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Contact patterns in group-structured populations determine the course of

infectious disease outbreaks. Network-based models have revealed impor-

tant connections between group-level contact patterns and the dynamics

of epidemics, but these models typically ignore heterogeneities in within-

group composition. Here, we analyse a flexible mathematical model of

disease transmission in a hierarchically structured wildlife population, and

find that increased variation in group size reduces the epidemic threshold,

making social animal populations susceptible to a broader range of patho-

gens. Variation in group size also increases the likelihood of an epidemic

for mildly transmissible diseases, but can reduce the likelihood and expected

size of an epidemic for highly transmissible diseases. Further, we introduce

the concept of epidemiological effective group size, which we define to be the

group size of a hypothetical population containing groups of identical size

that has the same epidemic threshold as an observed population. Using

data from the Serengeti Lion Project, we find that pride-living Serengeti

lions are epidemiologically comparable to a homogeneous population

with up to 20 per cent larger prides.
1. Introduction
The structure of animal and human societies is often hierarchical. In their

simplest form, societies have two hierarchical levels: individuals form groups,

and groups form populations. In some species, such as humans, hamadryas

baboons (Papio hamadryas), gelada (Theropithecus gelada) or zebras (Equus
burchelli), populations comprise additional hierarchical levels referred to as

clans, bands, herds or troops [1–4]. In such multi-level societies, individuals

interact preferentially with other members of their own social clade, and may

only rarely come into contact with individuals belonging to distant clades.

Theoretical work has shown that variable contact rates between individuals

or groups of individuals alter the spread of infectious diseases and other

transmissible elements, such as information and cultural traits [5–7].

Network models have been used extensively to explore the impact of wild-

life contact patterns on disease transmission [8,9]. With this approach, one can

represent animal societies by networks in which individuals or groups of indi-

viduals constitute nodes (or vertices) that are connected by edges representing

their social interactions. The number of connections per node is called the

degree, and the distribution of degrees across all nodes in a network is called

the degree distribution [10]. In network epidemiology, nodes are commonly

characterized by a discrete state variable taking on the values: susceptible (S),

infected (I) or removed (R) [11]. Nodes transition from one state to another

depending on their own state and the states of neighbouring nodes. Network

models have provided important insights into the epidemiological effects of

contact heterogeneity, but are often limited to a single layer of connectivity.

Hierarchically structured populations are often modelled using networks in
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which nodes represent entire groups [12–16]. Such models

ignore both within-group connectivity and variation in

group size, both of which can influence disease transmission.

Here, we introduce a network-based model of infectious

disease transmission in a two-level hierarchically structured

population, and use it to investigate the impact of group size

distributions on disease dynamics. We focus specifically on

the mean and the variance of group sizes. If the transmission

probability between two connected groups is assumed to be

positively correlated with the sizes of the groups, then larger

mean group sizes are expected to facilitate disease transmission.

However, the variance of group size works in subtler ways. We

use bond percolation methods [7,17,18] to derive expressions

for (i) epidemic thresholds (above which the disease has the

potential to infect a large number of individuals); (ii) expected

size and variance of small outbreaks; and (iii) the probabi-

lity and expected size of epidemics in two-level hierarchical

networks. We show that when the mean group size is held

constant, the variance of group size strongly influences trans-

mission dynamics. Whether it facilitates or hinders disease

spread depends on the transmission rate of the disease.

Using our model, we then study the impact of pride size

distributions on disease transmission in a well-studied lion

population (Panthera leo) in the Serengeti National Park,

Tanzania [19]. This population has been affected by multiple

infectious disease outbreaks [20,21], some of which have

caused substantial mortality and could pose conservation

threats, including canine distemper virus and feline immunode-

ficiency virus [22–25]. The mean pride size is approximately 10

individuals, whereas the variance in pride size is six times that.

We show that such high pride size variance has considerable

epidemiological consequences, and should be explicitly con-

sidered in epidemiological and conservation assessments of

wildlife populations.
2. Theoretical model
Consider an infectious disease spreading through an undirected

network in which nodes represent social groups of different

sizes and edges represent contacts between groups (figure 1a).

Disease can be transmitted between groups when infected indi-

viduals from one group come into contact with susceptible

individuals from another group. In the following model, we

assume that the probability of such an event depends on the

sizes of the two interacting groups and that, once the disease

reaches a group, all members of the group eventually become

infected (the latter assumption can be relaxed, see §4).

