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Abstract Mathematics has long been an important tool for understanding and controlling the
spread of infectious diseases. Here, we begin with an overview of compartmental
models, the traditional approach to modeling infectious disease dynamics, and then
introduce contact network epidemiology, a relatively new approach that applies bond
percolation on random graphs to model the spread of infectious disease through het-
erogeneous populations. As we illustrate, these methods can be used to address public
health challenges and have recently been coupled with powerful computational meth-
ods to optimize epidemic control strategies.
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1. Introduction
As the novel 2009 H1N1 strain of influenza emerged out of Mexico and rapidly spread around
the globe, public health agencies scrambled to understand and control its spread. The World
Health Organization and the U.S. Centers for Disease Control and Prevention immediately
looked to statisticians and mathematical modelers to make sense of the sparse and noisy
data available from the initial outbreaks. To make informed decisions about school closures,
travel restrictions, and uses of limited resources such as antiviral medications, public health
authorities needed to know the rate of spread and severity of the new strain, as well as
whether prior flu vaccines or exposure to existing strains provided any immunity to H1N1/09.
As evidenced by several papers published jointly by academic researchers and public health
officials within a few months of the emergence of H1N1/09 (Fraser et al. [23], Pourbohloul
et al. [48], Yang et al. [65]), mathematical modeling played a vital role in shaping the global
public health response to the pandemic.

The mathematical techniques used to understand, forecast, and control the spread of
infectious diseases like influenza are diverse and growing rapidly. Some techniques have been
newly developed, whereas others build upon existing methods from diverse fields including
dynamical systems, stochastic processes, statistical physics, graph theory, statistics, opera-
tions research, and high-performance computing. Here, we present an overview of the some
of the most widely used and promising mathematical approaches to modeling the spread of
infectious disease. In §2, we present an overview of compartmental models, the workhorse of
mathematical epidemiology throughout the 20th century. In §§3 and 4, we discuss param-
eterization of infectious disease models and some limitations of the standard modeling
approaches. In §5, we turn to contact network modeling, a relatively new analytical approach
that explicitly considers complex human population structures, thereby overcoming a major
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limitation of compartmental models. In §6, we conclude by discussing the promising appli-
cation of advanced optimization methods to designing public health policies.

2. Compartmental SIR Model
The first differential equation models of infectious disease dynamics go back as far as
1766, to the work of Daniel Bernoulli, which has been recently republished (Bernoulli and
Blower [12]). Modern differential equation models of epidemics were introduced by Kermack
and McKendrick [30] and later expanded by Anderson and May [4, 5].

In this section, we present an intuitive overview of modern compartmental models. First,
we discuss the relationship between discrete-time, discrete-state population models and the
continuous-time, continuous-state compartmental models; second, we examine the critical
parameters required to instantiate epidemic models. Throughout this section, we focus on a
simple and widely used version of the SIR (susceptible, infected, resistant) compartmental
model and provide insights into the model’s behavior.

Consider a population of N individuals and the following simple discrete-time, discrete-
state epidemic model. Each individual begins in one of the three possible states:

(1) susceptible, meaning that the individual has never had the disease and is susceptible
to being infected;

(2) infected, meaning that the individual currently has the disease and can infect other
people; and

(3) resistant, meaning that the individual does not have the disease, cannot infect others,
and cannot be infected.

The model then evolves in discrete time steps, with all individuals simultaneously acting as
follows in each time step:

(1) Each susceptible individual draws a uniformly random person from the population.
If the person drawn is infected, then the susceptible individual changes his state to infected
with probability β.

(2) Each infected individual changes his state to resistant with probability γ.
(3) Each resistant individual remains resistant.

Intuitively, the above discrete-time, discrete-space model simulates a population of inter-
acting individuals. Interactions are modeled from the perspective of susceptible individuals,
who can become infected during interactions with infected individuals. A population that
interacts in such a uniformly random and independent way between time steps is called a
homogeneously mixed population.

The model also simulates the progression of the disease through the three available states.
Individuals are first susceptible, then infected, and then become resistant by acquiring immu-
nity to the disease. The parameter β captures the ability of the disease to be transmitted
from one person to another, whereas the parameter γ is related to length of the period for
which an individual can transmit the disease, called the infectious period. Specifically, the
total time spent in the infected state by an individual is a geometric random variable with
success probability γ, making the expected length of the infectious period equal to 1/γ.

The abbreviation SIR stands for the three available states: susceptible, infected, and
resistant. However, the term SIR model typically refers to a continuous differential equation
model that we will now derive from the above discrete model. Suppose that the initial
condition of the population is given, and let the random variables X(t), Y (t), and Z(t)
denote the number of susceptible, infected, and resistant individuals in the population at
time t. Because each individual is always in one of the three states, it is always the case
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that X(t) + Y (t) + Z(t) = N . Given the values of these three quantities at time t, we can
calculate their expected values at time t+ 1:

E[X(t+ 1)] = X(t) ·
(

1 − Y (t)
N

·β
)
,

E[Y (t+ 1)] = X(t) ·
(
Y (t)
N

·β
)

+Y (t) · (1 − γ),

E[Z(t+ 1)] = Y (t) · γ +Z(t).

These equations are based on the basic assumptions of the model. The first equation
expresses that X(t) susceptible individuals at time t act similarly and independently, each
remaining in the susceptible state with probability (1 − (Y (t)/N) · β); the second equation
indicates that an expected X(t) · ((Y (t)/N) · β) individuals enter the infected state and
Y (t) ·γ infected individuals leave the infected state; and the third equation reflects that the
individuals who leave the infected state enter the resistant state, and resistant individuals
remain resistant. Rearranging the three equations above, we obtain

E[X(t+ 1)] −X(t) = −β ·X(t) · Y (t)
N

,

E[Y (t+ 1)] −Y (t) = β ·X(t) · Y (t)
N

− γ ·Y (t),

E[Z(t+ 1)] −Z(t) = γ ·Y (t).

The next step of the derivation uses the mean-field approximation, which is at times
mathematically controversial. The controversy stems from the fact that the accuracy of
the approximation is application dependent and often difficult to analyze. The mean-field
approximation allows us to forget the fact that X(t), Y (t), and Z(t) are random variables and
simply equate them with their expectations. Regardless of the controversy, the mean-field
approximation is practically useful, and later in this section we provide some experimental
evidence of its applicability to our homogeneously mixed population model. Applying the
mean-field approximation to the above equations allows us to rewrite them, respectively, as

X(t+ 1) −X(t) = −β ·X(t) · Y (t)
N

,

Y (t+ 1) −Y (t) = β ·X(t) · Y (t)
N

− γ ·Y (t),

Z(t+ 1) −Z(t) = γ ·Y (t).

The differential equations of the continuous-time, continuous-state SIR model that we
seek are evident in the three difference equations above. However, the above equations are
fixed at a time difference of 1, because our discrete-time model moves in these increments.
To complete the final step, we create a sequence of discrete-time models from which we derive
the continuous-time model. The derivation is reminiscent of the proof that a sequence of
geometric random variables converges to an exponential random variable (see Appendix A).

