the same fitness and the same forward mutation
rates l2. The error threshold with l3¼ 0 is the same as in Figure 1. As l3
increases, the A2 network becomes more competitive against A1, and
thus the error threshold value of l1 decreases. Equations for this system
can be derived and analyzed with similar methods as in Box 1.
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of genotypes increases, the replacement rate of the A2

network also increases, thus shifting the error threshold in
favor of A2 and buffering A2 against extinction.

In summary, the error threshold decreases as the fitness
landscape around the inferior phenotype broadens, either via
the extension of the neutral network to include additional
genotypes or via a net decrease in mutation off the network.
The error threshold above which a particular wild-type is lost
will depend on its fitness relative to the fitness and breadth of

the inferior network. The broader and more mutationally
connected the inferior neutral network, the greater its
tolerance for mutation and the more likely an error
catastrophe that tips the population in its favor. Nonetheless,
a sufficiently high fitness can compensate for a high rate of
mutational loss.
These trade-offs also apply to more complex fitness

landscapes consisting of multiple neutral networks with
differing fitnesses. In this case, the sequence of error
thresholds becomes difficult to intuit and has not previously
been addressed quantitatively. Figure 10 illustrates a
succession of error catastrophes in a single landscape with
varying widths and heights of neutral networks, for a genome
with 40 loci. In general, the narrower networks are skipped as
the error catastrophes move to the flatter networks. In this
particular model, there is no back mutation. Error thresholds
exist because the genomic mutation rate is proportional to
the number of unmutated loci, hence the phenotypes of lower
fitness experience lower overall mutation rates.

Comparison to Eigen’s and Other Models

For those familiar with Eigen’s original quasispecies model
([1], a simplified version appears on p. 480, Table 8) and more
recent versions applied to nucleotides [2,8,25], we relate it to
our simpler model using our notation. In those models, a
genome consists of L loci with a per locus mutation rate of m.
A single mutant-free, wild-type genotype A1 has highest
fitness w1, and all other genotypes with one or more
mutations fall into the same neutral network in which each
genotype has the same fitnessw2. Eigen’s classic error threshold
result is that, depending on L and w1/w2, there is a specific per
base mutation rate m beyond which the wild-type is lost or
maintained only through back mutation and the w2 neutral
network prevails, as in our Figure 10 (the most-fit genotype is
maintained if back mutation is allowed, as in Box 1).
A second class of models is more challenging to fit into the

current framework [15,26]. In those models, a linear series of
genotypes is connected by forward mutation but not back
mutation ðA1 !!l A2 !!l . . . Ai !!l . . . Þ, and all genotypes
have the same mutation rate. An error threshold exists in
those models but not in ours. One critical difference is that
those models include infinitely many genotypes. Thus, if our
A1/A2 model is restricted to a single forward mutation rate for
all genotypes, an error threshold appears only when infinitely
many A2 genotypes exist. In this extreme, the A2 network no
longer experiences any mutational loss, and hence its
mutation rate effectively disappears. The existence of an
error threshold in those models also requires that the
fitnesses of all of the genotypes be greater than some positive
value [15]. Thus, those models also appear to be consistent
with our framework.

RNA Viruses, Quasispecies, and Lethal Mutagenesis

The error catastrophe has found its greatest appeal in work
on RNA viruses, whose genomes have high mutation rates.
One appeal of the quasispecies concept in this work is that it
can potentially explain the high levels of sequence variation
observed in RNA virus samples: the high mutation rate of
RNA genomes should lead to a mutation–selection balance
with lots of variation. Yet despite the frequent reference to
quasispecies concepts in the literature, relatively few studies

DOI: 10.1371/journal.pcbi.0010061.g009

Figure 9. Network Size and Mutational Connectivity Affects Replacement
Rate

Top: effect of back mutation (l3) between the pair of A2 genotypes in
Figure 8. The vertical axis gives the replacement rate of the A2 network.
Since all A2 genotypes are mutationally interconnected, they ultimately
grow at the same rate in the limit. In the absence of back mutation, the
neutral network has the replacement rate w2 (1! l2), and replacement
rate increases as back mutation is increased up to its maximum of
l3,max ¼ 1! l2. (The replacement rate function is

w2 1! l2 !
l3
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2l3 þ l23

p

2

 !

obtained as the eigenvalue associated with A2 in the transition matrix.)
Bottom: the replacement rate of the neutral network also increases with
the number of genotypes in it. Figure 8 shows the network with two
genotypes; third and additional genotypes would be added so that each
is mutationally balanced: each additional genotype loses l2 of its
progeny to become the genotype to its right and loses l3 of its progeny
to become the genotype to its left, but it receives l2 mutants from the
genotype to its left and receives l3 mutants from the genotype to its
right. The benefit of increasing the network size is shown for three
different combinations of forward and back mutation rates.
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have demonstrated that observed variation is truly a
quasispecies equilibrium [9]. An early study of the RNA phage
Qb reported that sequence variation in a population was high
but approximately stable over time around a consensus

sequence, supporting the basic concept of a quasispecies [27].
There are now countless studies revealing population
variation in RNA viruses of eukaryotes, but one cannot easily
determine whether the variation stems primarily from

