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When an infectious disease strikes a population, the number of newly reported cases is often the only

available information during the early stages of the outbreak. An important goal of early outbreak analysis

is to obtain a reliable estimate for the basic reproduction number, R0. Over the past few years, infectious

disease epidemic processes have gained attention from the physics community. Much of the work to date,

however, has focused on the analysis of an epidemic process in which the disease has already spread

widely within a population; conversely, very little attention has been paid, in the physics literature or

elsewhere, to formulating the initial phase of an outbreak. Careful analysis of this phase is especially

important as it could provide policymakers with insight on how to effectively control an epidemic in its

initial stage. We present a novel method, based on the principles of network theory, that enables us to

obtain a reliable real-time estimate of the basic reproduction number at an early stage of an outbreak. Our

method takes into account the possibility that the infectious period has a wide distribution and that the

degree distribution of the underlying contact network is heterogeneous. We validate our analytical

framework with numerical simulations.
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I. INTRODUCTION

The basic reproduction number, R0, is a fundamental
characteristic of the spread of an infectious disease. It is
generally defined as the expected number of new infections
caused by a typical individual during the entire period of
his or her infection in a totally susceptible population
[1–3]. BecauseR0 is a simple scalar quantity, and perhaps
because in many circumstances it determines the expected
(average) final size of an outbreak [3–7], it has been widely
used to gauge the degree of threat that a specific infectious
agent will pose as an outbreak progresses [8–10]. While it
is clear that knowing the value ofR0 can be very useful for
policymakers in planning a response, it is not as straight-
forward to obtain a reliable estimate of R0, especially in
the early stages of an outbreak, before large-scale, uncon-
trolled transmission has taken place and before the basic
biology and transmission pathways of the pathogen have
been characterized.

Early in an outbreak, the pattern of disease spread is
predominantly influenced by the probabilistic nature of

infection transmission. Consequently, a wide array of out-
comes is possible, ranging from the outbreak fizzling out,
even in the absence of an intervention, to circumstances
where the initial stage expands into a large-scale epidemic.
Once a full-blown epidemic develops, several assumptions
can be made that simplify the estimation of R0, as has
been discussed in detail in the literature [1,3,5,8].
In many cases, it is necessary to assess the impact of

various intervention strategies before a large-scale epi-
demic occurs. In doing so, stochastic manifestations of
disease transmission, as well as the underlying structure
of the contact network, should be taken into account. The
first aspect has been widely studied. For example, the
Reed-Frost model is a chain-binomial stochastic model
where each infected individual can infect susceptible indi-
viduals and they are all assumed to have the same contact
rate [11–14]. Another example is the methodology devel-
oped by Becker [15] and by Ball and Donnelly [16], which
is based on a branching process susceptible-infected-
recovered (SIR) model. Branching processes have received
wide attention because they facilitate the evaluation of the
basic reproduction number as well as the final epidemic
size and epidemic probability [17]. More recently, the 2003
global outbreak of severe acute respiratory syndrome
(SARS) inspired the development of new methodologies
based on the daily number of new cases and the distribution
of the serial interval between successive infections [18–21].
However, none of these methods take into consideration the
influence of the contact network underlying an epidemic

*Corresponding author: Mathematical Modeling Services,
British Columbia Centre for Disease Control, 655 West 12th
Avenue, Vancouver, BC, V5Z 4R4 Canada.
babak.pourbohloul@bccdc.ca

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 2, 031005 (2012)

2160-3308=12=2(3)=031005(15) 031005-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.2.031005
http://creativecommons.org/licenses/by/3.0/


process. Alternatively, it is assumed that the contact network
is a classic random graph.

Several new methods to estimate the basic reproduction
numberR0 were proposed during or shortly after the 2009
H1N1 influenza pandemic. Notably, Nishiura et al. [22]
employed an age-structured model to derive an estimate for
R0. Katriel et al. [23] used a new discrete-time stochastic
epidemic SIR model that explicitly takes into account the
disease’s specific generation-time distribution and the in-
trinsic demographic stochasticity inherent to the infection
process. Balcan et al. [24] employed a method that is based
on the distribution of the arrival times of the H1N1 influ-
enza virus in 12 different countries seeded by the Mexico
epidemic using 1� 106 computationally simulated epi-
demics. Nishiura et al. [25] also developed a discrete-time
stochastic model that accounts for demographic stochastic-
ity and conditional measurement and applied it to estimate
the R0 value using the weekly incidence of the H1N1

influenza virus in Japan. Although all of these constitute
an important advancement in the literature, none of
them simultaneously addresses analytically the stochastic-
ity due to the underlying contact network and the trans-
mission process.

II. OUTLINE SUMMARY

In the following, we first describe the basic notion of
a contact network model. We then define the infection
hazard or infectivity function, the removal hazard or re-
moval function, the transmissibility of an infectious agent,
and the removal probability. We then derive a stochastic
renewal equation that describes the rate of newly infected
individuals at any given time t as a function of the number
of newly infected individuals up to time t. We then show
that during the exponential-growth phase of an epidemic
(also referred here as the exponential regime), the renewal

TABLE I. Summary of the parameters used in this paper.

Quality Symbol Description

Degree distribution pk Probability that a randomly chosen vertex has degree k.
Average degree z1 Average degree of vertices in a network calculated by z1 ¼ hki.
Excess degree Zx Average degree of a vertex chosen by sampling an edge

(calculated by Zx ¼ hk2 � kihki)
Infection hazard or

infectivity function

�ið�Þ Instantaneous rate of infection. �ið�Þ�� gives the probability of disease

transmission across an edge between infection age � and �þ ��,
given it occurred after age �.

Removal hazard or

removal function

�rð�Þ Instantaneous removal rate. �rð�Þ gives the removal probability of an

infectious individual between its infection age � and �þ ��,
given it occurred after age �.

Transmissibility Tð�Þ Probability of disease transmission by infection age �. It is calculated by

Tð�Þ ¼ 1� exp½�R
�
0 �rð�0d�0Þ�.

Removal distribution 1��ð�Þ �ð�Þ gives the probability of not being removed by age of infection �.
�ð�Þ ¼ 1� exp½�R

�
0 �rð�0Þd�0�.