Let ∆t be a real number less than one. We create a discrete-time model that moves in
increments of ∆t simply by changing the parameters β, γ to ∆tβ, ∆tγ. Intuitively, by thus
altering the parameters, we keep the expected number of successes in a unit time interval
the same for each discrete-time model. Applying our derived difference equations above,
we have

X(t+ ∆t) −X(t) = −∆tβ ·X(t) · Y (t)
N

,

Y (t+ ∆t) −Y (t) = ∆tβ ·X(t) · Y (t)
N

− ∆tγ ·Y (t),

Z(t+ ∆t) −Z(t) = ∆tγ ·Y (t).
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Dividing by ∆t and taking the limit as ∆t goes to zero gives us the following differential
equations:

dX(t)
dt

= −β ·X(t) · Y (t)
N

, (1)

dY (t)
dt

= β ·X(t) · Y (t)
N

− γ ·Y (t), (2)

dZ(t)
dt

= γ ·Y (t). (3)

Equations (1)–(3) are referred to as a mass-action SIR compartmental model. The adjec-
tive “mass action” comes from the fact that in the original discrete model, all individuals act
similarly yet separately from each other. The adjective compartmental comes from viewing
the three disease states as compartments into and out of which individuals move throughout
the epidemic. Finally, if we make the variable substitutions S(t) = X(t)/N , I(t) = Y (t)/N ,
and R(t) = Z(t)/N , we have

dS(t)
dt

= −β ·S(t) · I(t), (4)

dI(t)
dt

= β ·S(t) · I(t) − γ · I(t), (5)

dR(t)
dt

= γ · I(t). (6)

Equations (4)–(6) are the typical form of the simple compartmental SIR models encoun-
tered in the literature, with S(t), I(t), and R(t) representing the fraction of the population
in each disease state. Often, for the sake of brevity, the explicit dependence on t is dropped.

To verify our derivations, we compare simulations of the original discrete-time, discrete-
space model with predictions of the derived differential equation model. The black dots
in Figure 1 are a plot of 200 runs of the discrete-time, discrete-space model with a pop-
ulation size of 100,000 individuals, 100 of whom are initially infected and the rest sus-
ceptible. The three lines in the figure represent the solution to the numerically integrated

Figure 1. Comparison of a discrete-time, discrete-state disease model and the corresponding com-
partmental SIR model.
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curves.
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compartmental SIR model. For both the discrete-time model and the differential equations,
we set β, γ = 0.4,0.2. The agreement between the discrete model and the differential equation
model that we see in Figure 1 provides some justification for the mean-field approximation
we used in our derivations.

Figure 1 also provides an example of the typical epidemic curves both seen in real-world
epidemics and produced by SIR models. Initially, the epidemic and the number of infected
individuals grows exponentially. However, there is a turning point when more infected indi-
viduals leave the infected compartment than enter it. The epidemic ends when the number
of infected individuals drops to 0, which often happens before all susceptible individuals in
the populations are infected.

We can now ask simple yet illuminating questions of the compartmental SIR model.
Perhaps the first and most important question to ask is, which diseases have the ability
to spread in the population and thus become epidemics? SIR models parameterize diseases
using two parameters: the infectivity parameter, β, and the infectious period parameter, γ.
We can restate the basic question as follows: For what values of β and γ will we see an
epidemic?

Intuitively, an epidemic grows when an infected individual, throughout their entire infec-
tious period, creates more than one newly infected individual. For example, suppose each
infected individual creates two new infections throughout their infectious period. If we start
with only a single infected individual, when that first person recovers from the disease, there
will be two new infected individuals. When those two individuals recover, there will be four
new infected individuals, and so forth. This leads to the exponential growth of the epidemic.

In the SIR model, individuals leave the infected compartment at a rate γ, giving an
infectious period of 1/γ for each individual. At the beginning of the epidemic, when S(t) is
close to 1 and I(t) is just above zero, each infected individual creates new infections at a rate
of β. So, the total number of new infections created by each infected individual throughout
their entire infectious period is β/γ. Thus, from our intuitive derivation, for the SIR model,
if β/γ > 1, a disease will become an epidemic.

The same result can be derived mathematically. We simply want dI(t)/dt to be greater
than 0 at the onset of the outbreak. If S(t) is close to 1 and I(t) is just above 0, we can state
the condition as β ·S(t) · I(t) − γ · I(t) ≈ β · I(t) − γ · I(t) > 0, which gives β · I(t) > γ · I(t),
or β/γ > 1.

To address the fundamental question of “Which diseases become epidemics?” we define
a useful epidemiological quantity. Let R0, also called the basic reproduction number, be
the expected number of new infections created by an infected individual under the most
favorable conditions for transmission. For the SIR model, we have R0 = β/γ. In general, for
any disease in any host population, the disease can become an epidemic only if R0 > 1. The
mathematical condition R0 > 1 can be intuitively interpreted as saying that there exist some
conditions under which the disease can grow. For the SIR model, those “most favorable
conditions” are when S(t) is close to 1 and I(t) is just above 0. Because R0 describes the
number of new infecteds created by each infected individual, during the earliest stages of
an epidemic, the number of infected individuals in the ith generation of transmission is
roughly R0

i.
The behavior of the basic SIR model varies as we alter R0, β, and γ. Figure 2(a) depicts

the infected compartment curves as we fix γ to 0.2 and alter β, and thus R0. As can be
intuitively expected, values of R0 that are close to one produce very slow-growing epidemics,
whereas values of R0 much greater than one produce fast, explosive epidemics.

If we were to keep R0 fixed, but alter γ, we could stretch any of the curves in Figure 2(a)
along the horizontal axis. Intuitively, γ provides a time scale of the epidemic. However,
the final epidemic size is fixed by the value of R0. This is demonstrated by Figure 2(b),
which plots resistant curves when we keep R0 fixed but vary the values of β and γ. For
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Figure 2. Dynamics of SIR compartmental models.

0 20 40 60 80 100 120 140

Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
F

ra
ct

io
n 

of
 th

e 
po

pu
la

tio
n 

in
fe

ct
ed

R0 = 1.05

R0 = 1.5

R0 = 2.0

R0 = 3.0

(a)

50 100 150 200

Time

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 th
e 

po
pu

la
tio

n 
re

si
st

an
t

�,� = 0.2,0.1
�,� = 0.4,0.2
�,� = 0.8,0.4

(b)

0

Notes. (a) The rate and magnitude of the epidemic varies with R0. The y-axis shows the fraction of the
population currently infected. Here, γ is fixed to 0.2, and R0 varies. Diseases with R0 close to one produce
slow-growing epidemics. Higher values of R0 yield quickly growing, explosive epidemics. (b) The progression
of the epidemic varies with γ and β. The y-axis shows the changing fraction of the population in the resistant
compartment. Here R0, is held constant while β and γ vary. The infectious period parameter γ provides a
time scale for the epidemic, hastening the epidemic as γ increases, which decreases the infectious period.
However, the final epidemic size is fixed by the constant value of R0.

a mathematical derivation of final epidemic size in an SIR model as a function of R0, see
Keeling and Rohani [29].

Finally, though we have discussed a simple SIR model, the approach can be extended to
model more complex disease progression, as well as more complex population structures.
For example, Equations (7)–(9) represent a model where we have introduced a natural
birth/death process that removes individuals from all compartments and introduces indi-
viduals into the susceptible compartment. In this model, µ is the birth/death rate. On the
other hand, Equations (10)–(13) have introduced a latent period of the disease, between the
susceptible and infected compartments. In this model, E stands for the exposed compart-
ment of infected individuals in the latent stage of infection, and σ is the rate at which these
individuals progress to the active stage of infection. Introducing more complex population
structure can also be done to some extent by adding a set of SIR variables for each group
of individuals in the population. See Keeling and Rohani [29] for more on compartmental
models.

dS

dt
= −β ·S · I +µ · (I +R), (7)

dI

dt
= β ·S · I − γ · I −µ · I, (8)

dR

dt
= γ · I −µ ·R, (9)

dS

dt
= −β ·S · I, (10)

dE

dt
= β ·S · I −σ ·E, (11)

dI

dt
= σ ·E − γ · I, (12)

dR

dt
= γ · I. (13)

3. Estimating Epidemiological Rates and Constants
Epidemiological models are only as good as their parameter values; that is, accurate forecast-
ing and understanding of disease dynamics requires finding and using realistic epidemiolog-
ical rates and constants in the equations. As we have already seen, the value of R0 crucially
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affects epidemic dynamics. In addition, inaccurate estimates of the infectious period can
lead to miscalculating the timing of epidemic peaks, when resources are most needed. Thus,
much research effort is devoted to accurate parameter estimation of emerging infectious
diseases. In this section, we briefly describe some of the methods and pitfalls in estimating
disease parameters using real-life data.

