
1 Derivation of the probability of infection of a random

contact

Here we explain the self-consistency formula Eq. (6). Recall that φk denotes the frequency

of individuals with degree k and vk denotes the fraction of degree k individuals opting to

vaccinate. Suppose we start at a randomly chosen individual in a network and follow an

arbitrary edge from that individual to a neighbouring contact. We wish to determine the

probability ζ that this neighbouring contact is not infected. First, the relative likelihood of

reaching a neighbour of given degree should be the frequency of that degree weighted by the

number of contacts arriving at the vertex, so the probability that the neighbouring contact

has degree k is kφk∑
∞

k=1
kφk

. Suppose the neighbouring contact was not vaccinated. Given

that 1 − ζ is the probability that an arbitrarily chosen susceptible contact was infected

over the course of an epidemic and T is the probability that this infection would have been

transmitted to the focal individual, then (1 − ζ)T is the probability that the neighbouring

contact transmitted infection to the focal individual. Extending this to the neighbours of

the neighbouring contact, (1 − (1 − ζ)T )k−1 is the probability that a neighbouring contact

of degree k did not become infected from one of its other contacts (other than the focal

individual). So (1 − vk)(1 − (1 − ζ)T )k−1 is the probability that an arbitrary neighbour

of degree k was not vaccinated but did not become infected. On the other hand, if the

neighbouring contact was vaccinated, then, with probability r, the contact has protective

immunity and, with probability 1 − r, the contact remains susceptible after vaccination. If

the neighbour remains susceptible after vaccination, then they avoid infection from one of

their other contacts with probability (1− (1− ζ)T )k−1. So the probability that a vaccinated
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contact of degree k does not become infected is

vkr + vk(1− r)(1− (1− ζ)T )k−1.

Combining all these terms, we find that ζ must satisfy the infinite-order polynomial equation

ζ =

∑

∞

k=1
kφk

{

vkr + [vk(1− r) + (1− vk)][1− (1− ζ)T ]k−1
}

∑

∞

k=1
kφk

Alternatively, using generating function methods, one can derive ζ as the probability that

a node at the end of a random edge in a Bethe lattice with given degree distribution and

connectivity is a member of a finite cluster.

2 Proof that there are no p-cycles for p > 2 when s = 0

Theorem 1. If decisions are only made based on previous season (s = 0), it is impossible

to have an oscillation that is a p-cycle for any p > 2, regardless of the transmissibility T .

Proof. Let A be the Nash Equilibrium. Now suppose we have x1, x2 be the first two ζ’s in a

cycle. Suppose x1 < A. We note that this means x2 > A since the response of x1 will have

more vaccinators than A since the lower the initial ζ is, the greater the response ζ must be.

As a result, subsequent x’s must be going ever-closer to A or every-farther, and cannot be

finite in number. So limit cycles must have one element (if it is A) or two elements.

We note that this statement relies on the fact that higher ζ’s lead to lower ζ’s in response

which is true when vaccines lead to a fractional decrease in infection probability, but not

when the vaccine protection is a per-contact reduction as described below in Section 4. This

does not mean the limit cycles are unique. There may be three or more period-2 cycles for
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given parameter values. The topology implies that the number of cycles is always odd, with

every pair of neighbouring stable cycles separated by an unstable cycle. Related results are

found in [1].

3 Game Theory of Vaccination on the Simple Network

Model

Given the main paper Eqs. (3), (4), and (6) for the payoff function, αk, δk, and ζ, respectively,

then a degree k individual’s best-response strategy (that which maximizes their payoff for a

given risk) is

vBk = H(αkcI − δkcR − cV ),

= H([cI − (1− r)cR]
[

1− (1− (1− ζ)T )k
]

− cV ), (S1)

where H() is the Heaviside function

H(x) =







































0 if x < 0,

[0, 1] if x = 0,

1 if x > 0.

(S2)

Theorem 2. The random network epidemic model with vaccine efficacy independent of con-

tact degree, cI > 0, cR > 0, and cV > 0 has a unique Nash equilibrium.

Proof. Let η = 1−ζ represent the probability of a random contacts infection if not vaccinated,

a.k.a. the force of infection. A strategy set is a Nash equilibrium strategy set if and only if
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it satisfies the vector-valued fixed-point inclusion relation

v∗ ∈ vB(v∗),

where

vBk (v
∗) = H(αk(η(v

∗), T )(cI − (1− r)cR)− cV ).

