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The spread of infectious disease through communities depends fundamentally on the underlying patterns of

contacts between individuals. Generally, the more contacts one individual has, the more vulnerable they are

to infection during an epidemic. Thus, outbreaks disproportionately impact the most highly connected

demographics. Epidemics can then lead, through immunization or removal of individuals, to sparser

networks that are more resistant to future transmission of a given disease. Using several classes of contact

networks—Poisson, scale-free and small-world—we characterize the structural evolution of a network due

to an epidemic in terms of frailty (the degree to which highly connected individuals are more vulnerable to

infection) and interference (the extent to which the epidemic cuts off connectivity among the susceptible

population that remains following an epidemic). The evolution of the susceptible network over the course of

an epidemic differs among the classes of networks; frailty, relative to interference, accounts for an increasing

component of network evolution on networks with greater variance in contacts. The result is that

immunization due to prior epidemics can provide greater community protection than random vaccination

on networks with heterogeneous contact patterns, while the reverse is true for highly structured populations.
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1. INTRODUCTION

Directly transmitted diseases spread across individual-

to-individual contact networks as determined by the mode

of transmission (e.g. aerosol versus sexually transmitted)

and the social structure of the host population. Pathogen

dynamics, therefore, fundamentally depend on the

structure of the underlying contact network (McCallum

et al. 2001; Meyers et al. 2005) as moulded by patterns of

individual immunization through vaccination or prior

exposure to the disease (Anderson & May 1990; Newman

2005; Pourbohloul et al. 2005). Immunized individuals

are effectively removed from the network, thereby

breaking possible chains of transmission and leaving a

sparser residual network. An important principle in

epidemiology is that an entire population can be protected

by the immunization of a fraction of the hosts, the

so-called herd immunity (Anderson & May 1990, 1991).

The distribution of epidemiologically active contacts in a

partially immunized network, and thus, the efficacy of

herd immunity, will be shaped by the original network

geometry and the source of immunization.

Immunization via vaccination differs from natural

immunization in an important aspect. Epidemics prefer-

entially infect (and subsequently immunize) highly con-

nected individuals and contiguous clusters of individuals.
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In contrast, vaccination programmes, which target indi-

viduals randomly or are based on individual health

considerations, do not necessarily select highly connected

or interconnected portions of the network. Newman

(2005) showed that the invasibility of a network that has

been immunized through prior epidemic spread depends

critically on the configuration of the original network and

transmissibility of the first pathogen. Following Newman’s

results, we ask the question—is the geometry of the social

contact network that results from previous infection more

or less robust than that which results from random

vaccination?

In the models of disease transmission on contact

networks, the probability of exposure is determined by

the connectivity (degree) of the individual (node). Thus,

the most highly connected individuals in a contact network,

the so-called ‘super-spreaders’, ‘hubs’ or ‘core group’, have

both a higher probability of spreading infection through the

population and a higher rate of exposure through social

contacts. Heterogeneity in susceptibility, exposure or

mortality is classically called ‘frailty’ in mathematical

demography (Vaupel et al. 1979; Hougaard 1984). Applied

in this context, high-degree nodes will tend to be the most

frail nodes in the network (Barthelemy et al. 2005; Meyers

et al. 2005). As an epidemic sweeps through a population,

variation in frailty will lead to systematic structural changes

in the active portion of the network (Barthelemy et al. 2005;

Newman 2005). While the impact of network structure on

the progression of an epidemic has been well studied

(Newman 2002; Keeling 2005; Meyers et al. 2005), there
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has been relatively little work on network evolution during

the course of an epidemic (recent notable exceptions are

Barthelemy et al. (2005) and Newman (2005)).