Typical data available at the beginning of an epidemic include a time series of new-
case occurrences, from surveillance, physician reports, or hospitalizations (Health Protection
Agency [28]). Occasionally, data describing individual-to-individual chains of transmissions
are also available. For example, a family member could contract the disease abroad and
return to infect other family members some time later. In a recent example, an index case of
H1N1/09 created 13 new cases during a bus trip on the way to a soccer match in Scotland
(The Scottish Government [53]).

Parameterization often starts with estimation of the time scale and rate of growth of the
epidemic. There are two dominant approaches to estimating the time scale of transmission.
Using the first approach, one can estimate the generation time, defined as the expected
length of time between infection of an index case and infection of his or her secondary cases
(Svensson [51]). Interinfection times between the index case and all those whom they infect
are simply averaged. However, determining the timing of infections can be complicated for
diseases with asymptomatic periods of unknown or variable duration. Using the second
approach, one can estimate a quantity closely related to the generation time, the serial
interval, defined as the time between the clinical onset of symptoms in the index case and
the clinical onset of symptoms in the average secondary case. Both approaches require data
on individual-to-individual chains of transmission.

The rate of growth of an epidemic is typically estimated from time-series data of new cases.
The basic reproduction number (R0) gives us the ratio between the numbers of infected
individuals in consecutive generations of the epidemic. If the generation time has already
been estimated, then the time series of new case occurrences can be grouped into generations.
One can then estimate R0 by fitting an exponential growth to the resulting grouping, using
an appropriate statistical model (Becker [11], Boëlle et al. [13], Lipsitch et al. [35]). Recently,
higher fidelity methods accounting for nonhomogeneously mixed populations and delays in
reporting have been developed for estimating R0 (Pourbohloul et al. [48], Wallinga and
Teunis [58], White and Pagano [62]). In Appendix B, using an SIR model, we provide an
example of the complex and model specific methods required for model parameterization.

4. Limitations of Compartmental Models
Although compartmental SIR models have proven to be quite useful in modeling epidemics,
they do not properly model some important aspects of disease spread. For example, consider
the 2002–2003 outbreak of Severe Acute Respiratory Syndrome (SARS). Estimates of R0
based on the initial outbreak of SARS ranged between 2.2 and 3.6 (Lipsitch et al. [35], Riley
et al. [50]). The case fatality ratio was estimated to be between 11% and 13% (Donnelly
et al. [18], World Health Organization [63]). For comparison, the U.S. Department of Health
and Human Services assigns the greatest pandemic severity ranking to pandemics with a
case fatality ratio of 2%; pandemics with this ranking would require the strictest national
response strategies (U.S. Department of Health and Human Services [54], Texas Department
of State Health Services [52]). Based on the estimates of R0, SARS should have caused a
great world pandemic with cases numbering easily in the millions. However, for the entire
SARS outbreak (from November 1, 2002 to July 31, 2003), only 8,096 cases were reported
with 774 deaths (World Health Organization [64]).

Certainly, one explanation for the limited spread of SARS is the quick response by world
public health agencies, who imposed strict quarantines on infected individuals. Another
likely explanation for the discrepancy is that the estimates for R0 were based on data

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Dimitrov and Meyers: Infectious Disease Models
8 Tutorials in Operations Research, c© 2010 INFORMS

involving large numbers of transmissions in hospitals, where people have unusually high
rates of contact. SIR models assume a fully mixed, homogeneous population—the mass-
action assumption—in which each individual has the same amount of contacts as every
other individual. Thus, simple SIR models do not accurately model the increased rate of
contact at hospitals and the decreased rate of contact of quarantined individuals. If the
population at large had as many contacts as the population within a hospital, perhaps the
estimates of R0 would have been more accurate, and SARS would have infected many more
people.

Incorporating realistic contact patterns of the population is just one possible way to
increase the fidelity of epidemic models. Diseases often spread differently in different age
groups, have varying incubation periods in different age groups, spread differently depending
on the type of contact; e.g., contacts at home tend to be more intimate than contacts at work.
Also, disease spread is affected by geographic location and seasonality. Researchers have built
very high-fidelity models using agent-based simulations, where each individual is tracked as
they move from home to work and back (Eubank et al. [19]). Naturally, such models involve
complex parameterization and often require extensive computation (see Figure 3). In the
next section, we introduce contact network models, a type of epidemiological model that
lies between between compartmental models and agent-based simulations, providing higher
fidelity yet tractable formulations.

5. Contact Network Modeling
Contact network epidemiology is an analytical framework that intuitively captures the
diverse host interactions that underlie parasite transmission (Meyers [39], Newman [45]).
The first step in this modeling approach is to build a realistic network model of contact pat-
terns at an appropriate temporal and spatial scale. The second step is to predict the spread
of disease through the resulting network, based on intrinsic features of the parasite and the
network structure. To mathematically analyze disease spread through networks, we apply
generating function methods adapted from an area of statistical physics called percolation
theory (Grimmett [27]).

Figure 3. Complexity of epidemiological models.
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Pencil and paper Supercomputers
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Contact network
models

Agent-based
simulations

Notes. It is often useful to think of models in two dimensions: the extent to which they capture real-
world complexities that impact disease transmission (y-axis) and their computational tractability (x-axis).
Compartmental models are easy to analyze but miss important, realistic details, such as heterogeneous
patterns and types of contacts. Agent-based simulations are able to model reality with a great amount
of detail, but are difficult to parameterize and analyze, and require large amounts computation. Contact
network models capture disease transmission with a higher fidelity than compartmental models yet remain
analytically tractable.
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5.1. Building a Contact Network Model
A contact network model uses a graph to capture patterns of interactions that can lead to
parasite transmission. Each host (or group of hosts) translates into a node, and contacts
among hosts (or groups) translate into edges connecting appropriate nodes. The number
of edges emanating from a node is called the degree of the node and indicates the number
of contacts along which parasite transmission is possible. The distribution of the number of
such contacts within a population, called the degree distribution, fundamentally influences
the spread of pathogens through the population.

The study of contact networks, and more generally of social networks, is of growing
importance in a diverse group of disciplines (Amaral and Ottino [3], Watts [61], Kleinberg
and Lawrence [31]). Researchers seek universal properties and have focused on small-world
networks—with high levels of both local clustering and global connectivity (Watts [60])—
and scale-free networks—with power-law degree distributions leading to a small fraction of
very highly connected hubs (Barabasi and Albert [10]).

Several epidemiologically relevant networks including sexual contact networks have been
characterized as scale free (Liljeros et al. [34], Pastor-Satorras and Vespignani [46]); however,
researchers have found that realistic contact networks do not always exhibit these well-
studied structural properties (Bansal et al. [7]). For example, contact networks underlying
the spread of respiratory and airborne diseases tend to have degree distributions that appear
more exponential in shape than scale-free, homogeneous (all nodes have the same degree),
or random (Poisson degree) distributions (see Figure 4). In the remainder of this section,

Figure 4. Comparing networks with different degree distributions.

0.0

0.2

0.4

0.6

0.8

1.0

Degree
0 10 20 30 40 50

F
re

qu
en

cy

(a) Degree distributions (b) Homogeneous network

(c) Poisson network (d) Exponential network (e) Scale-free network

Notes. (a) Several degree distributions with a mean degree of 10: homogeneous, where all nodes have exactly
10 contacts (black); Poisson distribution (green); exponential distribution (blue); and power-law distribution
(cyan). (b)–(e) Examples of homogeneous, Poisson, exponential, and scale-free networks, respectively, with
degree distributions shown in (a). Contact networks underlying spread of respiratory diseases like flu tend
to have exponential-like distributions (blue).
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we describe various approaches to constructing realistic contact networks and provide three
specific examples from the literature.