In this section, we present and provide mathematical

motivation for several key epidemiological quantities: (i) the

epidemic threshold, which is a value that indicates how conta-

gious a disease must be to cause an epidemic in a particular

population, (ii) for diseases below the epidemic threshold,

estimates of the mean and variance in outbreak sizes, (iii) for

diseases above the threshold, the probability and expected

size of an epidemic, and (iv) the epidemiological effective

group size, which is a metric that indicates the epidemiological

vulnerability of a population via comparison with hypothetical

populations with equal-sized groups.

2.1. Epidemic threshold
We will present epidemiological quantities for group-

to-group contact networks that rely on two probability
distributions: S0(n), the probability that a randomly

chosen group has size n, and D0(k), the probability that a

randomly chosen group has degree k (where the degree of

a node is the number of edges connecting it to other

nodes). We assume that group size and degree are inde-

pendent variables, that is, the probability that a random

group has size n and degree k is simply the product

S0(n) . D0(k).

Suppose that an entirely infected group of size n1 is con-

nected to an entirely susceptible group of size n2. The

probability T that the disease is transmitted between an

infected individual from the first group and a susceptible

individual from the second group is given by

T ¼ 1� lim
dt!0
ð1� b dtÞt=dt

¼ 1� e�bt; ð2:1Þ

where b is the rate of disease-causing contacts between in-

dividuals in connected groups and t is the duration of

infectiousness. Each parameter is assumed to be identical

for all individuals. The probability that at least one individual

from the second group becomes infected is then

uðn1; n2Þ ¼ 1� e�btn1n2 : ð2:2Þ

Hereafter, we will assume that btn1n2 is small compared with

1, so that u(n1, n2) can be approximated by its first-order

Taylor series expansion:

uðn1;n2Þ ≃btn1n2 ≃Tn1n2: ð2:3Þ

As described below, this approximation allows the derivation

of closed-form expressions of important epidemiological

quantities, and is within 10 per cent of the exact value of

u(n1, n2) as long as u(n1, n2) , 0.19, and within 20 per cent

if u(n1, n2) , 0.37.

Consider an outbreak that originates with a single

infected group of size n1. This group is expected to transmit

the disease along each of its outgoing edges with average

probability given by

uðn1Þ ≃ Tn1knl; ð2:4Þ

where knl is the average group size in the population. Assum-

ing the group has degree k, the number of outgoing edges

m along which the disease is expected to be transmitted

then follows a binomial distribution with parameters k
and u(n1):

Pðm; k; n1Þ ¼
k
m

� �
uðn1Þm½1� uðn1Þ�k�m: ð2:5Þ

We will refer to these m edges as ‘infective edges’.

Hereafter, we will make use of probability-generating

functions (PGFs), which have been used extensively to

study epidemiological properties of networks [7,17,18,26].

PGFs are functions of the form

GðxÞ ¼
X1
k¼0

pk xk; ð2:6Þ

where pk is the probability of a random variable taking dis-

crete value k. They have interesting mathematical properties

[10,17]. For example, G(1) is the sum of all pk’s, and hence

is equal to 1, and the first derivative of the PGF,

G0ðxÞ ¼
X1
k¼0

kpk xk�1; ð2:7Þ

http://rsif.royalsocietypublishing.org/
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Figure 1. Hierarchical network models. (a) A 100-node group network with a Poisson degree distribution, where groups contain variable numbers of individuals and
are completely intra-connected. (b) A 100-node group network with a power-law degree distribution. (c) A simulated Serengeti lion pride network with the
statistical properties described in Craft et al. [16]. Node size indicates number of lions in the pride.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130206

3

 on April 10, 2013rsif.royalsocietypublishing.orgDownloaded from 
is equal to the mean of the distribution when x ¼ 1, and can

be combined with the second derivative to obtain the

variance of the distribution: G00(1) þ G’(1) 2 (G’(1))2.

Suppose the first infected group in an outbreak is chosen

randomly from an entirely susceptible population. The PGF

of the number of other groups infected by that initial group

is given by

G0ðxÞ ¼
X1
k¼0

X1
n¼1

S0ðnÞD0ðkÞ
Xk

m¼0

Pðm; k;nÞxm: ð2:8Þ

Making use of the relation

Xk

m¼0

Pðm; k; nÞ xm ¼
Xk

m¼0

k
m

� �
½xuðnÞ�m½1� uðnÞ�k�m

¼ ½1þ ðx� 1ÞuðnÞ�k; ð2:9Þ

we obtain

G0ðxÞ ¼
X1
k¼0

X1
n¼1

S0ðnÞD0ðkÞ½1þ ðx� 1ÞuðnÞ�k: ð2:10Þ

Let us now determine the PGF of the distribution of the

number of infective edges leaving a group reached by follow-

ing a random infective edge, denoted G1(x). Intuitively,

groups that are highly connected and/or large are more
likely to become infected than their less connected and/or