Removal-probability density c ð�Þ c ð�Þ ¼ �d�ð�Þ=d�
Expected transmissibility T Probability of disease transmission along one edge, T ¼ R1

0 c ð�ÞTð�Þd�.
Basic reproduction number R0 Expected number of infections a typical infected individual can cause in a

fully susceptible population, R0 ¼ ZxT.
Rate of new infections ~JðtÞa ~JðtÞ�t gives the number of new infections between times t and tþ �t.

~�ð�; tÞ Fraction of active S-I edges where the disease is actually transmitted

exactly at time t.
Number of infectious individuals ~IðtÞ Total number of infectious individuals at time t, ~I ¼ R

t
0
~Jðt� �Þ�ð�; tÞd�.

Number of removed individuals ~RðtÞ Total number of removed individuals at time t, ~RðtÞ ¼ R
t
0
~Jðt� �Þ½1��ð�; tÞ�d�.

~RrðtÞ Total number of removed individuals at time t whose predecessor is already removed.
~RiðtÞ Total number of removed individuals at time t whose predecessor is still infectious.
~IrðtÞ Total number of excess links of removed individuals, calculated by Eq. (22).
~IiðtÞ Total number of infectious individuals at time t whose predecessor is still infectious.
~Zr
xðtÞ Total number of excess links of removed individuals, calculated by Eq. (22).

Transmissibility of removed

individuals.

TrðtÞ Gives the transmissibility of removed individuals at time t and is

calculated by Eqs. (23) and (25)

�ð�Þ �ð�Þ�� gives the expected number of new infections produced by an

infectious individual between ages of infection � and �þ d�.
Generation-interval distribution. �̂ð�Þ �̂ð�Þ�� gives the conditional probability that given an infection, it

occurred between ages of infection � and �þ d�.
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equation reduces to the well-known Wallinga-Lipsitch
equation forR0 [26]. In this case, we also obtain an equa-
tion that expresses the generation-interval distribution in
terms of the transmissibility and the removal distribution
function. We next define the basic reproduction number for
removed individuals and write two independent equations
for this quantity. Equating these two equations acts as a
constraint that allows us to estimate one unknown model
parameter, either a disease or a network structure parameter.
We then derive an algorithm to estimate one unknown
model parameter based on this constraint and the number
of newly infected individuals up to time t, and show howwe
can estimate R0 with this algorithm. We finally present
numerical examples of the methodology, which show its
accuracy in estimating R0 for different contact networks
and disease parameters.

We summarize a list of the main parameters introduced
in this paper and their definitions in Table I.

III. NETWORK BASIS

This section briefly introduces the idea of contact-
network epidemiology and defines the key concepts of
infection rate, removal rate, transmissibility, and removal-
probability density.Wemap a collection ofN individuals to
a network where each vertex represents an individual and
each edge shows a pathway of possible infection trans-
mission between two individuals. We use k to denote the
degree of a given individual (the number of contacts that
he or she has) represented graphically by the number of
edges emanating from a vertex, and we use pk to denote
the degree distribution [the probability that a randomly
chosen vertex has degree k (k contacts)]. Several impor-
tant quantities can be derived once a network’s degree
distribution is known. The moments of the degree distri-
bution are hkni ¼ P1

�¼0 k
np�. For n ¼ 1, hki is the aver-

age number of nearest neighbors of a randomly chosen
individual, which we denote z1. The average number of
second nearest neighbors of a randomly selected individ-
ual, z2, can be expressed as hk2i � hki [27]. To estimate
R0, we count the number of edges along which an indi-
vidual can infect others, once that individual has become
infected. This quantity, usually termed excess degree,
represents the number of edges emanating from a vertex
(individual), excluding the edge that was the source of the
infection. One can show that the average excess degree
(Zx) is given by the ratio z2

z1
[28].

We denote the time at which an individual acquires the
infection by ti, and the time since acquiring infection by
� ¼ t� ti (which is also known as the age of infection).
While harboring the infection, the individual is first latent
(infected but not yet infectious) and then infectious (either
symptomatically or asymptomatically). The individual
may also recover, by which we mean only that he or
she can no longer transmit the infection, not that he or
she has necessarily completely cleared the pathogen. For

some diseases, after a temporary recovery, the person
may become infectious again. Knowing that an individual
acquires infection at a given time ti, various states of
infectiousness for this individual can be encapsulated
within the infection hazard or infectivity function, �ið�Þ.
The infectivity function measures the instantaneous risk of
disease transmission across an edge. This implies that for
small ��, the conditional probability that infection occurs
across an edge between times � and �þ ��, given that it
did not occur by time �, can be approximated by �ið�Þ��.
Typically, �ið�Þ is initially zero during the latent period; it
increases to a certain level and then declines during the
infectious period, before finally vanishing and returning to
zero at the time of permanent recovery. Figure 1 shows four
hypothetical infectivity functions, the first of which is the
typical case. In practice, the functional form of �ið�Þ
should be estimated from the actual transmission profile
corresponding to a specific disease. Note that the only
technical restriction on �ið�Þ is that it must be a non-
negative integrable function.
Given the infectivity function, one can evaluate the

probability that an individual transmits the disease to one
of his or her contacts during a specific time period. Let Tð�Þ
denote the probability of disease transmission along one
edge for an individual with infection age �. Then Tð�Þ
satisfies [27,29]

Tð�Þ ¼ 1� exp

�
�

Z �

0
�ið�0Þd�0

�
: (1)

In general, the time to removal varies from one individ-
ual to another and there is no a priori knowledge of the
exact value of this quantity for each individual. Therefore
we must account for its variability as well. Let �rð�Þ denote
the removal hazard or removal function, i.e., the instanta-
neous rate of removal for an individual with infection age
�. This implies that for small ��, the conditional probabil-
ity that an individual is removed between times � and
�þ ��, given that he or she is not removed by time �,
can be approximated by �rð�Þ��. The removal function
indicates how quickly the infectious individuals are re-
moved from disease dynamics as a function of the duration
of their infection. This can be related to death or various
interventions such as hospitalization or quarantine, reduc-
tion of social activity due to severity of illness, and behav-
ior change. Let �ð�Þ denote the probability that an
individual has a time to removal which is greater than or
equal to �. Then [29]