To construct a contact network for any particular disease or class of diseases, we first define
an epidemiological contact. For respiratory diseases, this may mean close physical proximity
for a specified duration, or, for sexually transmitted diseases, this may mean having sexual
relations or sharing needles. We then seek data on the distribution of such contacts across
the focal population. These data may come from sociological surveys (Mossong et al. [43],
Read et al. [49]) or wildlife studies (Craft et al. [15]), or the distributions can be inferred from
general information about activity patterns, using statistical tools or computer simulations
that generate explicit networks from such patterns (Eubank et al. [19], Meyers et al. [42]).

On a small scale, we have modeled the activity patterns that underlie the transmission
of respiratory-borne diseases in a psychiatric institution in Evansville, Indiana, based on
detailed information about the distribution of caregivers and patients among wards (Meyers
et al. [41]). We represent these contacts in a bipartite network. One set of nodes repre-
sents health-care workers, and the other represents entire wards filled with patients (see
Figure 5(b)). For this particular institution, there were few if any direct contacts between
patients in different wards or between caregivers outside of wards, and thus we ignore ward–
ward and caregiver–caregiver contacts in the model.

On an intermediate scale, we have developed software to generate contact network models
for an urban setting (Meyers et al. [42], Pourbohloul et al. [47], Bansal et al. [8]). Based
on detailed demographic, employment, school, and hospital data for the city of Vancouver,
British Columbia, we model interactions within homes, schools, neighborhoods, work, hospi-
tals, shops, restaurants, etc. We start with up to 1 million households, drawn at random from
the Vancouver household size distribution, which yields up to 2.6 million people. Household
members are assigned ages according to the Vancouver age distribution. Each individual,
based on age, is then assigned to daycare centers according to early childhood care statis-
tics, to schools according to school and class size distributions, to occupations according to
employment data, to hospitals as patients and caregivers according to hospital employment

Figure 5. Common classes of networks used to model disease spread.

(b) Bipartite network

(c) Semidirected network (d) Weighted network

(a) Undirected network

Notes. (a) The simple undirected network has been used for modeling person-to-person contacts. (b) The
bipartite network has been used for modeling contacts between caregivers and wards. (c) The semidirected
network has been used for modeling the one-way contacts from the general population to heath-care workers.
(d) The weighted network has been used for modeling travel patterns between cities.
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and bed occupancy data, and to other public places. Within each location we create random
connections between individuals with probabilities ranging from zero to one, depending on
the type of location.

The resulting network is undirected, meaning that transmission may occur in either direc-
tion along an edge (see Figure 5(a)). For example, two individuals in the same household
will have equal opportunities to infect each other. There are cases, however, where a person
may infect another person but the converse is not true. Suppose individual A is normally
healthy, and thus has no reason to go to the hospital until he or she becomes infected with a
severe infectious disease. At that point, individual A may come into contact and potentially
spread disease to health-care workers (HCWs). In contrast, if an HCW acquired the disease
while individual A remained healthy, then there would be no opportunity for transmission in
the opposite direction. To model the unidirectional flow of disease into hospitals, we include
directed edges from individuals in the population at large to HCWs, yielding a semidirected
network with both directed and undirected edges (see Figure 5(c)). For diseases like SARS
and severe pandemic flu, most individuals would likely seek medical treatment upon develop-
ing symptoms, and thus the contact network model for these diseases would include directed
edges from most of the population to HCWs. In contrast, for a disease like seasonal flu, only
the high-risk populations—such as the very young, elderly, or immunocompromised—tend
to seek hospital care, and thus the seasonal flu contact network model would include directed
edges for high-risk groups only.

On a large scale, we have modeled the connectivity among the largest cities in North Amer-
ica. In this case, the nodes are cities and the edges reflect travel patterns between cities via air
and ground transportation, as reported by the U.S. Census Bureau, the U.S. Bureau of Trans-
portation Statistics, Instituto Nacional de Estad́ıstica y Geograf́ıa, and Statistics Canada.
In this case, the edges of our network are weighted by travel flux and diseases spread within
cities via simple compartmental models (Dimitrov et al. [17]) (see Figures 5(d) and 9(a)).

5.2. Using Bond Percolation to Model SIR Disease Dynamics
Imagine that a parasite initially appears at a random node in a contact network. The
disease propagates through the network similarly as in an SIR compartmental model, except
that the spread is guided by the structure of the contact network instead of the uniformly
random contact patterns of a compartmental model. The initial node remains infectious
for some period of time, during which it has the potential to transmit disease to each of
its contacts. The secondary cases likewise can transmit disease to their contacts during
their infectious periods, and so on. This process resembles simple bond percolation from
statistical physics, which models, for example, the flow of a liquid through a porous material
(Grimmett [27]). Just as the liquid traverses gaps in the porous material with a characteristic
viscosity, a disease spreads from person to person with a characteristic level of infectiousness.
In general, percolation theory describes connectivity in random graphs and thus can be
applied to predict the size of the infected cluster, that is, the number of nodes reached via
parasite transmission along the edges in the network. This approach was initially suggested
by Grassberger [26] and Newman [45]. Recently, we have extended it into a flexible framework
for infectious disease modeling (Meyers et al. [40, 41, 42]). These methods allow us to make
predictions for infinite networks with a specified degree distribution. To use it, we must
assume that (1) the contact network is infinite (or quite large) and (2) the epidemiologically
relevant structure of the network is adequately summarized in its degree distribution. The
second assumption means that we ignore additional structure, like local clustering, beyond
what is expected in an infinite network with the given degree distribution. To test that these
assumptions are reasonable, we often compare our mathematical predictions (based only
on the degree distribution of the network) to simulations of disease spread through the full
finite-sized contact network.
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The fate of an outbreak depends on both the level of contagion and the structure of
the underlying contact network. To model contagion, every edge in a network is given a
probability of pathogen transmission along it (Tij), that is, the probability that host i, if
infected, will transmit disease to individual j during his or her infectious period. If it is
reasonable to assume that the Tij are independently and identically distributed (iid) random
variables, then we can make calculations based solely on the average of these probabilities (T )
(Newman [45]). This value summarizes core aspects of disease transmission including the
rate at which contacts take place between hosts, the likelihood that an encounter will lead
to transmission, the duration of the infectious period, and individual susceptibility. When
the Tij are not iid, percolation calculations are possible but more difficult.

In these calculations, we use the degree distribution of a network to indicate its structure.
Probability generating functions (pgfs) are functions that completely describe discrete prob-
ability distributions. For infectious disease modeling, the pgf of a contact network’s degree
distribution summarizes useful information about the structure of the contact network. For
example, the pgf for the degree distribution of an undirected random network is G0(x) =∑∞

k=1 pkx
k, where pk is the relative frequency of nodes of degree k in the network. Using

straightforward probabilistic arguments, we sequentially derive pgfs for the distributions
of (1) the number of edges emanating from a node reached along a randomly chosen edge
(G1(x) = G′

0(x)/〈k〉, where 〈k〉 = G′
0(1) is the average degree in the network), (2) the number

of edges along which disease transmits from an infected node during an outbreak (G0(x;T ) =
G0(1+(x−1)T ), where T is the average probability of transmission), and (3) the size of out-
breaks stemming from a single introduction of disease (H0(x;T ) = xG0(H1(x;T );T ), where
H1 is defined by the self-referential pgf H1(x;T ) = xG1(H1(x;T );T )) (Newman [45]).