DOI: 10.1371/journal.pcbi.0010061.g010

Figure 10. Multiple Error Thresholds on a Binary Sequence of Length 40

Each allele has two states—wild-type and mutant. The per base mutation rate from wild-type to mutant is identical for all loci. Back mutation from
mutant to wild-type is not allowed. As mutant alleles fix in the population, the proportion of the sequence that can still mutate decreases. Multiple error
thresholds exist because the effective mutation rate per genome drops as mutations accumulate. The model is otherwise as in Figure 1 and Box 1, and
as specified below.
Top: the fitness landscape. The x-axis shows the mutation distance from the ‘‘perfect’’ genotype consisting of all wild-type (zero mutant) alleles. The y-
axis shows the fitness.
Lower left: equilibrium distributions of genotypes in the population for seven mutation rates from 0.0001 to 0.045. In all plots the x-axis indicates the
number of mutations in the genome and the y-axis indicates frequency in the steady-state population; the shortest bars merely indicate the presence of
genotypes at some (low) frequency, and the absence of a bar indicates absence of that genotype from the equilibrium population. Plots 1–5 show
equilibria before the first error catastrophe, that is, for mutation rates that are less than the first error threshold. Plot 6 shows an equilibrium after the
first error catastrophe and before the second error catastrophe, and plot 7 shows an equilibrium after the second catastrophe. The vertical dashed
green lines indicate the stable networks that can attract error catastrophes. These correspond to the first (wild-type), third (5–14 mutations), and fourth
(15–31 mutations) networks, starting from the left. The second network, with 1–4 mutations (represented by a red line), is never stable as the fittest type
in the population, and is skipped.
Lower right: replacement rates of the various fitness plateaus. Numbers correspond to panels in the figure to the left. The x-axis shows the mutation
rate; the y-axis shows the growth rate (with a log scale). One can see two error thresholds. The red dashed line represents the replacement rate of the
second network, with 1–4 mutations, and shows why this plateau never stabilizes—it is too narrow relative to its fitness advantage.
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mutation–selection balance or from the simple alternative of
selection for different genotypes within the spatially
heterogeneous environment of the host [9]. Part of the
difficulty is that quasispecies models consider mutation only
as a degenerative process reducing replacement rate. They do
not address mutation as an exploratory process for finding
new fitness peaks—a process that must obviously be
considered when interpreting empirical data. Quasispecies
models also tend to ignore population structure and
migration.

Further support for quasispecies behavior was provided by
an empirical study of the dynamical approach toward
quasispecies equilibrium. Burch and Chao [28] obtained a
high-fitness isolate of the RNA phage /6. Upon propagation
in the same environmental conditions, however, the fitness of
the viral lineage declined to the level of culture from which
the isolate was originally obtained. Their interpretation, with
which we agree, was that the initial isolate was a somewhat
rare, high-fitness type from a quasispecies distribution, and
that it re-evolved the equilibrium quasispecies distribution
on further passage. It thus seems clear that some RNA virus
populations satisfy the basic tenets of quasispecies theory,
even if based on relatively few studies.

Quasispecies error thresholds have been invoked in an
important medical application, the extinction of RNA virus
populations by lethal mutagenesis—elevating mutation rates
with base analog drugs to the point that the virus population
disappears. In 2005, an entire issue of Virus Research was
devoted to this topic (volume 107, issue 2). Base analogs are
incorporated into the viral genome as it is being copied from
the parent strand. In general, incorporation of a base analog
can have two types of effects: chain termination, resulting in
immediate death of the progeny strand, or mutation, whereby
the base analog is later miscopied when the genome gets
replicated. The latter mechanism underlies the antiviral
activity of the drug ribavirin for some RNA viruses [4,29,30].
It is commonly argued that the extinction of the viral
population by mutagenesis is an example of an error
catastrophe (e.g., [4,5,30–32]). Others have argued against this
interpretation [7], and our models illustrate clearly that
extinction is distinct from an error catastrophe, and hence
that lethal mutagenesis does not necessarily produce an error
catastrophe.