The general existence of a solution to this equation can be established using the Ky Fan

inequality or Kakutani fixed point theorem [2]. Note that rather than having an arbitrary

vector-valued relation (since v∗ = {v∗k} is a vector), the special form of α(v, T ) and δ(v, T )

given by Eqs. (4) and (5) allows us to treat the best response function vB as a function

of the scalar probability η(v) for random graphs; v∗ ∈ vB(η(v∗)). If we apply formulas for

the probability of escaping infection η(v) to both sides, we get the scalar inclusion relation

η(v∗) ∈ η(vB(η(v∗))). Substituting e = η(v∗), e ∈ η(vB(e)) and equivalently 0 ∈ η(vB(e))−e.

We can show that there is a unique solution e∗ to this inclusion relation. First, we

observe that the correspondence η(vB(e)) is continuous. η is non-negative so if e = 0,

η(vB(0)) − 0 ≥ 0. η is a probability less than 1, so if e = 1, η(vB(1)) − 1 ≤ 0. Suppose

I1 and I2 are two subsets of the real numbers. We say I1 ≤ I2 if and only if, for every

xi ∈ I1 and yj ∈ I2, xi ≤ yj. Now, the best-response vaccination probabilities are weakly

increasing as the risk of infection increases in the sense that for each component k, e1 < e2

implies vBk (e1) ≤ vBk (e2). We also know that the less vaccination there is, the greater the

risk of infection, so e1 < e2 implies η(vB(e1)) ≥ η(vB(e2)) with equality holding only when

vB(e1) = vB(e2). Subtracting, we conclude that η(vB(e)) − e is strictly decreasing in e.

These conditions imply that there is exactly one solution e∗ ∈ [0, 1] such that

0 ∈ η(vB(e∗))− e∗. (S3)
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Thus far, we have derived a necessary condition for a Nash equilibrium: if v∗ is a Nash

equilibrium, then η(v∗) = e∗. Obviously, there are many combinations of vaccination strate-

gies that can result in an overall risk e∗. However, a Nash equilibrium must also be a best

response, and the set of best responses (a subset of [0, 1]N) is a continuous well-ordered set

under the component-wise ordering relation. Specifically, if e1 and e2 are forces of infection

with e1 < e2, then for w1 ∈ vBk (e1) and w2 ∈ vBk (e2), w1,k ≤ w2,k for all k but w1 6= w2. This

is ordering relies on αk being strictly decreasing.

We also know that η(vB) is continuous, e∗ is in the range of η, and η is strictly decreasing

in vB. If the set vB(e∗) has one point, that point is the unique Nash equilibrium. If vB(e∗) is

not a single point, than it is a simply connected one-dimensional interval set. If vB(e∗) is a

simply connected one-dimensional interval set, then the ordering of vB and the monotonicity

of η imply only one point in vB(e∗) can solve Eq. (S3). We conclude that there is always a

unique Nash equilibrium.

The strategy set of the Nash equilibrium varies, depending on the various parameters in

the model. For instance, we can show that increasing transmissibility always increases the

proportion vaccinating at equilibrium.

Theorem 3. Suppose v∗(T ) is the Nash equilibrium strategy set as a function of the trans-

missibility T . If best responses are given by Eq. (S1), then for every degree class k, T1 < T2

implies v∗k(T1) ≤ v∗k(T2).

Proof. We know η(v∗(T1), T1) ≤ η(v∗(T1), T2) where η(v∗(T1), T2) is the resulting risk of

the strategy set v∗(T1) in a network with edge transmissibility of T2 for instance. The

related fixed-point map f(x, T ) = x − η(vB(x, T ), T ) is monotonic increasing in x. Since
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η(v∗(T1), T1) ≤ η(v∗(T1), T2), we also know

vBk (η(v
∗(T1), T2), T1) ≥ vBk (η(v

∗(T1), T1), T1) = v∗k(T1)

for all k because the best response is increasing in risk for fixed transmissibility. Further,

vBk (η(v
∗(T1), T2), T2) ≥ vBk (η(v

∗(T1), T2), T1) ≥ v∗k(T1)

for all k since for a fixed risk, the best response is increasing in T . So

η(vB(η(v∗(T1), T2), T2), T2) ≤ η(v∗(T1), T2).