For a random network with a given degree distribution, there typically exists a threshold
transmission rate below which small, finite-sized outbreaks occur and above which large-
scale epidemics, comparable to the size of the network, are possible. This epidemic threshold
is analogous to the well-studied percolation threshold,1 and it depends on the network struc-
ture. In an undirected random network with a given degree distribution, for example, the
epidemic threshold is Tc = 1/G′

1(1). Intuitively, G′
1(1) can be interpreted as the pgf for

the number of susceptible contacts for each infected individual. So, as in our discussion of
the basic reproductive number, an epidemic occurs if, in expectation, each infected individ-
ual creates more than one newly infected individual, i.e., if T ·G′

1(1) > 1. Highly connected
networks, with ample opportunities for transmission, have low epidemic thresholds. In such
networks, even mildly transmissible parasites will be able to cause epidemics. Less con-
nected networks will have higher epidemic thresholds. The pgf approach also allows us to
compute the expected size of an outbreak for a pathogen below the epidemic threshold,
1 + TG0(1)/(1 −TG′

1(1)), and both the probability and expected size of a large epidemic
for a parasite above the epidemic threshold, which are equal to each other in undirected
networks, 1 − G0(u;T ), where the self-referential u = G1(u;T ) can be solved numerically
(Newman [45]).

Newman introduced the pgf approach to analyzing epidemics (Newman [45]). We have
since derived similar quantities for bipartite and semidirected networks (Meyers et al.
[41, 40]), and extended it to calculate a number of important epidemiological quantities on
networks, including (1) epidemic threshold, (2) expected size of a small outbreak, (3) proba-
bility of a large-scale epidemic, (4) expected size of a large-scale epidemic (should one occur),
(5) Quantities 1–4 conditioned upon the identity of the node (or nodes) where the parasite
first appeared, (6) Quantities 1–4 conditioned upon the size of an initial outbreak, (7) the
probability that a specific node will become infected during an epidemic, and (8) the degree
distribution of the residual network (the remaining network of uninfected nodes following
an epidemic) (Meyers et al. [40, 41, 42], Ferrari et al. [21], Bansal et al. [9]).

1 In a network in which every pair of nodes is connected with probability p, the percolation threshold is the
value of p above which connected clusters are expected to span the entire (infinite) network.
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5.3. Dynamic Network Models
The bond percolation approach captures an important aspect of population heterogeneity,
but has two important shortcomings. First, it predicts the final state of an outbreak, but
not the temporal progression of disease. Second, it assumes that the contact network is
static, that is, that the numbers and identities of a node’s contacts are fixed throughout
the outbreak. Although this assumption may be reasonable for rapidly spreading diseases,
there are many situations in which the underlying network will change considerably during
an outbreak. For example, concurrent and serial contacts are known to strongly influence
the spread of sexually transmitted infections like HIV (Watts and May [59], Ford et al. [22],
Adimora et al. [1]).

Volz [55] recently developed a low-dimensional system of nonlinear ordinary differential
equations to model the dynamical progression of a disease spreading through static random
networks with arbitrary degree distributions, and we have extended this framework from
static networks to dynamic networks (Volz and Meyers [56]). This model improves on the
bond percolation approach in that it both predicts the temporal progression of disease and
allows for changing structure in the underlying network. Specifically, the model considers a
simple class of dynamic networks in which pairs of edges are randomly chosen and swapped.
For example, if edges AB and CD are chosen, then they are deleted and replaced by edges
AD and CB. In this neighbor exchange model, each node maintains a constant number of
contacts, but the identities of those contacts may change randomly. The model is given by
the following equations:

dθ

dt
= −θr

MSI

MS
,

dMSI

dt
= rMSI

(
− 1 − δ

M

MSI

MS
+

δ

M

MSS

MS

)
−MSIµ− ρ(MSI −MIMS),

dMSS

dt
= −2rMSI

(
δ

M

MSS

MS

)
− ρ(MSS −MSMS),

dMI

dt
= rMSI

(
δ + 1
M

)
−µMI .

The model consists of four core dynamic variables: θ is the fraction of degree one nodes
that are still susceptible, MSI is the fraction of edges in the network connecting a susceptible
node and an infected node, MSS is the fraction of edges in the network connecting two
susceptible nodes, and MI is the fraction of edges in the network adjacent on an infected
node, regardless of the state of the node at the other end of the edge. There are also four
fixed parameters: r is the transmission rate, µ is the recovery rate, g(x) is the pgf for the
network degree distribution, and ρ is the neighbor exchange rate. To simplify the equations,
we also use three helper values: M = g′(1) is the total number of edges in the network,
MS = θg′(θ) is the fraction of edges adjacent on a susceptible node, and δ = θg′′(θ)/(g′(θ))
is the average excess degree for a susceptible node selected by following a random chosen
I ↔ S edge. Excess degree is defined as the degree of the node minus one. The last two
of these helper values vary as the epidemic progresses through the network. Finally, the
equations highlight the commonly appearing term rMSI , which is the rate of transmission
events in the network per unit time.

This model tracks the state of each edge and each stub (one end of an edge) as disease
spreads through the network. Figure 6 illustrates the impact of new infections, recover-
ies, and neighbor exchanges on the composition of edges in the network. To provide some
intuition behind these equations, we deconstruct each one here.

The first equation describes the decline in the number of degree one nodes that are
susceptible. If a degree one individual is susceptible, then MSI/MS is the probability that his
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Figure 6. The impact of infections, recoveries, and neighbor exchanges on the composition of edges
in a network.
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Notes. Edge colors indicate which types of edges are created and destroyed following each event. (a) New
infections and recoveries lead to gains and losses various edge types. (b) Two examples of neighbor exchange
events and their impacts on edge composition (below). There are many other ways in which neighbor
exchange events can impact edge composition.

or her single edge is connected to an infected node, and r is the probability of transmission
along that edge. Thus, r(MSI/MS) is the rate at which such nodes become infected.

The second equation describes the change in the fraction of edges connecting susceptible
nodes to infected nodes. This is illustrated by the gains (dark green) and losses (light green)
in Figure 6. Consider one such edge, connecting a susceptible node attached to an infected
node. The first term in the equation performs the accounting required due to transmission
events. When a transmission event occurs, turning a susceptible node to an infected node,
we must (1) remove the single S ↔ I edge carrying the infection, (2) remove any other S ↔ I
edges adjacent on the newly infected node, and (3) add any S ↔ S edges adjacent on the
newly infected node. The second term accounts for recovery events, which convert edges
from S ↔ I to S ↔ R. The final term corresponds to the impact of neighbor exchanges on
the fraction of S ↔ I edges. By randomly mixing the network edges, neighbor exchanges
slowly bring the fraction of S ↔ I edges to the expected fraction of such edges, MSMI . The
value MSMI corresponds to the expected number of S ↔ I edges in a network that has the
same fraction of stubs connected to susceptibles and infecteds as the original network, but
has edges redistributed randomly between nodes.

The third equation describes the change in the fraction of edges connecting susceptible
nodes to other susceptible nodes. This is illustrated by the gains (red) and losses (orange) in
Figure 6. Consider one such edge connecting a susceptible with another a susceptible node.
The first term in the equation corresponds to loss of S ↔ S edges following an infection
transmission event. The S ↔ S edges that are turned into S ↔ I edges, added in the previous
equation, must be subtracted here. The rate of change on S ↔ S edges is doubled, because
both their endpoints become infected at the same rate. As before, the final term corresponds
to the impact of neighbor exchanges on the fraction of S ↔ S edges. Neighbor exchange
acts like a spring with tension ρ slowly bringing the fraction of S ↔ S edges to the expected
value MSMS for a comparable random network.
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The final equation describes the change in the fraction of stubs that are adjacent on an
infected node. This is illustrated by the gains (dark blue) and losses (light blue) in Figure 6.
The first term performs accounting due to newly created infections. When a susceptible node
becomes infected all of the edges emanating from the node add to the class of MI stubs,
including the single edge involved in the transmission. The second term in the equation
governs the loss of infected stubs through the recovery of infected nodes.