From a practical perspective, it does not matter whether
lethal mutagenesis is referred to as an error catastrophe or
extinction catastrophe. There may be a benefit, however, to
distinguishing between these two concepts and, more
generally, to clarifying the concept of a quasispecies. For
example, consider a protocol of sublethal mutagenesis,
whereby a virus mutation rate is artificially elevated close to
an extinction threshold but the virus population persists.
Conventional wisdom suggests that such a strategy should be
disastrous from a host health perspective, because the
increased mutation rate may accelerate viral adaptation. Yet
two components of the quasispecies framework suggest that a
permanently elevated mutation rate may be deleterious to the
virus even when extinction is not achieved. First, a higher
mutation rate reduces mean fitness around any local fitness
peak. Second, a high mutation rate ‘‘flattens’’ the fitness
landscape, so that some narrow peaks cannot be attained.
Thus, a sustained high mutation rate that does not drive the
virus to extinction may enforce a low mean fitness. Holmes

[33] has likewise argued that the high mutation rates of RNA
viruses may constrain adaptation. Without greater insight
into the structure of biological fitness landscapes, we cannot
yet assess whether high mutation rates will expedite or thwart
adaptation. Evolutionary theory suggests that either outcome
is possible.
In light of this potential impact of high mutation rates, it

seems paradoxical that a new class of drugs is being touted for
its ability to reduce mutation rates, and thereby block the
evolution of resistance to other drugs [34]. Yet mutation
reduction and lethal mutagenesis may both be feasible
strategies for controlling a virus, with the two methods
working at opposite ends of the evolutionary spectrum.
Mutation suppression may thwart evolutionary exploration
of the fitness landscape while mutation enhancement may
overwhelm the genome with lethal mutations. There is
necessarily a wide zone of mutation rates between these
extremes that allow viral persistence.

How to Demonstrate an Error Catastrophe

We have used a variety of simplifications to explain and
depict error catastrophes from a mathematical perspective.
Yet it may not be obvious how an error catastrophe would
manifest itself in a population, especially how it would appear
in a sample of genome sequences taken before and after
crossing the error threshold. One possible scenario is similar
to that of Figure 10: the error catastrophe is the deterministic
accumulation of mildly deleterious nucleotides in a genome
while preserving sites that are functionally essential. Figure
10 does not assign different fitness effects among loci but is
easily extended to that case. The population will suffer the
mutational loss of all nucleotides that cannot be maintained
under the high mutation rate, while maintaining only those
for which the fitness cost of a mutation is sufficiently large.
This is similar to Kondrashov’s version of Muller’s ratchet, in
which high fitness alleles ratchet out of the population until
either the remaining alleles are sufficiently robust to
mutation or all viable alleles have disappeared [35]. The
different neutral networks in this process are neighbors in
sequence space and differ by one or a few deleterious
mutations. Thus the error catastrophe is observed as a
population-wide change in nucleotide frequencies at possibly
very few sites in the genome.
A second scenario is that of a population in which each

individual’s genome belongs to either of two ‘‘disjoint’’
neutral networks from very different parts of the fitness
landscape. This type of polymorphism could arise if one type
was present in the starting population and the other was
introduced from a different population through migration.
For this scenario, we assume that the population size is
sufficiently small relative to the mutational distance between
the two neutral networks, so that it is essentially impossible
for the population to reach one network from the other via
mutation (as modeled in some of the ‘‘survival of the flattest’’
work cited above). If one of the networks is more
mutationally robust but of lower fitness than the other, an
error catastrophe can cause the loss of the higher-fitness
network. This type of error catastrophe might reveal itself in
genomic data as the loss of polymorphism through the
independent mutational meltdown and subsequent
disappearance of one of the original types. Back mutation
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complicates the previous scenario by continually re-
introducing the fitter nucleotides, which are then maintained
at only a slightly higher level than neutral nucleotides. Back
mutation is not a factor in the disjoint network model
because the first network to disappear is exceedingly unlikely
to be re-introduced via point mutations from the remaining
population.

Given the difficulty of demonstrating the relatively simple
properties of quasispecies dynamics and equilibrium
properties, it is not surprising that the empirical
demonstration of an error threshold/catastrophe has not
been achieved. An interesting step in this direction was
provided recently in a study that estimated the error
threshold mutation rate that might apply to a primitive
organism consisting of RNA molecules—a riboorganism [36].
The study concluded that an error catastrophe might be
avoided in a substantially larger genome than had previously
been thought. This result stemmed in part from the high
degree of neutrality inferred from existing functional RNA
molecules.