smaller counterparts. The probability of reaching a group of

degree k by following a random infective edge is proportional

to k . D0(k). Similarly, by approximation (2.3), the probabi-

lity of reaching a group of size n by following a random

infective edge is proportional to n . S0(n). G1(x) is therefore

proportional to

g1ðxÞ ¼
X1
k¼0

X1
n¼1

nS0ðnÞkD0ðkÞ
Xk�1

m¼0

Pðm; k � 1;nÞ xm

¼
X1
k¼0

X1
n¼1

nS0ðnÞkD0ðkÞ½1þ ðx� 1ÞuðnÞ�k�1: ð2:11Þ

G1(x) is obtained by normalizing g1(x), which makes the

probabilities sum to one:

G1ðxÞ ¼
g1ðxÞ
g1ð1Þ

: ð2:12Þ

G1(x) generates the distribution of the number of infective

edges leaving a group reached by following a random

infected edge. During the course of an outbreak, an infected

group will infect on average G01ð1Þ susceptible groups. If

G01ð1Þ . 1; then an outbreak is expected to continue increas-

ing in size, and may grow into an epidemic that is expected

to scale with the size of the network (described in detail

http://rsif.royalsocietypublishing.org/
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Figure 2. Size distribution of infected groups at the beginning of an outbreak. Black bars: group size distribution for the whole population, here assumed to follow a
negative binomial (as in equation (3.1)), with mean knl ¼ 5 and variance (a) s2

n ¼ 4 or (b) s2
n ¼ 16. White bars: distribution of infected group sizes after a few

transmission events (equation (2.15)). The arrows represent the differences between the means of the two distributions. The higher the variance s2
n, the higher the

mean size of infected groups, and, consequently, the more easily disease spreads in the population.
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below). The epidemic threshold Tc, beyond which epidemics

are possible, can be determined by solving

G01ð1Þ ¼ 1

,
P1

k¼0

P1
n¼1 kðk � 1Þ D0ðkÞn S0ðnÞuðnÞP1
k¼0

P1
n¼1 kD0ðkÞnS0ðnÞ

¼ 1

, Tcknl
P1

k¼0 kðk � 1ÞD0ðkÞ
P1

n¼1 n2 S0ðnÞP1
k¼0 kD0ðkÞ

P1
n¼1

n S0ðnÞ
¼ 1

, Tckn2l
kk2l� kkl

kkl
¼ 1

, Tc ¼
1

kn2l

� �
kkl

kk2l� kkl

� �
: ð2:13Þ

The second moment of the group size distribution, kn2l, is a

function of the mean and variance of the group size distri-

bution: kn2l ¼ knl2 þ s2
n: In agreement with equation (2.13),

numerous studies have already shown that larger mean

group sizes ðknlÞ typically promote the spread of infectious

disease outbreaks [27–32]. Here, we focus instead on the

role of the variance of the group size distribution ðs2
nÞ:

As the mean and variance of the group size distribution

increase, the epidemic threshold decreases. In other words,

the epidemiological vulnerability of the population increases.

This stems from the assumption that between-group trans-

mission is proportional to the sizes of interacting groups,

making larger groups more vulnerable to infection. Figure 2

depicts the approximate probability distribution of the size

of newly infected groups after a few transmission events, as

given by

S1ðnÞ ¼
nS0ðnÞP1

u¼1 uS0ðuÞ
¼ nS0ðnÞ

knl
; ð2:14Þ

with mean

kninfl ¼
kn2l
knl
¼ knlþ s2

n

knl
: ð2:15Þ

This equation tells us that the expected size of infected groups

early in an outbreak is higher than the average group size,
and that it increases with the variance in group size. Because

the between-group transmission rate is proportional to the

size of the infected group, then the early epidemiological vul-

nerability of a population also increases with variance in

group size. Thus, variance in group size enhances trans-

mission via the presence of large groups (albeit relatively

rare) that have the unfortunate combination of high prob-

ability of catching disease from other groups and high

probability of spreading disease to other groups. Note that

S1(n) does not give the probability distribution for groups

infected throughout the entire epidemic, but applies to the

early stages of transmission. The sizes of groups infected

very early and later in the epidemic tend to be lower than

those given by S1(n).