This model fares well in comparison to stochastic simulations of an analogous epi-
demic process in networks; that is, it predicts an epidemic trajectory (cumulative incidence
curve) that falls right in the middle of the curves produced by stochastic simulations (see
Figure 7(a)) and makes good predictions for the final state of the epidemic (cumulative
number and distribution of cases) (Volz and Meyers [56, 57]).

5.4. Connecting Compartmental and Network Models
The Volz and Meyers [56] dynamic network model is not only very tractable (with just
one more dynamic variable than the standard SIR compartmental model) but also offers
a mathematical and conceptual bridge between two disparate classes of models; that is,
by changing the value of the mixing parameter ρ, we interpolate smoothly between mod-
els without neighbor exchange (ρ = 0) and compartmental models (ρ = ∞). In the limit of
large mixing (ρ → ∞), every transmission event from infected nodes is essentially directed
at a randomly chosen node; that is, the probability of being connected along any given
edge to a susceptible, infectious, or recovered node is directly proportional to the number of
edges connected to nodes in each of these states, respectively. The resulting model is thus
a mass-action model with three dynamic variables that allows arbitrary heterogeneity in
contact rates, as quantified by the pgf g(x). If we assume that contact rates are homoge-
neous (g(x) = x), then the model exactly reduces to the standard SIR compartmental model
described earlier (see Figure 7(b)).

5.5. Advantages and Limitations of Network Models
The basic models described here make many simplifying assumptions about host population
structure and epidemiological parameters. For example, the population structure is assumed
to resemble a graph with a specific degree distribution, and transmission and recovery rates
are assumed to be homogeneous across both hosts and time. In the last few years, however,

Figure 7. Disease spread through a dynamic contact network.
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Notes. (a) We compare our mathematical model to stochastic simulations. The mathematical predictions
(circles) fall right in the center of mass of 1,000 stochastic simulations (dotted lines) of disease transmission
through a dynamic network. This assumes a Poisson network with mean degree 1.5, transmissability r = 0.2,
recovery µ= 0.1, and mixing rate ρ= 0.25. (b) As the mixing rate increases from zero to infinity, the model
smoothly interpolates between static network models and compartmental models.
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these models have been extended to incorporate additional complexity, including dynamic
contacts, assortative connectivity, and heterogeneity in transmission rates (Newman [45],
Volz and Meyers [56], Newman [44], Bansal et al. [9]). Although each model has its own
limitations, the framework as a whole has been shown to be versatile and is evolving to
address more complex ecological data and questions.

Because the models are simpler than the real populations they represent, modelers typi-
cally check mathematical predictions through comparisons to actual ecological data and the
results of more complex agent-based simulations (Pourbohloul et al. [47], Ferrari et al. [21],
Bansal et al. [8], Volz and Meyers [56]). In most cases, the analytical predictions are con-
sistent with the data. When significant discrepancies arise, modelers work to identify and
incorporate key dynamics missing from the model.

Although there are now many sophisticated mathematical approaches to modeling host–
pathogen dynamics, the network methods described here have several advantages. Like
agent-based models and other individual-based models, they have the advantage over
compartmental models of simply and intuitively capturing heterogeneity in host contact
patterns. Contact heterogeneity profoundly influences host–pathogen dynamics both quan-
titatively and qualitatively, and ignoring network structure can lead to erroneous predictions
(Meyers et al. [42], Volz and Meyers [56], Bansal et al. [7]); even small quantitative differences
can be critical to effective public health and environmental management. Contact network
models have already provided important insights into disease dynamics. For example, they
have shown prior outbreaks of an immunizing disease like influenza can dramatically influ-
ence the dynamics of future outbreaks, although the impact depends on the structure of the
host network (Ferrari et al. [21], Bansal et al. [9]). This occurs because disease preferentially
infects the most highly connected demographics. Contact network models have also shed
light on the heterogeneous spread of SARS (Meyers et al. [42]) and the role of hospitals in
community outbreaks (Meyers et al. [40]), and have been used to design effective control
strategies for respiratory diseases in health care and urban settings (Pourbohloul et al. [47],
Meyers et al. [41]) and optimal vaccination strategies for influenza (Bansal et al. [8, 9]).
Another important advantage of contact network methods is that they are mathematically
simpler than agent-based models for capturing heterogeneous contact patterns, which allows
for rapid and accurate calculations and the derivation of analytical results.

6. Disease Control
Infectious disease models help us not only understand the dynamics of spreading pathogens
but also design effective strategies for controlling outbreaks. In this section, we describe some
of the primary modes of infectious disease intervention and illustrate how mathematical and
computational methods can be used to optimize such interventions.

6.1. The Fundamentals of Disease Control
Consider the SIR model described by Equations (7)–(9), which incorporates the natural
birth and death of individuals into the simple SIR model. To control an epidemic at any
point, we would like to decrease dI/dt, the number of new infected individuals created per
unit time. If we are able to make dI/dt negative, then the number of infecteds would begin
to decrease. When the number of infecteds reaches 0, the epidemic will end.

What actions can we perform to make dI/dt negative? Using Equation (8), we have

dI

dt
= β ·S · I − γ · I −µ · I < 0.

By rearranging terms and dividing by I, the above expression becomes

β ·S
γ +µ

< 1. (14)
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The left-hand side of Equation (14) is called the effective reproduction number, or effective R,
at the current point of the epidemic. The effective R gives us an idea of how quickly the
epidemic is currently growing. If we can get the effective R below one, the epidemic will
begin to die. According to Equation (14), to reduce the effective R, and thus control the
epidemic, we have the following options:

(1) reduce β, the infectivity parameter;
(2) reduce S, the fraction of susceptibles in the population;
(3) increase γ, the infectious period parameter; and
(4) increase µ, the natural death rate of individuals.

Let us take each of these options in turn and give them realistic interpretations. The
infectivity parameter β can be thought of as the product of the likelihood the disease is
transferred during contact and the likelihood that contact occurs between an infected and
susceptible individual. Thus, β can be reduced by actions like

(1) quarantining infected individuals, reducing use of public transport, closing schools,
or encouraging the workforce to work from home, all of which reduce the likelihood of
contacts between infecteds and susceptibles;

(2) increasing hand washing and other hygienic precautions that potentially reduce the
likelihood of transmission during contact; and

(3) rapidly treating infected individuals with antimicrobials may reduce symptoms that
would otherwise enhance transmission during contacts.

Reducing S, the number of susceptibles in the population, through vaccination is a critical
and often long-lasting disease control strategy. When susceptible individuals are effectively
immunized, they move to the resistant compartment without experiencing the disease. Some
vaccines provide immunity that lasts for decades or even a lifetime and thereby severely limit
the potential for future transmission. Equation (14), specifying the effective R, can be used
to derive the fraction of the population that must be vaccinated to prevent future growth
of the epidemic. Specifically, if the fraction of susceptibles in the population is reduced to
less than (γ +µ)/β, then the disease is unable to spread. This example demonstrates how
partial vaccination of a population, reducing S to a small but nonzero value, is sufficient to
protect the population as a whole. This phenomenon is called herd immunity.

The infectious period, given that the infected person does not experience a natural death,
in the model under consideration is 1/γ. Increasing γ, the infectious period parameter, is
the same as decreasing the infectious period. For some diseases, this can be accomplished
through treatment with antimicrobials that speed up recovery.