�ð�Þ ¼ exp

�
�
Z �

0
�rð�0Þd�0

�
; (2)

subject to the condition �ð1Þ ¼ 0. The removal probabil-

ity density function is given by c ð�Þ ¼ � d�ð�Þ
d� (or�ð�Þ ¼R1

� c ð�0Þd�0).
Using Eq. (1) and c ð�Þ [or �ð�Þ] one can calculate the

expected transmissibility, i.e., the probability of disease
transmission, across a given edge:
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T ¼
Z 1

0
c ð�ÞTð�Þd� ¼

Z 1

0
�ð�ÞdTð�Þ

d�
d�

¼
Z 1

0
�rð�Þe�

R
�

0
�rðuÞdu½1� e�

R
�

0
�iðuÞdu�d�: (3)

The basic reproduction number, which represents the
average number of infections caused by a typical infected
individual in a fully susceptible population, can be written
as the product of the expected excess degree and the
expected transmissibility [27]

R 0 ¼ ZxT: (4)

IV. DISEASE DYNAMICS ON NETWORKS

In this section, we present some examples of the spread
of an infectious agent on a contact network. The pattern of
disease spread on a network can be categorized into three
different regimes: stochastic, exponential, and declining.
The process of disease spread is stochastic in nature, given
that the disease transmission along an edge occurs in a
probabilistic manner and that the degree of the next
infected individual cannot be determined a priori. The
stochastic behavior is dominant in the initial stage of
disease spread when the number of infectious individuals
is comparatively small (stochastic regime). The effect
of stochasticity becomes much less pronounced when the

number of newly infected individuals becomes significant,
and stochastic fluctuations are smoothed out (exponential
regime). The progression of disease spread starts to decline
as the cumulative number of infected cases becomes com-
parable to the size of the network, at which point network
finite-size effects become important (declining regime) [28].
From now on, we use the tilde notation to make the

distinction between the realization of a stochastic process
(with tilde) and its mean field value (without tilde). We
define ~jðtÞ as the time series of infection events, which is a
sum of the Dirac � functions located at each infection time.

The case count ~Cðt; �tÞ that gives the number of infections

between times t and tþ �t can be expressed as ~Cðt; �tÞ ¼R
tþ�t
t

~jðt0Þdt0. We define ~JðtÞ ¼ ~Cðt; �tÞ=�t as the inci-

dence rate of new infections at time t, where �t is the
maximum time resolution. In the exponential regime, the
incidence rate of new infections grows exponentially and
therefore can be expressed as

~JðtÞ ’ J0 expð�tÞ; (5)

for some �> 0. Figure 2 represents the three regimes,
� ln½JðtÞ�

�t , in terms of time t.

A. Stochastic dynamics of disease

In this section, we outline a general framework to esti-
mate the basic reproduction number assuming that all

FIG. 1. Hypothetical infectivity functions �ið�Þ. They show the general infectivity patterns that can occur, varying by complexity of
the disease. The top left panel shows the infectivity function of a very generic disease, the top right panel shows the infectivity function
of an HIV type disease, the bottom left displays the infectivity function of any recurrent disease such as chicken pox, and finally, the
bottom right panel exhibits the infectivity function for an influenza type disease.
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information about a specific realization of the epidemic
process up to time t is known. We start by first deriving a
renewal equation for the rate of new infections, ~JðtÞ.

1. A renewal equation for ~JðtÞ
Let us consider the first person in the population infected

with the disease and assume that his or her infection
occurred at time 0. From Eq. (3), we can infer that the
expected number of infections that this individual will
cause by time t is given by

Zx

Z t

0
�ð�ÞdTð�Þ

d�
d� (6)

(assuming that his or her excess degree is equal to the
average excess degree). This leads in the limit t ! 1 to the
usual value of R0 ¼ ZxT. The above expression also
implies that the mean contribution of this individual to
the incidence rate of new infections at his or her infection
age � is given by

Zx�ð�ÞdTð�Þ
d�

: (7)

The above equations can be readily generalized to
address the random process of infection spread on a contact
network. In particular, one can compute the contribution of
the individuals infected at time t� �, ~Jðt� �Þ�t, to the
number of new infections occurring in the initial stage of
an outbreak at time t, ~JðtÞ�t, namely,

~JðtÞ�t ¼ Zx

Z t

0

~Jðt� �Þ�t�ð�Þ ~�ð�; tÞd�; (8)

where ~�ð�; tÞ denotes the fraction of those edges where
disease is actually transmitted exactly at time t. This is a

random function with the expectation given by dTð�Þ
d� . Note

that Zx and�ð�Þ are both functions of t in the most general
case. Expression (8) is a generalization of the classical

Lotka renewal equation for population growth [30,31];
here it is applied to epidemic dynamics when taking into
account the structure of the underlying contact network
and the stochasticity inherent to the transmission process.

2. Exponential regime and the
generation-interval distribution

The importance of Eq. (8) is in its applicability to the
early stage of an outbreak. When advancing to the next
stage, i.e., the exponential regime, the evaluation of (8) can
be simplified. Indeed, an estimation ofR0 in the exponen-
tial regime has been well studied, analytically. An excel-
lent account for this analytical framework is presented by
Wallinga and Lipsitch [26]. In this section, we show how,
as a special case, our general framework can reduce to
their finding in the exponential-regime limit. During the
exponential regime we can ignore stochastic fluctuations
and replace all quantities with their expected values. In
particular, if we ignore stochastic effects we can rewrite the
renewal equation (8) as

JðtÞ ¼ Zx

Z t

0
Jðt� �Þ�ð�ÞdTð�Þ

d�
d�; (9)

where we used ~�ð�; tÞ � dTð�Þ
d� .