The systems offering the best hope for empirically
demonstrating an error threshold are in fact naked RNA
molecules evolved by directed evolution: ribozymes (catalytic
RNA molecules) and aptamers (binding molecules) evolved in
vitro from initial pools of random-sequence molecules. In
this work, mutational robustness is recognized as a key
property of molecules affecting evolution (e.g., [37]), but the
concept has been approached from the perspective of
adaptive evolution rather than error catastrophes (the Kun et
al. study [36] cited above is unusual in applying the
perspective of error catastrophes to ribozymes). A sequence
‘‘motif’’ is the set of bases at specific positions in the RNA
molecule essential for function; changes in those bases
destroy function but changes at other positions have no
major effect. When there exist both short and long sequence
motifs that are functionally similar, then, by simple
combinatorics, the short motif will attain higher
representation in a random sequence library than the long
motif will. Thus, short motifs are more likely to be selected at
the outset, creating a bias known as the ‘‘tyranny of short
motifs’’ [38]. Furthermore, since the length of a motif
determines the number of potential mutational targets, short
motifs will typically be more mutationally robust than long
motifs. In subsequent rounds of mutagenesis and selection,
this may create additional bias toward short motifs.

Suppose a long motif has slightly greater functionality (our
fitness, wi) than a short motif. By virtue of differences in
mutational robustness among the different motifs, there
should be an error threshold mutation rate, above which the
long motifs will be displaced by the short motifs. If one knows
the fitnesses (wi) and the number of critical bases in the long
and short motifs (mi), it should be possible to estimate the
value of the error threshold by using wið1! lÞmias the
replacement rate of motif i. The ligase ribozymes seem like an
appropriate model for such a calculation, because the class I
ligases have a much longer motif (;70 bases) than the class II
and class III ligases (;40 bases; [39]). Kinetic parameters of
classes II and III were not determined for optimized ligase
molecules, so it is not yet possible to estimate realistic fitness
differences between the best members of each family, and
even if kinetic properties were known, extrapolation to
fitness is not trivial. Nonetheless, if all point mutations of

critical bases are lethal and others are neutral, the error
threshold would be a per base mutation rate of roughly 0.003
if class I had a fitness advantage of 10% over classII/III, a
mutation rate of 0.01 for a 50% advantage, and a mutation
rate of 0.06 for a 10-fold advantage of class I. An
experimental demonstration of an error threshold may thus
be feasible in this system.
The ligase ribozymes will permit an easier demonstration

of an error threshold than most other empirical systems,
because the alternative functional networks have been
identified and can be seeded into the experiment. We thus
know in advance what to compare. If, instead, we have
information about only the wild-type but not the suboptimal
type that dominates beyond the error threshold (as would be
the case when working with viruses or bacteria), then it
becomes far more complicated to identify an error threshold
empirically. Even with the ligase ribozymes, if a population
was initiated with only the class I molecule, the class II or III
molecules might not evolve at high mutation rates because
their sequences might be too distant in sequence space to
arise in a quasispecies of class I molecules. All three classes
arose in the initial experiment because they were selected
from a random sequence pool rather than evolved from a
single type.
Identification of an error threshold is certainly facilitated

by use of a previously characterized genotype–fitness map,
but that kind of information is not usually available. In
ignorance of the alternative neutral networks for a
phenotype, the obvious protocol to use in blindly testing for
an error catastrophe is to impose stabilizing selection for the
wild-type trait while progressively increasing the mutation
rate. One would then test for characteristics of an error
catastrophe, such as a population shift in genotype space or
increased mutational robustness of the genotypes evolved at
high mutation rate. The key difficulty in demonstrating an
error catastrophe without a priori knowledge of alternative
networks is that there are population genetic processes not
considered in the simple quasispecies models that give rise to
superficially similar outcomes. Thus, under our suggested
experimental protocol, shifts in genotype space may stem
from (i) an error catastrophe—the deterministic fixation of
deleterious mutations, (ii) stochastic fixation of deleterious
and neutral mutations, (iii) the higher mutation rate allowing
the population to find higher adaptive peaks, or (iv) adaptive
evolution because mutagenesis has altered the selective
environment (other than through higher mutation rate).
Likewise, increases in mutational robustness may, in fact,
suggest an error catastrophe, or may simply be a by-product
of a general decline in fitness under high mutation rates.
Recent work suggests that genotypes of reduced fitness
generally experience a higher fraction of mutations with
beneficial effect than genotypes of high fitness [40,41]. This
pattern may stem from the local structure of the fitness
landscape: a genotype at a local optimum can experience no
beneficial mutations, and the further a genotype lies from a
peak, the greater the chance that a random mutation
improves fitness. Even before sorting out these various
interpretations, there are fundamental challenges to
demonstrating that a shift in genotype space or in mutational
robustness has actually occurred (e.g., Figure 10 shows some
of the difficulties).
The theory of quasispecies error thresholds appears sound.
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The major avenues for new developments are twofold: (i)
obtaining empirical support and (ii) incorporating additional
realism into the basic models. There are several papers that
make progress on this second point, by including
recombination [17], stochastic effects [14], and the shape of
the mutation–fitness function [15]. We still have much to
learn about the relevance of error catastrophes to the natural
world, and the effort promises to yield many new insights. &
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