In this paper, we show that the herd immunity of a

network depends strongly on whether the source of

immunization is exposure to a prior epidemic or randomly

distributed vaccination. We investigate this phenomenon

by considering the structural evolution of several classes of

social networks—Poisson, scale-free and small-world—

over the course of an epidemic. We introduce new

analytical measures for tracking the evolution of network

structure during an epidemic and use simulation to

elaborate on the analytical results. In particular, we

partition the structural impact of an epidemic into two

components: (i) degree-dependent frailty and (ii)

interference due to the accumulation of immune individ-

uals. We show that the evolution of these quantities varies

with the underlying geometry of the network (in terms of

the degree distribution and the degree of clustering), and

consequently, that natural immunization by epidemics

can, for some networks, provide greater community-level

protection than random vaccination.
2. MATERIAL AND METHODS
(a) Modelling epidemic and vaccine-based

immunization

We assume that disease spreads through a contact network in

which each node represents an individual and the edges

represent potentially infectious contacts. The number of

edges emanating from a node is the degree of the node and the

degree distribution is the distribution of this quantity across the

population (Albert & Barabasi 2002). While the disease status

of nodes may change during the epidemic (i.e. susceptible to

infected), the edges that link nodes are assumed to be static.

We performed stochastic simulations of the spread of disease

on three classes of network geometry—small-world, Poisson

and truncated scale-free networks—to investigate partial

immunization of a population through both natural infection

and random vaccination. These classes of networks have been

well studied with respect to the spread of epidemics (Moore &

Newman 2000; Volchenkov et al. 2002; Keeling 2005;

Meyers et al. 2005) and have been shown to be the

representative of a variety of animal and human social

networks (Sjoberg et al. 2000). The small-world networks

were generated using the algorithm described by Watts &

Strogatz (1998) with rewiring probability of pZ0.02. These

networks are characterized by a degree distribution that is

roughly symmetric about the mean, with a high degree of

node clustering and a short characteristic path length (Watts &

Strogatz 1998). For Poisson networks, the degree of each

node was drawn randomly from a Poisson distribution and

the edges were placed randomly with respect to the specified

degrees. The scale-free networks are characterized by a highly

skewed distribution of contacts such that most of the nodes

are weakly connected and a small number of nodes have very

high connectivity (Barabasi et al. 1999). In particular, the

degree distribution follows a power law. As contact patterns

have inherent limits on levels of connectivity, we generated

networks using a truncated power-law degree distribution

(a discretized Weibull distribution; Bonabeau et al. 1999) in

which the probability that an individual has k contacts is given

by pðkÞfa=bðk=bÞaK1eKðk=bÞa, where a is a shape parameter and b

is a scale parameter. For both the Poisson and the power-law
Proc. R. Soc. B (2006)
networks, nodes were connected at random with the

restriction that self loops (nodes connected to themselves)

and double edges between nodes were disallowed.

We simulated epidemics assuming a discrete time, chain

binomial, susceptible–infected–removed (SIR) model (Bailey

1957). At each time-step, nodes are characterized as

susceptible, infectious or removed. The susceptible nodes

become infected in the next time-step with binomial

probability 1Kexp(KbI), where b is the rate of transmission

across an edge, and I is the number of infected nodes to which

the individual is connected. The infected nodes are assumed

to recover in a given time-step and enter the immunized

(removed) class with a probability gZ0.1, i.e. nodes are

infectious for an average of 10 time-steps. Once in the

removed class, a node is assumed to have lifelong immunity,

and thus, no longer interact in the epidemiological network.

These epidemic processes are analogous to many childhood

infections (i.e. measles, chickenpox), which are highly

infectious, have an infectious period of 1–2 weeks and convey

lifelong immunity.

The basic reproductive ratio, R0, depends on the first

two moments of the degree distribution, hki and hk2i, i.e.

mean and variance, by R0ZT(hk2i/hkiK1), where T is the

average probability that an infected node will transmit

disease to one of its neighbours (Meyers et al. 2005). For

comparison, we standardize the degree distributions of the

three classes of networks, hence hk2i/hkiz10, i.e. for a given

transmissibility, R0 is the same for all the three classes of

network. The average degree in the small-world and Poisson

networks is approximately hkiZ10 and in the scale-free

networks, approximately hkiZ4.8.

To simulate natural immunization, we initially infected a

randomly selected node and allowed the epidemic to run its

course, resulting in a fraction, p of nodes immunized by

exposure to the pathogen. We generated 300 networks of 1000

nodes for each of the network classes, and simulated 10

epidemics on each, varying the transmission rate, b, of the

immunizing outbreak between 0.01 and 0.05 to achieve a range

of immunized fractions, p. Using identical (pre-epidemic)

contact networks, we then modelled a comparable level of

vaccination by randomly removing a proportion, p of the nodes

corresponding to one of the simulation runs. To compare the

robustness (herd immunity) generated by these two immuniz-

ation processes to subsequent outbreaks, we initiated secondary

epidemics on the immunized networks. These secondary

epidemics were initiated by infecting a randomly chosen node

on the residual networks of susceptible nodes following the

immunization. The transmission rate in these secondary

epidemic simulations was bZ0.05 and we assessed the

epidemic size as the proportion of susceptible nodes that

become infected.