Let �ð�Þ � Zx�ð�Þ dTð�Þd� . Equation (9) then takes the

simpler form

JðtÞ ¼
Z t

0
Jðt� �Þ�ð�Þd�; (10)

which is the well-known Lotka renewal equation [30,31].
From the definitions of�ð�Þ, the expected transmissibility

[Eq. (3)] and the basic reproduction number [Eq. (4)],
we can see that

R1
0 �ð�Þd� ¼ R0. Substituting JðtÞ �

expð��tÞ in Eq. (10) and taking the limit when t ! 1 we
obtain

t
5 10 15 20 25 30 35 40 45 50

 tδ
δ

J
])t(~

 ln
[

-2

-1

0

1

2

Stochastic regime

Exponential regime

Declining regime

FIG. 2. Two hypothetical realizations of an epidemic process on a network. The left, middle, and right sections represent stochastic,
exponential, and declining regimes, respectively.
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1 ¼
Z 1

0
expð���Þ�ð�Þd�: (11)

It is worth mentioning that the exact exponential regime can
be reached when t ! 1 for an infinite-size network and that
is why it is valid to take the limit. This means that there
should be a slight deviation from the exponential behavior
for a ‘‘finite-size’’ system at ‘‘finite time’’ once the outbreak
has surpassed the stochastic regime. Dividing both sides of
Eq. (11) by R0 we find that [26]

1

R0

¼
Z 1

0
expð���Þ�̂ð�Þd�; (12)

where �̂ð�Þ ¼ �ð�Þ=R0 is defined as thegeneration-interval
distribution. This equation relates the basic reproduction
number to the Laplace transform of the generation-interval
distribution in the asymptotic case (infinite size, infinite
time). Now, in our formulation the generation-interval distri-
bution can be written as

�̂ð�Þ ¼ �ð�Þ dTð�Þd�R1
0 �ð�0Þ dTð�0Þd�0 d�0

: (13)

This equation describes how the transmissibility, Tð�Þ, and
the distribution of the time to removal, �ð�Þ, determine
together the generation-interval distribution.

3. The generation-interval distribution
for constant parameters

Equation (11) has a simpler form for constants �r and �i.
This can be obtained by replacing c ð�Þ ¼ �r expð��r�Þ
and Tð�Þ ¼ 1� expð��i�Þ in Eq. (11):

1 ¼ Zx�i

Z 1

0
expð���rÞ expð���Þ expð��i�Þd� (14)

¼ Zx

�i

�i þ �r þ �
; (15)

or

� ¼ ðZx � 1Þ�i � �r: (16)

Therefore, we can express the rate of exponential growth of
an epidemic in terms of the mean excess degree (Zx), the
infectivity (�i), and the removal (�r) rates.
Furthermore, we can also explicitly compute the

generation-interval distribution [Eq. (13)]

�̂ð�Þ ¼ ð�i þ �rÞe�ð�iþ�rÞ�: (17)

For constant parameters, the generation interval is an ex-
ponential random variable with mean 1=ð�i þ �rÞ. Using
this fact and Eq. (12) we obtain the following expression
for R0:

R 0 ¼ �i þ �r þ �

�i þ �r

¼ 1þ �

�i þ �r

: (18)

This equation relates the value of R0 to the rate of growth
during the exponential phase of an epidemic (�), the
infection rate (�i), and the removal rate (�r). Notice that,
in contrast to the results obtained from a deterministic SIR
model, where the mean generation interval is equal to the
mean duration of infection [26], here we find that the mean
generation interval also depends on the infection rate.
Figure 3 shows two examples of logarithms (base e) of

the epidemic curves ð ln½~JðtÞ�Þ in the three regimes for
a binomial (left panel) and exponential network (right
panel). The algorithm used to simulate the spread of an
infectious agent on a contact network is described in the

t
0 20 40 60 80

J
])t(~

ln
[ J

])t(~
ln

[

0

1

2

3

4

5

y=0.26t+const

t
10 20 30 40 50

0

1

2

3

4

5

y=0.516t+const

FIG. 3. The logarithm (base e) of the rate of new infections ln~JðtÞ for a binomial network with z1 ¼ 5 (left panel) and for an
exponential network with � ¼ 4 (right panel), with �i ¼ 0:127 71 and �r ¼ 0:25. Two independent epidemic realizations are shown in
each panel (green and blue). The solid red line shows the tangent of ln½~JðtÞ� in the exponential regime.
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Appendix. The left panel of Fig. 3 shows two epidemic
events unfolding (two different initial index cases)

on a binomial network pk ¼
�
N
k

�
pkð1� pÞN�k with

N¼100000 nodes, z1 ¼ 5 [or p ¼ z1=ðN � 1Þ], Zx ¼ 5,
and f�i ¼ 0:127 71; �r ¼ 0:25g. Using Eq. (3), the ex-
pected transmissibility can be calculated as T ¼ 0:338.
The two solid lines y1, y2 ¼ �tþ const with � ¼
0:260 84 are the tangent of ln½~JðtÞ� during the exponential
regime [Eq. (16)]. This shows the consistency between
the simulated epidemic curve and its expected
(exponential-growth) behavior. In the right panel, we

show the same results for an exponential networkwithpk ¼
ð1� e�1=�Þe�k=�, � ¼ 4, z1 ¼ 3:52, Zx ¼ 7:0416, and
f�i ¼ 0:127 71; �r ¼ 0:25g. The lines y1, y2 ¼ �tþ const
with � ¼ 0:521 58 are again the tangent of ln½~JðtÞ� during
the exponential regime. Notice that, although herewe know
the ‘‘true’’ value of �, in practice it can be estimated from
real-life time series data if the outbreak progresses beyond
the stochastic regime.

4. The number of infected and removed
individuals at time t

Using the quantities introduced in the previous sections,
we now derive other expressions that will be helpful in
estimating the basic reproduction number, R0. As an out-
break progresses, at any given time there is a population of
infectious individuals, ~IðtÞ, and a population of removed
individuals, ~RðtÞ. The number of affected individuals—the
total number of infected individuals at time t and those who
are recovered or removed by time t—is given by

~IðtÞ þ ~RðtÞ ¼ N � ~SðtÞ ¼
Z t

0

~Jðt� �Þd�; (19)

where ~SðtÞ denotes the number of susceptible individuals at
time t. As illustrated in Fig. 4, the total number of infected
cases can be written as

~IðtÞ ¼
Z t

0

~Jið�; tÞd� ¼
Z t

0

~Jðt� �Þ ~�ð�Þd�; (20)

which, in turn, implies that

~RðtÞ ¼
Z t

0

~Jrð�; tÞd� ¼
Z t

0

~Jðt� �Þ½1��ð�Þ�d�; (21)

where Jið�; tÞ ¼ ~Jðt� �Þ�ð�Þ and Jrð�; tÞ ¼ ~Jðt� �Þ�
½1��ð�Þ�.