2.2. Mean and variance of outbreak sizes below the
epidemic threshold

Functions G0(x) and G1(x) can be used to determine the distri-

bution of the total number of nodes that become infected in

an outbreak starting from a single infected group [33].

Newman et al. [34] and Newman [17] demonstrated that

this distribution is generated by the PGF H0(x) defined by

the following system of equations:

H0ðxÞ ¼ xG0ðH1ðxÞÞ
and H1ðxÞ ¼ xG1ðH1ðxÞÞ:

)
ð2:16Þ

The self-consistent form of the second equation makes

closed-form expressions of H0(x) and H1(x) difficult to

obtain. However, the mean outbreak size ksl ¼ H
0

0ð1Þ can be

written as a simple function of the mean and mean-squared

degree (kkl and kk2l), mean and mean-squared group size

(knl and kn2l), and transmission rate T (see the electronic

supplementary material, S1.1):

ksl ¼ 1þ G
0

0ð1Þ
1� G0

1ð1Þ

¼ 1þ Tknl2kkl
1� ðTðs2

n þ knl2Þðkk2l� kklÞ=kklÞ
: ð2:17Þ

http://rsif.royalsocietypublishing.org/
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The second moment of the group size distribution, kn2l, is

equal tos2
n þ knl2, wheres2

n is the variance of the group size dis-

tribution. The derivatives of ksl with respect to s2
n and knl are

both positive real numbers. The mean outbreak size is hence

an increasing function of both the mean and variance of

group sizes. The variance of outbreak sizes, s2
s ¼ H000 ð1Þþ

H00ð1Þ � ðH00ð1ÞÞ
2, can also be derived from equation (2.16):

s2
s ¼

1

ðG01ð1Þ � 1Þ3
½ðG01ð1Þ � 1ÞðG000ð1Þ þ G00ð1ÞÞ

� ð1þ G01ð1Þ � G00ð1ÞÞ � G00ð1ÞG001ð1Þ� ð2:18Þ

with

G00ð1Þ ¼ Tknl2kkl

G01ð1Þ ¼ Tkn2l
kk2l� kkl

kkl
G000ð1Þ ¼ ðTknlÞ2kn2lðkk2l� kklÞ

G001ð1Þ ¼ T2knlkn3l
kk3l� 3kk2lþ 2kkl

kk2l� kkl
:

8>>>>>>>><
>>>>>>>>:

From this expression, we find that the variance in outbreak size,

which indicates the unpredictability of outbreaks, is also an

increasing function of both the mean and variance of group sizes.

2.3. Epidemic size and probability of an epidemic
The expression for ksl in equation (2.17) diverges when

1� G01ð1Þ ¼ 0 and thus is valid only when G01ð1Þ , 1, i.e.

when T . Tc (equation (2.13)). Above this epidemic threshold,

outbreaks can either have a small, finite size or become epi-

demic, that is, have a large expected size that scales with the

size of the network. By definition, H0(x) is the PGF of the size

of finite outbreaks. Thus, H0(1) is the expected fraction of the

network that, if infected, would yield small, finite-sized out-

breaks. Following Newman [17], the expected size of an

epidemic is thus given by

S ¼ 1� G0ðH1ð1ÞÞ; ð2:19Þ

where H1(1), the probability that the node at the end of a

random edge does not get infected during an epidemic, can

be obtained by solving

H1ð1Þ ¼ G1ðH1ð1ÞÞ: ð2:20Þ

Note that S is both the proportion of the network affected by

the epidemic and the probability that an epidemic occurs

(as opposed to a small outbreak), under the assumption that

the first infected group is randomly determined [33].

In the epidemic regime, the mean size of small outbreaks

that do not reach epidemic proportions is given by (see the

electronic supplementary material, S1.2)

ksl ¼ H00ð1Þ
H0ð1Þ

¼ 1

1� S
1� Sþ G00ðH1ð1ÞÞH1ð1Þ

1� G01ðH1ð1ÞÞ

� �
: ð2:21Þ

Note that in the non-epidemic regime, S ¼ 0 and H1(1) ¼ 1,

which makes equations (2.21) and (2.17) equivalent.