Finally, one can also increase the natural death rate µ. Although this is not an ethical
option for human outbreaks, it is a strategy often used to control epidemics in livestock. For
example, the United Kingdom has used the culling of cows to control foot-and-mouth and
mad cow diseases (Alcock [2], Lanska [33]).

6.2. A Network Modeling Perspective on Disease Control
In the previous section we discussed strategies for bringing the reproduction number below
one. From the perspective of network models, this is equivalent to bringing the average trans-
missability of a disease T below the epidemic threshold Tc. This can be achieved through
interventions that either directly reduce the infectiousness of the pathogen (i.e., lower T ),
modify contact patterns so that the pathogen cannot easily spread through the popula-
tion (i.e., increase Tc), or immunize segments of the population (i.e., increase Tc). We call
these three forms of intervention transmission reducing, contact reducing, and immunizing,
respectively (Pourbohloul et al. [47]).
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Transmission-reducing interventions introduce physical barriers to interrupt the spread of
respiratory droplets or other infectious particles (e.g., face masks, hand hygiene, disinfection
of animate objects, or, in the case of sexually transmitted infections, condoms). These inter-
ventions can be modeled by reducing the Tij , the probability of transmission from node i to
node j, along the corresponding subset of edges.

Contact-reducing interventions include isolation of infected persons, quarantine of per-
sons during their incubation period, patient cohorting in hospitals, and closing schools or
other public spaces. They can be modeled by removing edges corresponding to contacts
avoided. For example, one can model school closures in an urban contact network by remov-
ing all edges that represent contacts among students and staff that would occur during
school.

Immunizing interventions include prophylactic treatment with antimicrobials and diverse
vaccination strategies including ring vaccination (targeting close contacts of current cases);
vaccination of priority groups based on risk factors such as age, health, and place of
employment; and universal vaccination. Vaccination prior to an outbreak can be mod-
eled by removing nodes from the network corresponding to the effectively immunized
individuals.

One can manipulate contact network models to represent a variety of control measures and
then use the mathematical methods described above to predict the impact of such measures
on disease dynamics. For example, this approach has been used in collaboration with public
health officials in the United States and Canada to improve public health strategies for
controlling walking pneumonia (Meyers et al. [41]) and SARS (Pourbohloul et al. [47]),
and for distributing limited supplies of seasonal and pandemic influenza vaccines (Bansal
et al. [8, 9]) (see Figure 8).

Figure 8. Prioritizing flu vaccines under limited supplies.
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Notes. This study assumes that there are enough vaccines to cover 13% of the population (as occurred during
the 2004–2005 influenza vaccination shortage) and compares the efficacies of prioritizing school children
(red) versus groups at high risk for mortality from flu (blue). We use a contact network model based on
detailed sociological and demographic information for the city of Vancouver, British Columbia, and model
vaccination by removing effectively vaccinated nodes and their edges from the network (using published
estimates for age-specific influenza vaccine efficacy). The impacts of such removals are predicted using the
bond percolation methods described above. Panel (a) shows a seasonal flu model in which high-risk groups
include infants and elderly. Panel (b) shows a pandemic flu model (based on the 1918–1919 Spanish flu
pandemic) in which adults have the highest mortality rates followed by infants. For a full description, see
Bansal et al. [8]. The x-axes give T , the average transmissability of influenza. Estimates for T vary across
the interval from 0.10 to 0.30 for both seasonal and pandemic flu. In both cases, prioritizing school children
is predicted to cause a greater reduction in mortality than prioritizing high-risk groups for mildly contagious
flus (low T ), whereas the reverse is true for more highly contagious strains (high T ). The transition between
these two outcomes occurs at a slightly higher transmissability for pandemic flu than for seasonal flu.
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6.3. Optimizing Disease Control Policies
Although predictive models of infectious disease dynamics have become quite powerful, the
computational complexity of these models often impedes the systematic optimization of
disease control strategies, that is, finding the optimal demographic, spatial, and temporal
distribution of costly public health resources. Thus, one typical approach within the infec-
tious disease community has been to evaluate a relatively small set of candidate strategies
(Longini et al. [37], Ferguson et al. [20], Bansal et al. [8], Germann et al. [24]), rather than
consider the full spectrum of policy options. Recently, however, researchers from diverse
fields are beginning to effectively couple infectious disease models with a variety of tools
from operations research including simulation optimization techniques (Azadivar [6]). For
an extensive review of such methods, see Long and Brandeau [36].

In this section, we present one recent approach to searching large sets of infectious dis-
ease intervention policies (Dimitrov et al. [17]). As we describe here, the method is paral-
lelizable, scalable, usable in real time, and can be adapted to work with diverse epidemic
models.

Let the sequence A1,A2, . . . ,AD describe a disease control strategy. Though the sequence
can be simply an arbitrary string of bits, it may be helpful to think of it as a sequence
of actions taken over a specific time period. For example, A1 describes the control action
performed in the first month, A2 describes the control action performed in the second month,
and so forth.

Suppose that we have an infectious disease simulator, sim(A1,A2, . . . ,AD), that returns
the outcome of an epidemic under a specified control strategy. Because disease progression
is stochastic, we assume that sim(A1,A2, . . . ,AD) is a random variable, and we can only
sample from its distribution. Further assume that the simulator always returns a real number
in the interval [0,1]. For example, the simulator could return the fraction of the population
that has not been infected by the end of the epidemic. We can then formulate the disease
control problem as follows:

max
A1,A2, ... ,AD

E[sim(A1,A2, . . . ,AD)].

To computationally address the above optimization problem, we have designed and imple-
mented the Disease Control System (DiCon) (Dimitrov et al. [17], Goll [25]). DiCon is a
modular and extensible optimization platform specialized to disease control with the follow-
ing features:

(1) Swappable, extensible optimization algorithms. DiCon includes classic algorithms like
exhaustive search and more recent algorithms like bandit-based search algorithms (Dar et al.
[16], Kocsis and Szepesvári [32], Mannor and Tsitsiklis [38], Coquelin and Munos [14]). The
system also has a simple optimization algorithm interface so that new algorithms could be
added.

(2) Automatic parallelization. DiCon can both run on your laptop and on supercomput-
ers. With automatic job queueing and processor management, DiCon can handle multiple
concurrent optimizations with multiple processors per optimization, scaling to hundreds of
processor cores. DiCon manages all communication between processes.

(3) Simple interface. DiCon has a simple interface. You specify two functions: simulate( ),
the disease simulator that takes as input a sequence of control actions, and next action( ),
which specifies the space of control policies.

(4) Language independence. DiCon allows you to specify your simulator and space of con-
trol policies in any programming language you choose. DiCon uses Google protocol buffers
to communicate with your stand-alone program. Libraries implementing Google protocol
buffers are available for most languages, including Python, C++, and Java.
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Figure 9. Optimizing the distribution of antiviral medications from the U.S. Strategic National
Stockpile.
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Notes. Panel (a) shows the network model used to stochastically simulate influenza progression throughout
the 100 most populated U.S. cities. Transmission within cities is modeled using compartmental models and
transmission among cities occurs via stochastic movement of infected travelers. The model is parameterized
with data from the U.S. Census Bureau, the Bureau of Transportation Statistics, and early estimates of
H1N1/09 parameters (Pourbohloul et al. [48]). Node (circle) size is proportional to city population, and edge
thickness is proportional to the number of daily travelers. Panel (b) shows the performance of several control
strategies in delaying an influenza epidemic. The x-axis gives rates of uptake, the fraction of individuals
who seek antivirals within the first 24 hours of symptoms. On the vertical axis is the cumulative number
of infected cases within the first 12 months of the initial outbreak. The model assumes that following the
distribution of antivirals to cities, they disappear through misuse or loss, with a half-life of two months.
Three optimized strategies for releasing 50 million courses from the national antiviral stockpile are presented
(from top to bottom): the optimized strategy when antivirals are allowed to be released both proportional to
population size and proportional to disease prevalence, the optimized strategy when releases are exclusively
proportional to city population sizes, and the optimized strategy under an ideal situation assuming that
there is no misuse (infinite half-life). In addition, several simple policies are presented ranging from a monthly
release of 1 million antiviral courses for 12 months to a single release of the entire 50 million antiviral courses
available in the stockpile. The results suggest that (1) releases proportional to prevalence are unnecessary,
because the performance is the same with or without this option; (2) careful release can overcome misuse
or loss, because the best release schedules under misuse perform as well as the idealized scenario of no
misuse; and (3) the simple strategy of releasing 5 million courses monthly performs well for the H1N1/09
disease parameters. The same performance not necessarily occur for other strains of influenza with different
characteristics.
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(5) Versatile job specification. DiCon allows you to run many optimizations with a single
command. With a versatile specification language, one can easily try optimizations with
varying parameterizations, optimization algorithms, or control policy spaces.