Figure 5 shows the number of infectious (left panel) and
removed (right panel) individuals for a disease that spreads
either on a binomial or an exponential network. In both
panels, the curves consisting of red symbols correspond to
the computer simulation of an epidemic on the correspond-
ing network; during the simulation, the new case counts are
recorded to create a synthetic ‘‘time series’’ for ~JðtÞ. The
solid curves correspond to Eqs. (20) or (21) [for ~IðtÞ or
~RðtÞ] for the corresponding network. These figures show a
perfect agreement for both networks between the analytical
formulas and the case counts from the simulation.

B. The transmissibility of removed individuals

Our methodology to estimate R0 is based on a detailed
analysis of the characteristics of removed individuals. This
is because the history of removed individuals contains all
the information about the mechanisms of disease trans-
mission and recovery process. In particular, the period of
infection of these individuals can help us estimate the
distribution of removal times. Furthermore, since removed
individuals have already had the opportunity to transmit
the disease, the fraction of the contacts that they actually
infected contains a lot of information about the transmis-
sibility of disease. In an ideal world, a full characterization
of the infection history of each removed individual would
be enough to estimate R0. However, in reality, it is
extremely difficult to know which infected individuals
have already been removed and what fraction of their
potential infections actually occurred. Therefore, we
instead derive theoretical expressions that can help us
estimate some of these quantities.
First, we write an expression for the total number of

secondary contacts of those individuals already removed
by time t. Using ideas similar to those above, the total
excess degree of removed individuals can be written as

~Z r
xðtÞ ¼ Zx

Z t

0

~Jðt� �Þ½1��ð�Þ�d�: (22)

Here, ~Zr
xðtÞ represents the total number of edges of

already removed individuals that could have transmitted
the infection by time t. However, only a fraction of these

FIG. 4. This figure illustrates schematically the dependency of
the rate of new infections, ~JðtÞ (blue curve), on its past values.
Only a fraction of the cases infected at time t� �, ~Jðt� �Þ�t,
contributes to the infections at time t, ~Jið�;tÞ�t¼ ~Jðt��Þ�t�ð�Þ
(red curve); the rest, ~Jrð�; tÞ�t ¼ ~Jðt� �Þ�t½1��ð�Þ�, have
already been removed.
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links actually transmitted the disease successfully. This
latter fraction is given by ~IrðtÞ þ ~RrðtÞ, where ~IrðtÞ and
~RrðtÞ represent, respectively, the number of infectious and
removed individuals at time t whose predecessor has
already been removed. The ratio of these two quantities
represents the fraction of potential transmissions that
actually occurred, which we shall refer to as the expected
transmissibility of removed individuals or ~TrðtÞ;

~T rðtÞ � ~IrðtÞ þ ~RrðtÞ
~Zr
xðtÞ

: (23)

Estimates for the expected values for these quantities
can, in principle, be calculated based on the rate of new
infections, JðtÞ, using arguments similar to those above.
These expressions are derived in the next section.
Equations (11) and (23) form a set of equations that allows
us to find two unknowns, for instance, the amplitude and
variance of the infectivity profile; a detailed analysis of this
subject merits a separate manuscript. Here, we solely use
Eq. (23) to estimate one quantity.

C. Expression for the transmissibility
of removed individuals, ~TrðtÞ

As discussed in the previous section, our methodology is
based on a careful analysis of the characteristics of the
removed individuals. In particular, the expected transmis-
sibility of removed individuals, ~TrðtÞ, will play a crucial
role in the estimation of R0. We now derive an alternative
expression for ~TrðtÞ and other expressions related to
Eq. (23).

The expected transmissibility of removed individuals,
~TrðtÞ, can also be obtained as an extension of Eq. (3) by
replacing the removal distribution, c ð�Þ, with the condi-
tional distribution of removal time, given that it occurred

before time t, defined as ~c rð�; tÞ. The quantity ~c rð�; tÞ��
is proportional to the number of individuals already
removed by time t that were removed after exactly � units

of time, i.e., ~c rð�; tÞ�� / c ð�ÞRt��
0

~Jð�0Þd�0��. This

probability function, after incorporating the proper normal-
ization, can be written as

~c rð�; tÞ ¼ c ð�ÞRt��
0

~Jð�0Þd�0R
t
0 c ð�0ÞRt��00

0
~Jð�00Þd�0d�00 : (24)

The expected transmissibility of removed individuals can
then be calculated as [see Eq. (3)]

~T rðtÞ ¼
Z t

0

~c rð�; tÞ ~Tð�; tÞd�; (25)

where ~Tð�; tÞ is an extension of Tð�Þ that takes into account
the stochastic effects in the disease-transmission process
(represented by the explicit dependence of this quantity
on t).

D. The basic reproduction number of removed
individuals and an equation for ~R0

The total excess degree of removed individuals [given in
Eq. (22)] takes the simpler form:

~Z r
xðtÞ ¼ Zx

~RðtÞ: (26)

Combining the last equation with Eq. (23) one obtains

~T rðtÞZx ¼
~IrðtÞ þ ~RrðtÞ

~RðtÞ : (27)

We define the right-hand side of the previous equation
as the reproduction number of the removed individuals
~Rr

0ðtÞ, i.e.,
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FIG. 5. Number of infectious (left panel) and removed individuals (right panel) as a function of time for the binomial (z1 ¼ 5,
�i ¼ 0:127 71, and �r ¼ 0:25) and exponential (� ¼ 4) networks. The solid curves come from the evaluation of Eqs. (20) and (21),
and the symbols come from the direct counting of the infectious and removed individuals at any given time for a specific realization of
the process.
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~R r
0ðtÞ ¼ ~TrðtÞZx: (28)

Using Eqs. (27) and (28), we can write a time-dependent

estimator of the basic reproduction number, ~R0 ¼ ZxT:

~R 0ðtÞ ¼
~IrðtÞ þ ~RrðtÞ

~RðtÞ
T

~TrðtÞ : (29)

On the right-hand side of the last expression, the
expected value of ~IrðtÞ þ ~RrðtÞ can be calculated as

~I rðtÞ þ ~RrðtÞ ¼
Z t

0

Z t0

0

~Jðt0Þ~�ð�; t0; tÞ~�ð�; t0Þd�dt0; (30)

where ~�ð�; t0; tÞ is the fraction of infected individuals who
are removed by time t and who may have infected others at
time t0 � t. ~�ð�; t0; tÞ can be written as

~�ð�; t0; tÞ ¼ ~Jið�; t0Þ � ~Jið�þ t� t0; tÞ
~Jið�; t0Þ

¼ �ð�Þ ��ð�þ t� t0Þ
�ð�Þ ; (31)

where ~Jið�; t0Þ ¼ ~Jðt0 � �Þ�ð�Þ. Figure 6 illustrates how
the new infection rate at time t0 depends on the infection
rate at time t0 � �.