2.4. Epidemiological effective group size
To further quantify the epidemiological significance of

group size variance, we compare populations with variable

group sizes to hypothetical populations with constant group

sizes. The equations above tell us that all else being equal

(same transmission rate, same degree distribution, same mean

group size), a population with heterogeneous group sizes will

be more vulnerable to epidemics (i.e. have a lower epidemic

threshold) than a population with homogeneous group sizes.
As the concept of epidemic threshold is specific to the field of

epidemiology, the comparison of two epidemic thresholds

may only be meaningful for a specialized audience. Instead,

let us introduce a more meaningful quantity. For a given

network with variable-sized groups, we ask which homo-

geneous network (with identical-sized groups) has the exact

same epidemic threshold, when the mean group size is allowed

to change, but not the degree distribution. In other words, if we

reassigned all individuals in the original heterogeneous net-

work to equal-sized groups (leaving the number of groups

and degree distribution unchanged), then the population

would become less vulnerable to epidemics. By how much

would we then have to increase the size of those groups to

reduce the epidemic threshold back to its original value? This

unit for this quantity is a ‘number of individuals per group’,

which makes it easily understandable by non-epidemiologists.

Because all groups in the hypothetical equivalent popu-

lation have the same size, ne, then the second moment of the

group size distribution is simply kn2
el ¼ n2

e: Using equation

(2.13), we see that the group size in this hypothetical equivalent

population, ne, must satisfy

1

n2
e

� �
kkl

kk2l� kkl

� �
¼ 1

kn2l

� �
kkl

kk2l� kkl

� �
: ð2:22Þ

Because the degree distributions are identical, the mean size of

the groups in the homogeneous network is given by

ne ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knl2 þ s2

n

q
: ð2:23Þ

This quantity is conceptually analogous to the ‘effective popu-

lation size’ used in population genetics [35] and defined as the

size of the ideal population that would undergo the same

amount of random genetic drift as the actual population [36].

Hence, we call this quantity the epidemiological effective

group size (EEGS). Notably, it depends only on the original

group size distribution, and not on either the degree distri-

bution or the transmission rate of the disease.
3. Examples
We provide two examples of application of this model. The first

example is theoretical. We present exact solutions for infinite

networks where group sizes follow a negative-binomial distri-

bution and edges are distributed randomly between nodes.

Erdös & Rényi [37] have shown that such networks have Pois-

son degree distributions (figure 1a). We then extend these

results to networks with power-law (figure 1b) and exponential

degree distributions. As a second example, we use simulations

to investigate the impacts of group size distribution for an actual

biological system, pride-living Serengeti lions [14,16].
3.1. Negative binomial group size distribution
Consider a network composed of an infinite number of social

groups, where group sizes follow a discrete distribution S0(n)

in which mean and variance can be tuned independently.

As an example, we will investigate the negative binomial

distribution shifted one unit to the right to avoid groups of

size zero:

S0ðnÞ ¼ 0; if n � 0

S0ðnÞ ¼
nþ x� 2

x� 1

� �
ð1� pÞn�1px; if n . 0:

8<
: ð3:1Þ

http://rsif.royalsocietypublishing.org/
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Figure 3. (a) Epidemic size (or probability of an epidemic, S) in relation to the disease contagiousness and the group size coefficient of dispersion c (assuming
negative binomial group size distribution with knl ¼ 10), as predicted by the theoretical model. The contagiousness is expressed as the initial transmission rate, i.e.
the expected number of secondary cases resulting from the primary infection of a randomly chosen group: G00ð1Þ ¼ knl2kklT: The lines display values calculated
numerically using equations (2.19) and (2.20) for networks with Poisson degree distributions (kkl ¼ 30). Each dot corresponds to the average of 100 stochastic
simulations on networks including 10 000 vertices. The slight discrepancy between theoretical and simulated values is due to approximation (1.3). (b) Mean out-
break size in relation to the disease contagiousness, simulated in Serengeti lion networks with knl ¼ 10:3: Each dot corresponds to the average of 100 simulations.
Symbols correspond to different values of the group size coefficient of dispersion c, and also to the case of a constant group size.
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This probability distribution has mean given by

knl ¼
X

n
nS0ðnÞ ¼ 1þ x

1

p
� 1

� �
: ð3:2Þ

To help with interpretation, we will henceforth replace par-

ameter x with pðknl� 1Þ=ð1� pÞ and parameter p with 1/c.

This gives the variance of the distribution a simpler expression:

s2
n ¼

X
n

S0ðnÞðn� knlÞ2 ¼ cðknl� 1Þ: ð3:3Þ

Parameter c [ ð1;þ1Þ is thus equal to s2
n=ðknl� 1Þ and

measures the overdispersion of the distribution. When c
approaches 1, S0(n) tends towards

lim
c!1

S0ðnÞ ¼ ðknl� 1Þn�1 e�ðknl�1Þ

ðn� 1Þ! ; ð3:4Þ

which is a Poisson distribution shifted one unit to the right.