(6) Logging and checkpointing. DiCon includes logging capabilities, so that you can
track optimizations during computation. DiCon also includes checkpointing, allowing you
to resume interrupted optimizations.

A preliminary version of DiCon has been used to compute release schedules for the U.S.
National Antiviral Stockpile with the purposes of delaying an influenza epidemic (Dimitrov
et al. [17]). In that application, the sequence of actions A1,A2, . . . ,AD describes a schedule
of antiviral release, with Ai describing both the amount of antivirals to be released in the
ith month and the prioritization of those antivirals. The simulator sim(A1,A2, . . . ,AD) is
stochastic, combining a contact network between cities and a compartmental model within
each city. The objective of the optimization is to minimize the number of infected individuals
in the first year of the epidemic, under the constraint of using no more antivirals than those
available in the national stockpile. We used a bandit-based search algorithm to find near-
optimal distribution schedules (Kocsis and Szepesvári [32], Coquelin and Munos [14], Dar
et al. [16]). Even under high levels of loss of released antivirals, through misallocation or
misuse, the optimization is able to find effective release schedules to delay the epidemic.
Some of the key results of the optimization are summarized in Figure 9. For more details,
see Dimitrov et al. [17]
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Appendix A. Geometric and Exponential Random Variables
Consider the following sequence of geometric random variables. The variable X1 is the standard
geometric random variable, with success probability β, and takes values in {1,2, . . .}. The variable
X2 has success probability β/2 and takes values in { 1

2 , 2
2 , . . .}. Similarly, the variable Xk has success

probability β/k and takes values in {1/k,2/k, . . .} and so forth.
Consider

lim
k→∞

Pr[Xk ≤ y] = lim
k→∞

i/k≤y−1/k∑
i=0

(
1− β

k

)i

· β

k
.

For the upper limit of the summation on the right-hand side, i can go as high as k ·y−1. Substituting,
we have

lim
k→∞

Pr[Xk ≤ y] = lim
k→∞

k·y−1∑
i=0

(
1− β

k

)i

· β

k

= lim
k→∞

1− (1− β/k)k·y

1− (1− β/k)
· β

k

= lim
k→∞

1−
(
1− β

k

)k·y

= 1− e−β·y.

So, the sequence of geometric random variables converges in distribution to an exponential random
variable with expectation 1/β.
The idea here is that in the sequence of geometrics, we decreased the spacing between their values

and the success probability with the same scale, keeping the expected number of successes in a unit
of time the same.
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Appendix B. Generation Time of an SIR Model
As a small example of the complex and model-dependent methods of parameter estimation, let us
express the generation time of the SIR model discussed in §2. In an SIR model, the infectious period
of an individual is an exponentially distributed random variable, with expectation 1/γ, denoted as
Exp(γ). Consider an index case at the beginning of the epidemic, when S is approximately 1. The
infected individual produces new infected individuals with a waiting time between new infections
that is an exponential random variable with expectation 1/β, denoted as Exp(β). If the index case
is infected at time 0, and given that at least one new infection was created, what is the average
time of infection for the secondary cases?
Let Y ∼ Exp(γ) and Z ∼ Exp(β). The variable Y captures the infectious period of the index

case, and Z captures the waiting time between generation of consecutive secondary cases. We can
view the creation of new infected cases as a repeated “race” between Y and Z. If Z wins the race,
by being smaller than Y , then a new infected case is created and a new race is started. If Y wins
the race, then the index case recovers, the repeated races stop, and no new infected cases can be
created.
Define X1 to be the infection time of the first newly created case. Define X2 to be the differ-

ence in the infection times between the first and second newly infected cases, so that the second
newly infected case occurs at time X1 +X2. Similarly, define X3 to be the difference in infection
times between the second and third, and so forth for Xi for i= 1, . . . . Furthermore, let Pi be the
probability that i new cases are created, for i= 1 . . . . With these definitions, the generation time
is equal to

E
[ ∞∑

i=1

Pi ·
∑i

j=1

∑j
k=1 Xk

i

]
, (B1)

where with the innermost sum, we calculate the infection time of the jth new case; with the second
innermost sum, we calculate the average over all cases created; and finally, with the outermost sum,
we calculate the expectation over the total number of newly created cases.
To analyze Expression (B1), first recall that if Y ∼ Exp(γ) and Z ∼ Exp(β), then min(Y,Z)∼

Exp(γ + β). Also recall that an exponential random variable has the “lack of memory” property,
specifically, (Y − y | Y ≥ y)∼Exp(γ), for all nonnegative constants y.
Now, suppose that exactly one new case is created, then the new case created at time X1 equals

min(Y,Z), so X1 ∼Exp(γ+β). If exactly two new cases are created, a new race between Y and Z
is started after time X1, because of Y ’s lack of memory property. Because of the new race, we also
have X2 =min(Y,Z), and X2 ∼Exp(γ+β). In fact, all Xi have the same distribution, Exp(γ+β).
This allows us to greatly simplify Expression (B1) to

E
[ ∞∑

i=1

Pi ·
∑i

j=1

∑j
k=1 Xk

i

]
=

∞∑
i=1

Pi ·E[X1] ·
∑i

j=1 j

i

=
∞∑

i=1

Pi ·E[X1] · i · (i+1)/2
i

=
1

γ+β
·

∞∑
i=1

Pi · (i+1)
2

. (B2)

We can complete our analysis of the generation time by noting that the number of new infected
individuals, which is the number of races between Y and Z in our analogy, is geometrically dis-
tributed. The variable Y has a chance of winning a given race equal to β/(γ+β), which can be
derived with the appropriate integral. Whenever Y wins, the races stop, giving our geometric distri-
bution. Because we are given that at least one secondary case has occurred, we can use a normalized
geometric distribution to simply Expression (B2) to

1
γ+β

·
∞∑

i=1

Pi · (i+1)
2

=
1

γ+β
·

∞∑
i=1

(γ/(γ+β))i · β/(γ+β)
1− β/(γ+β)

· (i+1)
2

=
β

2γ(γ+β)
·

∞∑
i=1

(
γ

γ+β

)i

(i+1). (B3)
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Finally, we can use the fact that
∑∞

i=1 ri · (i+1) = (r(1− r))+ (r/(1− r)2) for r < 1 to simplify
Expression (B3) to derive our final expression of the generation time of an SIR model:

1
2(γ+β)

+
1
2γ

.

The correctness of the expression can be easily verified through simulation.
This small example demonstrates the complex reasoning required for proper parameterization of

epidemic models. Simple quantities like generation time or serial number are what can be estimated
for real disease cases. To parameterize epidemic models, one must connect these real estimates
to the model parameters. This complexity, combined with the importance of using the correct
parameters, is perhaps one of the reasons that a large fraction of the literature on infectious diseases
is concentrated on parameter estimation.
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