~�ð�; t0Þ is the probability function that an infection at

time t0 was caused by any of these individuals. ~�ð�; t0Þ can
be written as

~�ð�; t0Þ ¼ ~Jið�; t0Þ ~�ð�; t0ÞR
t
0
~Jið�0; t0Þ ~�ð�0; t0Þd�0 : (32)

Substituting the expressions of ~�ð�; t0; tÞ and ~�ð�; tÞ in
Eq. (30) we obtain

~IrðtÞþ ~RrðtÞ¼
Z t

0

~Jðt0Þ
�
1�

R
t
0
~Jið�þ t� t0;tÞ ~�ð�;tÞd�R

t
0
~Jið�;t0Þ ~�ð�;tÞd�

�
dt0:

(33)

Notice that the right-hand side depends only on the
rate of new infections, ~JðtÞ, and disease transmissibility

[represented by ~�ð�; tÞ]. It is also important to notice
that the outcome of Eq. (29) is invariant under JðtÞ !
const� JrepðtÞ, where JrepðtÞ is rate of new reported
cases. Finally, we notice that for a disease with the
constant removal function, �r, ~Jið�þ t� t0; tÞ ¼
~Jðt0 � �Þ�ð�Þ�ðt� t0Þ. Therefore, ~IrðtÞ þ ~RrðtÞ ¼ ~RðtÞ.
This means that the first fraction on the right-hand side

in Eq. (27) equals unity, and thus ~Rr
0ðtÞ ¼ ~TrðtÞZx ¼ 1.

The expression for ~R0ðtÞ then takes the simpler form:

~R 0ðtÞ ¼ T
~TrðtÞ : (34)

E. An algorithm for the estimation of the
basic reproduction number

Using the expressions derived in the previous section,
we can compute real-time estimates of the basic reproduc-
tion number R0 assuming some knowledge of the under-
lying contact network and certain characteristics of the
disease. For example, if we assume that we know the rate
of new infections up to time t [JðsÞ, s � t], the average
excess degree of the underlying contact network, Zx, and
the removal time density, c ð�Þ, we can calculate an esti-
mator of R0 as follows.
(1) Evaluate the conditional distribution of the removal

time given that it occurred before time t, ~c rð�; tÞ,
using Eq. (24) and JðtÞ.

(2) Calculate ~Tð�; tÞ by equating the left- and right-hand
side of Eq. (27). We should use Eq. (25) to evaluate
the left-hand side of (27). It is worth mentioning that
since we use only one equation, we can estimate
only one parameter. This means that we must as-
sume a functional form for ~Tð�; tÞ that depends on,
at most, one parameter value. For example, we could

assume that ~Tð�; tÞ ¼ T ð�Þ ~AðtÞ, where T ð�Þ
denotes the dependence of the transmissibility on

the age of infection and ~AðtÞ denotes an amplitude
effect that captures the stochasticity of the trans-
missibility as a function of time. Assuming that
T ð�Þ is given, then ~Tð�; tÞ depends only on the

multiplicative parameter ~AðtÞ.
(3) Calculate an estimator of the expected transmissi-

bility, T̂ðtÞ, using ~Tð�; tÞ, c ð�Þ and Eq. (3). Notice

that the dependence of T̂ðtÞ on t denotes that we are
using only information up to time t.

(4) The estimated reproduction number at time t is

given by R̂0ðtÞ ¼ ZxT̂ðtÞ.

FIG. 6. Dependency of the rate of new infections at time t0,
~Jðt0Þ, on the rate of new infections at time t0 � �, ~Jið�; t0Þ. The
blue and red curves show the rates of new infections by time t0
and t, respectively. The green and yellow curves show the
fraction of those that remained infectious for at least � and
�þ t� t0 units of time, respectively.
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The above algorithm can be modified depending on the
information available for the estimation. For example, if
there is enough empirical evidence to determine the distri-
bution of the duration of infectiousness, as well as the
recovery rate of individuals in advance, then the methodol-
ogy can be used to shed light on the structure of the under-
lying contact network by estimating Zx. Examples of this
and other applications of the methodology are given below.
But first, we demonstrate the theoretical aspects of our
analytical framework. For more details please see Ref. [32].

V. NUMERICAL RESULTS

To test the framework presented so far, we performed
epidemic spread simulations on the two networks intro-
duced earlier (binomial and exponential) and in each case
collected the ‘‘time series’’ of case counts resulting from
the simulations.

A. Constant infectivity and removal functions

In Fig. 7, we present the basic reproduction number of
the removed individuals, Rr

0ðtÞ, as a function of the num-

ber of removed individuals, RðtÞ. The symbols show the
results from direct counting during the simulation, whereas
the lines show the results obtained from analytically

evaluating [after setting ~Tð�; tÞ ¼ Tð�Þ and ~�ð�; tÞ ¼
dTð�Þ
d� in the left- and right-hand sides of Eq. (27)] each of

the terms in Eq. (27). The green (blue) and red (pink)
colors correspond to the left- and right-hand side of
Eq. (27), respectively. The small asymptotic deviation of
our estimate for the exponential network comes from
finite-size effects [28] (for more details, see Fig. 10).