Assuming the network as a Poisson degree distribution implies

that kk2l ¼ 2kkl2, which gives

kkl
kk2l� kkl

¼ kkl�1: ð3:5Þ

The epidemic threshold can be derived by solving equation

(2.13):

Tc ¼
1

kn2l

� �
kkl

kk2l� kkl

� �

¼ ½kklðkn2lþ s2
nÞ�
�1

¼ ½kklðkn2lþ cðknl� 1ÞÞ��1: ð3:6Þ

Tc is a decreasing function of kkl, knl and c. The epidemic

threshold is more easily reached when the mean degree, the

mean group size and the coefficient of dispersion of group

sizes are high (see figure 3a and electronic supplementary

material, figure S2.1a).
The EEGS (equation (2.23)) for such degree distribution is

given by

ne ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knl2 þ cðknl� 1Þ

q
; ð3:7Þ

and the difference between ne and the actual mean group size

knl, d ¼ ne � knl, is an increasing function of knl, which

asymptotes to the constant value c/2. Therefore, when the

mean group size is large, ne varies between n þ 1/2 (in

the case of a Poisson group size distribution) and þ1

(in the case of highly overdispersed group size distribution

(i.e. c! þ1)).

In the case of more dispersed degree distributions, the

results are slightly different. Following several authors [17,33,

34,38,39], we investigated the following degree distribution:

D0ðkÞ ¼
0; for k � 0

Ck�ae�k=k; for k . 0

�
ð3:8Þ

which is a power-law distribution with an exponential cut-off.

Constant C, ensuring
P

kD0(k) ¼ 1, is equal to Lia(e21/k),

where Lia is the polylogarithm function, defined as

LiaðzÞ ¼
X1
k¼1

zk

ka
: ð3:9Þ

When a ¼ 0, D0(k) becomes an exponential with scale par-

ameter k; and when k! 0, it approaches a pure power-law

distribution of exponent a. According to equation (2.13), the

epidemic threshold is proportional to

kkl
kk2l� kkl

¼ Lia�1ðe�1=kÞ
Lia�2ðe�1=kÞ � Lia�1ðe�1=kÞ ; ð3:10Þ

which is an increasing function of a and a decreasing function

of k (see the electronic supplementary material, figure S2.1b).

This result is identical to that obtained with networks

composed of simple nodes [17].
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Quantity S (the epidemic size or, equivalently, the prob-

ability of an epidemic) can be computed numerically for

different values of the coefficient of dispersion of the group

size distribution using equations (2.19) and (2.20). The

effect of c depends on the contagiousness of the disease,

as shown for a set of networks with Poisson degree dis-

tributions (figure 3a). When the contagiousness is low,

variation in group size increases the mean epidemic size.

Just as group size variability increases epidemiological vul-

nerability early in an outbreak via enhanced infection to

and transmission from large groups, it also leads to increases

in sizes of infected groups and resulting probabilities of

transmission throughout epidemics of mildly transmissible

diseases. However, when the disease is highly contagious,

increasing the variance of the group size distribution leads

to smaller epidemics. The crossing of the lines in figure 3

may seem surprising, as it shows that networks with the

lowest epidemic thresholds (highest vulnerability) and large

expected epidemic sizes for mildly contagious diseases

are expected to experience the smallest epidemics for highly

contagious diseases, and vice versa. For networks with het-

erogeneous group sizes, the flip side of having some large

groups that increase the epidemiological vulnerability of the

population as a whole is also having small groups that are

unlikely to become infected. Recall that the transmission

probability, u(n1, n2), is proportional to the product of the

sizes of the two connected groups. Small groups thus are rela-

tively protected from infection, and may result in stochastic

termination of transmission chains.

Interestingly, the quantity H1(1) computed using equa-

tion (2.20) can also be used to derive the probability of

a group of size n and degree k remaining uninfected during

an epidemic:

Pðinfjn; kÞ ¼ ½1� uðnÞ þ uðnÞ �H1ð1Þ�k; ð3:11Þ

where 1 2 u(n) is the probability of an edge remaining un-

infected, and u(n) . H1(1) is the probability of an infective

edge that is not connected to the part of the network affected

by the epidemic. Using Bayes theorem, we can then calculate

the group size and degree distributions of uninfected and

infected groups during an epidemic:

Pðn; kjinfÞ ¼ Pðinfjn; kÞS0ðnÞD0ðkÞ
ð1� SÞ

and P(n; kj inf) ¼ ½1� Pðinfjn; kÞ�S0ðnÞD0ðkÞ
S

:

9>>=
>>; ð3:12Þ

As expected, groups that become infected during an epidemic

have on average a larger size and a larger degree than groups

that remain uninfected (see the electronic supplementary

material, figure S2.2).
3.2. Disease spread in Serengeti lions
Craft et al. [14,16] have described the structure and properties of

the contact patterns among approximately 180 lion prides in

Serengeti National Park, Tanzania, using detailed demo-

graphic and behavioural data collected since 1965 on a subset

of the population [19]. They developed an algorithm to simu-

late stochastic networks with statistical properties similar to

the real pride network [16]. They also showed that pride size

and degree did not correlate, as assumed by our model

[16]. We used this algorithm to generate hypothetical pride

networks (figure 1c).
The distribution of pride sizes in these networks was

assumed to be the shifted negative binomial distribution

defined in equation (3.1). Maximum-likelihood estimates of

parameters knl and c were calculated from composition

data on 21 prides recorded in 1992. We estimated a mean

pride size of 10.3 individuals (females and cubs older

than three months), and a coefficient of dispersion of 6.3.

A likelihood-ratio test indicated that the negative binomial

fitted the data significantly better than a Poisson distribution

(see the electronic supplementary material, figure S2.3). This

test was highly significant (x2 ¼ 26.2, d.f. ¼ 1, p ¼ 3 � 1027).

We performed chain-binomial simulations of disease out-

breaks through the hypothetical Serengeti lion populations,

keeping mean pride size knl constant and varying the value

of c between 1 and 20 [40]. The lion pride network is relatively

small, making it difficult to distinguish between small, non-

epidemic outbreaks and full epidemics. Thus, rather than esti-

mating epidemic thresholds and epidemic sizes from the

simulations, we instead computed final outbreak sizes, defined

as the proportion of prides that became infected. The results,

displayed in figure 3b, are qualitatively comparable to the

analytical results obtained with a Poisson network of infinite

size (figure 3a). When the contagiousness is low (i.e. when out-

breaks affect on average less than approx. 20–30% of the prides),

group size variability promotes larger outbreaks. When the

contagiousness increases, however, the trend reverses and

increased group size variability leads to smaller outbreaks.

Thus, the epidemiological impact of group size variability can

be positive or negative, depending on the infectious properties

of the spreading disease.

Because the Serengeti lion population forms a small,

finite-sized network, we cannot estimate its epidemic

threshold and the EEGS, as defined above. However, an ana-

logous quantity can be calculated using simulations. For 30

different transmissibility values T (corresponding to 30 differ-

ent initial transmission rates G00ð1Þ ranging from zero to

three), we simulated disease outbreaks in hypothetical net-

works with homogeneous pride sizes, n, ranging from five to

20 individuals per pride. For each of the 480 combinations of

T and n, we simulated 100 outbreaks and calculated the

mean outbreak size. For each G00ð1Þ, we then determined the

homogeneous pride size that yielded the closest mean out-

break size to the empirical population (figure 4). For diseases

expected to have total attack rates of less than 23 per cent of

all prides, the observed lion population was found epidemiolo-

gically equivalent to populations in which all prides include 11

or 12 individuals (figure 4), that is, populations with 10–20%

more individuals than the empirical population.
4. Discussion
Our analyses demonstrate the epidemiological importance of

variation in group size in social species. As the variance of

the group size distribution increases, the model demonstrates

that the epidemic threshold decreases and that both the mean

and variance of small outbreak sizes should increase. Above

the epidemic threshold, that is, for diseases capable of causing

large epidemics, the effect of group size variability depends on

the transmissibility of the disease. For mildly contagious dis-

eases, more variable group sizes promote larger epidemics,

whereas for more highly contagious diseases, the effect

reverses and group size variability inhibits epidemics.