(b) Quantifying the structural decay due to

immunization

Following the mathematical framework developed in Newman

et al. (2002), Meyers et al. (2005) and Newman (2005), we use

percolation theory to study the predicted change in mean

network degree due to the epidemic removal of nodes. For a

node that never becomes infected during an epidemic, we can

distinguish between its original degree, k, and its degree in the

residual network consisting of all the nodes that remain

uninfected by the epidemic, kr. The original degree of a node

indicates the potential exposure to infection, thus the change in

network connectivity in terms of the original node degree gives a
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measure of the frailty of high-degree nodes. Remaining nodes in

the residual network are partially protected by the removal

of neighbours, and the concomitant reduction in degree,

i.e. potential chains of transmission are interrupted. We call

this process interference, which can be described in terms of

difference between the original and the residual degree of nodes

on the residual network (see formal definitions later). To

understand the structural evolution of the network, we focus on

three network statistics: the mean degree in the original

network, hki; the mean original degree of individuals remaining

in the residual network, hkir; and the mean residual degree of the

individuals remaining in the residual network, hkrir.

The mean degree in the original network is simply

hkiZ
P

kkpk, where pk is the frequency of nodes of degree k in

the network. Assuming SIR dynamics on an undirected contact

network, Meyers et al. (2005) derived the following formula for

the probability that an individual of degree k will become

infected during an epidemic: vkZ ð1KTCTuÞk. Here, T is as

mentioned earlier and uZ
P

kkpkð1C ðuK1ÞT ÞkK1
�P

kkpk is

the probability that the person at the end of a randomly chosen

edge does not become infected during the epidemic, and can be

calculated using numerical root finding methods (Meyers et al.

2005). If we define the infected edges as those through which the

disease has spread during an epidemic, we can also calculate the

probability of infection for a node that is reached by following

an uninfected edge after an epidemic. If the degree of this node

is k, then the probability that it was not infected is equal to

the probability that it was not infected along one of its other

kK1 edges. Thus, the probability that it was infected is

ukZ1Kð1KTCTuÞkK1.

The frequency of the individuals, with original degree k,

who remain in the residual network after an epidemic is given

by rkZpkð1KvkÞ=
P

jpjð1KvjÞ, and thus, the mean original

degree in the residual network is

hkir Z
X
k

krk Z

P
kpkð1KvkÞP
pkð1KvkÞ

: ð2:1Þ

To calculate the residual degree, we partition the original

network into the nodes that are infected during the epidemic

and those that remain uninfected, and then calculate the

fraction of edges in the original network that begin and end in

the uninfected partition. Each edge in the network has two

ends called stubs. Thus, the total number of stubs in the

network is N
P

kpk, where N is the number of nodes in the

network. For every one of the approximately N
P

pkvk nodes

in the infected partition, disease transmission to that node

would have occurred necessarily along an edge with both

an origin and a destination stub (with the exception of the

first infection; for simplicity, we ignore this exception). Thus,

N
P

pkðkK2vkÞ is the total number of stubs in the network

excluding those that were a conduit for disease transmission

during the epidemic. We refer to this quantity as the total

number of uninfected stubs.

If we choose an uninfected stub at random, then the

probability that it attaches to an uninfected node is given byP
kpkð1KukÞP
pkðkK2vkÞ

:

If we now choose an uninfected edge (rather than stub) at

random, the probability that it connects two uninfected nodes

is given by the previous quantity squared,

P
kpkð1KukÞP
pkðkK2vkÞ

� �2

:

Proc. R. Soc. B (2006)
1Thus, the average residual degree in the residual network is

this probability multiplied by the total number of stubs and

divided by the number of nodes in the residual network,

hkrir Z

P
kpkð1KukÞP
pkðkK2vkÞ

� �2
N

P
pkðkK2vkÞ

N
P

pkð1KvkÞ

� �

Z

P
kpkð1KukÞ

� �2P
pkðkK2vkÞ

P
pkð1KvkÞ

: ð2:2Þ

Although the approach we take is different, our estimate for

the average residual degree is very similar to the one that

would result by following the methods developed in Newman

(2005). Our calculation discounts infected stubs when

considering the uninfected (residual) portion of the network

and appears to be a better estimate for average residual degree

(see electronic supplementary material).