The top panels of Fig. 8 show our estimated basic
reproduction number (blue line) for the binomial (left

panel) and exponential (right panel) networks as a function
of the number of removed individuals available by time t.
The true values (red line) are R0 ¼ 1:6864 and 2.3749,
respectively. For comparison, the figure also shows theR0

estimates obtained from equation Eq. (18), which is
equivalent to the Wallinga-Lipsitch (WL) methodology.
To compute the WL estimates, we require knowledge of
the epidemic exponential phase’s growth rate (�). For each
simulation, we estimated � from the logarithm (base e) of
the cumulative incidence using simple linear regression and
a window of four units of the time of data for each time
point. The figure shows that, in both cases, our estimator
converges and becomes stable quicker than theWL estima-
tor. This is because our methodology does not make an
explicit assumption of exponential-epidemic growth and
is therefore able to incorporate and appropriately weight
the information from the stochastic phase of the epidemic.
The bottom panels of Fig. 8 show the number of removed
individuals by time t (logarithmic scale, base 10). The red
line shows the number of removed individuals from a
realization of the epidemic process and the black line shows
the theoretical exponential phase of the epidemic process.
In order to assess the variability of our estimator,

we simulated 100 different realizations of the epidemic
process and then estimated the value of R0 for each of
them. Figure 9 shows the mean estimated value plus or
minus 1 standard deviation (averaging across realizations)
for each network. Notice that the variability for the expo-
nential network is larger than for the binomial network. We
attribute this to the fact that the exponential degree distri-
bution has a larger variance. In addition, the R0 estimate
for the exponential network also appears to have a negative
bias. As mentioned above, we attribute this phenomena to
finite-size effects, which are stronger for this network in
comparison to the binomial.

FIG. 7. The estimated basic reproduction number of removed individuals for the binomial (left panel: z1 ¼ 5, �i ¼ 0:127 71, and
�r ¼ 0:25) and exponential (right panel: � ¼ 4) networks in terms of the number of removed individuals. The right-hand and left-hand
sides represent the right- and left-hand sides of Eq. (27), respectively. The solid curve represents the ‘‘analytical’’ calculation of Eq. (27)
and the symbols show the ‘‘exact’’ values of the right-hand and left-hand sides for this specific realization of the epidemic process.
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It is worth noting that ~TrðtÞ is a function of �ið�Þ, �rð�Þ,
and JðtÞ [see Eqs. (3), (24), and (25)]. Therefore, when �r is
constant, the condition ~TrðtÞZx ¼ 1 allows one to evaluate,
for a given time series, one of the three quantities �i, �r, or
Zx, if the other two quantities are assumed to be known [this
statement holds even if �r is a function of time, in which
case the more complex equation, (27), should be used].

For instance, we simulated again the epidemic on the
binomial and exponential networks presented earlier, but
this time with constant values for �r and �i. Using these
values and the derived and calculated ~JðtÞ, we calculated the
value of Zx, which is presented in Fig. 10 for the binomial
(left panel) and exponential (right panel) networks. The
green lines show our estimates using the above condition,
while the red lines represent the true values. The blue
symbols indicate the result of the direct count from the
simulation. It is interesting to note that the excess degree

of infected individuals in the simulation very quickly
tends to the average value for the binomial network. This
explains, in part, the excellent agreement of our estimate
and the true basic reproduction number for the binomial
network shown in Fig. 8. However, for the exponential
network, the excess degree of infected individuals in the
simulation has a higher variability and does not agree as
well with the corresponding average excess degree. This is
mainly due to finite-size effects, which, in this case, cause
an excess degree of infected individuals lower than the
average value. And, in turn, this produces biases in the
estimation of R0, like those shown in Fig. 8, and empha-
sizes the importance of heterogeneity effects for a network
such as the exponential. Finally, we should mention that all
the discrepancies discussed above can be removed, or at
least reduced, if one incorporates the true average excess
degree from the simulation (blue dots) in Eq. (25), instead of

FIG. 8. Top panels: Estimated basic reproduction number for the binomial (left panel: z1 ¼ 5, �i ¼ 0:127 71, and �r ¼ 0:25) and
exponential (right panel: � ¼ 4) networks in terms of the number of removed individuals. The red line corresponds to the real value of
the basic reproduction number. The blue line shows the estimatedR0 from our methodology. For comparison, the green line shows the
R0 estimates obtained from Eq. (18) and the estimation of the growth rate during the exponential phase (�). Bottom panels: The
number of removed individuals by time t (logarithmic scale, base 10). The red line shows the number of removed individuals from a
realization of the epidemic process. For comparison, the black line shows the theoretical exponential phase of the epidemic process.
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a theoretical average excess degree. This could be done if
detailed data on the transmission chain and the contacts of
infected individuals during an epidemic were available.

B. Time-dependent infectivity and removal functions

As another example, we use time-dependent infectivity
and removal functions to simulate the epidemic process.
Specifically, we assume that �ið�Þ¼�=ð1þ�2Þð1þ0:5�2Þ
and �rð�Þ ¼ 2�=ð1þ �2Þ. These choices lead to the follow-
ing expressions for Tð�Þ and �ð�Þ, Tð�Þ¼0:5�2=ð1þ�2Þ
and �ð�Þ ¼ 1=ð1 þ �2Þ [or c ð�Þ ¼ 2�=ð1 þ �2Þ2].
Figure 11 shows the estimated reproduction number for
the binomial (left panel; z1 ¼ 5) and exponential (right
panel; � ¼ 4) networks in terms of the number of removed

individuals. The real values in this case are 1.25 for the
binomial and 1.76 for the exponential network. The true
values are shown in red and the estimated values in green.
As discussed above, the estimation of the basic reproduc-
tion number is performed as follows [assuming that �rð�Þ
and Zx are known]. First, for each t, we use Eq. (27) with
~Tð�; tÞ ¼ ~AðtÞ�

1þ�2
and ~�ð�; tÞ ¼ 2 ~AðtÞ�

ð1þ�2Þ2 and then find the ~AðtÞ
so that the left- and right-hand sides of the equation are

equal. Second, we use the calculated ~AðtÞ to obtain the
expected transmissibility using Eq. (3). Finally, we calcu-
late the basic reproduction number, R0 ¼ ZxT. This
approach can be used for a specific disease to find the

amplitude of the infectivity function, ~AðtÞ, assuming we

know the dependence of ~�ð�; tÞ [or ~Tð�; tÞ] on the age of

FIG. 9. The estimated basic reproduction number for the binomial (left panel: z1 ¼ 5, �i ¼ 0:127 71, and �r ¼ 0:25) and
exponential (right panel: � ¼ 4) networks in terms of the number of removed individuals. The red line corresponds to the real value
of the basic reproduction number. The blue area shows the variation of the estimated value for a hundred different realizations.