http://rsif.royalsocietypublishing.org/


0 0.5 1.0 1.5 2.0 2.5 3.0

6

7

8

9

10

11

12

disease transmission rate (G0¢ (1))

eq
ui

va
le

nt
 c

on
st

an
t g

ro
up

 s
iz

e

Figure 4. Effect of the variance of Serengeti lion pride sizes on epidemic
sizes. The y-axis shows the group size of a hypothetical homogeneous popu-
lation with constant group sizes in which epidemics have the same average
size as the observed lion population, in relation to disease transmission rate
in the observed population. G00ð1Þ ¼ knl2 kklT is the expected number of
secondary cases resulting from the primary infection of randomly chosen
group. The dotted line marks the observed mean pride size (knl ¼ 10:3).
Variability in group sizes increases the mean outbreak size only when
G00 , 0:7, which corresponds to an expected outbreak size less than 23%
of the population. For diseases above this threshold, variability in group
sizes decreases the expected outbreak size.
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These findings have important implications for disease-

control strategies, including vaccination, quarantine and

culling, which often target social groups that are likely to

decrease the epidemic threshold. Prior studies have highligh-

ted the importance of targeting groups with high numbers of

interacting neighbours or who occupy a central location in

the network [41]. Our study suggests that factoring the group

size distribution into epidemiological assessments can improve

both understanding of disease dynamics and efforts to pre-

vent and mitigate outbreaks. For example, vaccination efforts

should perhaps be targeted to reduce the variation in the

number of susceptible individuals per group (perhaps by vac-

cinating a fraction of individuals in large groups) rather than

simply reducing the total number of susceptible individuals

population-wide or immunizing all individuals in a few

groups. For conservation biologists, this work also suggests

that assessments of disease risk in endangered animal popu-

lations should carefully consider variation in both contact

patterns and group sizes.

The effect of the hierarchical structure of a population

on the transmission of infectious diseases can similarly

apply to the transmission of information. In human popu-

lations, the transmission of rumours and cultural traits

between families or communities is thus probably influenced

by the variance in social group size. One can also predict that

the transmission of computer viruses between small net-

works of interconnected computers (e.g. intranets) is more

likely to become epidemic when the size of subnetworks is

more variable.

We have introduced EEGS as a simple, intuitive metric for

quantifying the epidemiological impact of group size vari-

ation and the epidemiological vulnerability of a population.

As long as the network structure of the population is suffi-

ciently random (lacks clustering or other local structure),
EEGS can be estimated using only the mean and variance

of the group size distribution. EEGS is independent of degree

distribution and indicates which homogeneous network

with same-sized groups has comparable epidemiological prop-

erties. The original network and the EEGS homogeneous

network share the same epidemic threshold and thus are vul-

nerable to the same suite of pathogens. However, the two

networks will not necessarily experience outbreaks of similar

magnitude. Analogous metrics can also be computed by equat-

ing the mean outbreak size (as illustrated here with the

Serengeti lion network) or the probability of an epidemic

instead of the epidemic threshold. However, such metrics can

generally only be computed numerically or using Monte

Carlo simulations.

The model makes several simplifying assumptions. First,

it assumes that between-group transmission is an increasing

function of the size of the groups. This happens, for example,

when all the individuals of two interacting groups come into

contact, or when movements of potentially infected individ-

uals between connected social groups are proportional to

the size of the groups (as in the gravity model [42,43]). This

may also be the case when disease vectors such as mosqui-

toes are more likely to detect large social groups than small

social groups (e.g. malaria in primates [44,45]). It also

assumes that when disease reaches a group, all individuals

in the group become infected. This may not hold when the

within-group disease transmission rate or the within-group con-

nectivity is low. The model can be modified to handle such

scenarios by replacing the group size distribution with the distri-

bution of within-group outbreak sizes. This distribution can, for

example, be inferred using stochastic SIRcompartmental models

for highly intra-connected groups [46] or network-based

models for sparser groups. Within-group network structures

may be sensitive to stochastic effects and yield highly variable

within-group outbreak sizes, which will, in turn, affect the epide-

miological vulnerability of the larger population. In these cases,

the dynamics of infectious diseases will depend on the two-level

within- and between-group contact network.

Second, the model assumes that group sizes are randomly

distributed across the landscape. In reality, group sizes may

depend on the quality of locally available resources, with

large groups occurring around resource-rich areas and small

groups found in more marginal areas [47]. If group sizes are

spatially clustered, then the epidemiological impact of the

group size variability may be different, depending on the

size and spatial distribution of these clusters.

Finally, we assume that group size and degree are not cor-

related. If there is a positive correlation between the two, that

is, larger groups have more inter-group contacts, then we

expect the effects of group size variability to be amplified.

The epidemic threshold would then be lower and epidemic

size for high transmission rates would be smaller.

In conclusion, group size variability strongly impacts dis-

ease transmission in hierarchical populations. This pertains

not only to group-living wild animals such as the Serengeti

lions, but more generally to structured populations, including

patch-structured wild plants, cultivated crops, herd-structured

domestic livestock and community-structured humans.
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