Rearranging, η(v∗(T1), T2) − η(vB(η(v∗(T1), T2), T2), T2) ≥ 0 Thus, f(η(v∗(T1), T2), T2) ≥

0. Since for transmissibility T2, f(η(v
∗(T1), T2), T2) ≥ 0 and f(η(v∗(T2), T2), T2) = 0, by

monotonicity η(v∗(T1), T2) ≥ η(v∗(T2), T2) and thus v∗k(T1) ≤ v∗k(T2).

4 Alternative vaccine efficacy model

An alternative to the vaccine efficacy hypothesis studied in the main test is that vaccination

or other prophylactic behaviour reduces the probability of infection per contact. For instance,

a marginal antibody titer may protect against a small infectious dose of virus, but not a large

infectious dose. If the probability that a random contact infects you is (1 − ζ)T , then the

probability of infection after vaccination is (1 − ζ)(1 − r)T where r is reduction in the

probability of transmission. The probability of infection for an unvaccinated individual is

given by

αk = 1− (1− (1− ζ)T )k
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and using the vaccine efficacy term r from above, the infection probability for a vaccinated

individual is

δk = 1− [1− (1− r)(1− ζ)T ]k.

Given r and T and assuming that a proportion zeta of contacts are not infected, the critical

cost of vaccination above which individuals with degree k will not vaccinate is given by

c∗V (k, ζ) = [1− (1− (1− ζ)T )k]cI − {1− [1− (1− r)(1− ζ)T ]k}cR. (S4)

For small k,

c∗V ≈ cIk ln

[

(1− (1− r)(1− ζ)T )cR/cI

1− (1− ζ)T

]

, (S5)

so c∗V is increasing in k. For 0 < {(1− ζ)T, cR/cI , r} < 1,

lim
k→∞

c∗V = cI − cR,

and the limit is approached from above with the vaccine efficacy r controlling the rate of

convergence to the asymptotic critical vaccine cost. Thus, c∗V has a maximum value as a

function of k so long as the vaccine provides partial protection (r > 0) on a per-contact basis.

Then if cV ∈ (cI−cR,maxk c
∗

V (k, ζ)), there is a range of intermediate degree classes for which

vaccinations are the preferred behaviour (Figure S1). Individuals with many contacts are

likely to be infected even after vaccination, and thus do not opt to vaccinate; and individuals

with few contacts are unlikely to be infected even without vaccination, and thus do not opt

to vaccinate. Thus, only individuals with intermediate numbers of contacts would have

sufficient incentive to vaccinate. The inter-seasonal risk maps (Figure S2) lead to dynamics

roughly similar to those observed under our original vaccine efficacy model (Figure S3).
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Figure S1: Vaccination windows for various vaccination costs cV when vaccinations protect

per contact instead of being degree independent for transmissibility T = .078. Vaccinating

degrees are those between two lines of the same colour. and 1 − ζ = 0.6, only individuals

with degrees between about 25 and 50 will opt to vaccinate.
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Figure S2: Comparison of inter-seasonal risk mappings under (a) the per-contact vaccine

efficacy model and (b) the original all-or-nothing vaccine efficacy model, with all parameters

equal. The plots appear similar, with the most notable difference being a thicker tail in the

T = .26 case. Note, plot (b) is identical to Figure 3A in the main document.
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Figure S3: Bifurcation diagrams under the per-contact vaccine efficacy model for the (a)

urban network and (b) scaled power law network. The power law network reaches equilibrium

at slightly higher values of T than the urban network.
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This window-effect breaks the conditions used to prove uniqueness of the Nash equilib-

rium above; and we conjecture that there may be multiple Nash equilibria in some scenarios.

This also means that best responses are not generally monotone functions of the risk ζ, which

also violates Theorem 3 (Nash equilibrium vaccination increases with transmissibility). The

efficacies used in the main text were not reported this way, but rather as a proportional

reduction in likelihood of infection, independent of degree.
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Figure S4: Log-linear plot of degree distributions for the Urban, Power Law, and Homoge-

neous networks. This corresponds to Figure 1B in the main text.
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