FIG. 10. Estimates for the value of Zx for the binomial (left) and exponential (right) networks, when �i and �r are known. The red
line and green curves correspond to the average and the estimated excess degree.
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infection, �. Figure 11 also shows the estimated values of
R0 that we get if we assume (erroneously) instead that
either �i is constant (blue curve) or that both �i and �r are
constant (pink curve). The results show that although the
methodology is sensitive to misspecifications in the func-
tional forms of �i and �i, the estimated R0 values are still
relatively close to the true value.

C. Sensitivity analysis

Figure 12 shows the sensitivity of the estimated repro-
duction number to misspecifications of the excess degree.

To test this, we vary the assumed excess degree between
4 and 6 for the binomial network (true value equal to 5) and
between 6.04 and 8.04 for the exponential network (true
value equal to 7.04). The results show that although we
assumed a misspecification in the excess degree of up to
20% for the binomial and up to 14.2% for the exponential
network, the estimates had an error of at most 3% and
3.1%, respectively. As described earlier in the description
of the algorithm, we can use Eq. (27) to estimate one model
parameter, in this case �i. Then we can use its value to
evaluate the expected transmissibility and following that,
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FIG. 11. The estimated basic reproduction number for the binomial [left panel: z1 ¼ 5, �i ¼ �=ð1þ �2Þð1þ 0:5�2Þ, and
�r ¼ 2�=ð1þ �2Þ] and exponential (right panel: � ¼ 4) networks in terms of the number of removed individuals. The red line and
green curves correspond to the real and the estimated value. The blue line shows the estimates if we incorrectly assume that �i is
constant. The pink line shows the corresponding estimates if we incorrectly assume that both �i and �r are constant.

FIG. 12. The estimated basic reproduction number for the binomial (left panel: z1 ¼ 5, �i ¼ 0:127 71, and �r ¼ 0:25) and
exponential (right panel: � ¼ 4) networks in terms of the number of removed individuals. The green curve and red line correspond
to the estimated (with the correct excess degree) and real value of the basic reproduction number. The blue area shows the variation of
the estimated value with respect to change of the excess degree.
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the expected reproduction number [the first identity in
Eq. (29)]. This shows the usefulness of Eq. (27), which
acts as a strong constraint that allows us to estimate the
basic reproduction number with good precision regardless
of misspecification in other input parameters.

VI. DISCUSSION

Using concepts from network theory and stochastic
processes, we present a method that provides a reliable
estimate of the basic reproduction number, R0. Our
method takes into account the stochasticity in disease
spread and does not make an explicit assumption about
exponential epidemic growth and therefore is able to pro-
vide estimates of R0 at an early stage of an outbreak (i.e.,
before the exponential regime). We provide the details of
calculations and compare our results at each step against
simulations. Case notification data (time series) are the
main input to this analytical framework. As an outbreak
begins to unfold, the pattern of spread depends substan-
tially on the structure of the underlying contact network. In
fact, this dependency manifests itself in the formation of
the time series of newly infected cases. The proposed
methodology highlights the interplay between the hetero-
geneity in contacts (network structure), estimates of the
basic reproduction number, and infection transmissibility.
Depending on the circumstances, this methodology can be
used to infer other useful quantities as well. For infectious
pathogens that cause repeated outbreaks, there is enough
empirical evidence to establish the distribution of the
duration of infectiousness as well as the recovery rate of
individuals. In this case, in addition to the basic reproduc-
tion number, the proposed methodology can shed light on
the structure of the underlying contact network by estimat-
ing the mean excess degree Zx. This is an important piece
of information, because in many circumstances it is not
possible to capture and build a detailed contact network
among individuals based on some network generative
rules. The importance of this quantity becomes more
apparent when an emerging infectious disease strikes a
population. In this circumstance, there is much less infor-
mation on the characteristics of the disease such as the
duration of infectiousness and recovery rate, which in turn
determine the transmissibility of disease. Knowledge of
disease transmissibility during the early stage of an epi-
demic can play a crucial role, as effective and cost-
effective public health intervention strategies hinge on
the degree of contagiousness of a disease. On the other
hand, before the spread of disease becomes rampant, the
structure of the contact network within a population re-
mains more or less stable. Therefore, the estimated value
of Zx obtained during epidemic lulls, from the time series
corresponding to common infections, can be used to esti-
mate the transmissibility of an emerging infectious disease
at the early stage of an outbreak. We demonstrated this
concept with two examples. Our estimate for the basic

reproduction number converges quickly, thus enabling
epidemiologists and policymakers to identify the optimal
control strategies, in real time and even before or at the
beginning of the exponential growth of an epidemic.
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APPENDIX: SIMULATION ALGORITHM

To perform Monte Carlo simulations of an epidemic
propagation on a contact network, one first requires ex-
plicit knowledge of the network structure. In this article,
we use the method described in [27,28] to produce a
contact network, given a specific degree distribution.
Briefly, we (i) sample a random degree sequence kj of

length N from the degree distribution pk, (ii) make sure
that

P
jkj is an even number since a link is composed of

two stubs by reducing the degree of a random individual by
one if necessary, (iii) for each j, produce a node with kj
stubs, (iv) randomly choose a pair of unconnected stubs
and connect them together, and repeat until all uncon-
nected stubs are exhausted. Finally, we (v) test for the
presence of self-loops and repeated links. Remove the
faulty stubs by randomly choosing a pair of connected
stubs and rewire them by switching stubs. Repeat until
no self-loops and/or repeated links are found.
To simulate the spread of disease on a contact network

in continuous time we follow a Tau-Leaping approach
[33–35], which we describe below. The processes of dis-
ease transmission along one link and the removal of in-
fectious individuals are controlled by �ið�Þ and �rð�Þ,
respectively. We divide time into intervals of length �t
and ensure that �ið�Þ�t and �rð�Þ�t are small enough,
such that the expected epidemic curve does not vary much
by reducing �t even further. At every �t step, each infec-
tious individual recovers with probability �rð�jÞ�t, where
�j is the age of infection of individual j. If an infectious

individual does not recover, then he or she infects inde-
pendently each of his or her susceptible contacts with
probability �ið�jÞ�t.
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