Finally, we define frailty as the difference between the

mean original degree in the original network and the mean

original degree in the residual network, scaled by the mean

original degree,

fZ
hkiKhkir

hki
: ð2:3Þ

This parameter quantifies the extent to which the high-degree

individuals are preferentially infected during an epidemic. We

define interference as the scaled difference between the mean

original degree in the residual network and the mean residual

degree in the residual network,

qZ
hkirKhkrir

hki
: ð2:4Þ

This quantity is the extent to which the epidemic has cut-off

connectivity among the remaining susceptible population.

To verify our analytical predictions for the end of an

epidemic and study network evolution during the intermedi-

ate stages of an epidemic, we performed stochastic

simulations of the spread of disease on small-world, Poisson

and truncated scale-free networks (as described earlier). For

comparison, the mean degree, hki, for all the three classes of

network was set to 10 in these simulations. The transmission

rate of bZ0.05 and a recovery rate of gZ0.1 were used. We

simulate epidemics on 100 replicate networks of 1000 nodes

for each network class and compare the simulated residual

network structure to the analytic predictions. We relate the

per-contact transmission probability between an infected and

a susceptible individual, T, to the simulation parameters, b

and g, in the manner, TZ1KeKb/g. Note that we did consider

additional values of b although the results did not change

qualitatively and we do not present them here (e.g. figure 3;

figure 2 in electronic supplementary material).
3. RESULTS
The robustness of residual networks to subsequent

epidemic invasion is strongly dependent on the class of

network, as shown in figure 1. Prior epidemics produce

patterns of herd immunity nearly identical to that of

random vaccination on Poisson networks (figure 1b).

Natural immunization on scale-free networks results in

residual networks that are more robust to epidemic attack

compared to random vaccination at the same level

(figure 1c). This pattern is consistent with previous

observations that scale-free networks remain contiguous
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longer in the face of random compared to targeted attack

(Albert et al. 2000). This pattern is reversed for small-world

networks, where randomly vaccinated networks were con-

siderably more robust to subsequent attack (figure 1a).

We can understand these differences in herd immunity

for the three classes of network by considering the pattern

of structural change in the degree distribution due to

epidemic removal. Intuitively, all the networks become

increasingly sparse as the epidemics progress (figure 2).

However, the structural evolution of the networks differs

in the relative contributions of frailty (the loss of
Proc. R. Soc. B (2006)
high-degree individuals that are more vulnerable to

infection) and interference (the reduction in the connec-

tivity of the remaining susceptible individuals). Though all

the three networks ultimately decrease to a similar residual

mean degree, hkrir, the proportion of the decrease due to

frailty increases with the contact heterogeneity of the

initial network (figure 2). The analytical calculations of

the mean original degree and the mean residual degree on

the residual networks, hkir and hkrir, respectively, match the

simulation results for both the Poisson and the scale-free

networks (figure 2). Overall, the congruence between
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analytical results and simulations holds on these networks

for all the values of transmission rate (i.e. R0), but is not

presented here.

Using equations (2.1) and (2.2), we can predict the

mean original degree, hkir, and the mean residual degree,

hkrir, on the residual network following epidemics of varying

sizes. For a given final epidemic size (i.e. 1 minus the

proportion of nodes immunized), the resulting residual

network has the lowest connectivity if the original degree

distribution is scale-free and connectivity is highest if the

original network is small-world (figure 3b). Again, the

relative contribution of original node degree to the decay in

connectivity (i.e. frailty) increases with contact hetero-

geneity in the network (figure 3a). The predicted mean

residual degree for a network of arbitrary degree distri-

bution with a fraction p of nodes randomly vaccinated is

1Kphki (see electronic supplementary material). Relative

to the proportion immunized, there is less difference in the

average residual degree on Poisson networks that have

experienced prior epidemics (figure 3b) and that predicted

for random vaccination. For a given proportion immunized

by a prior epidemic, scale-free networks are more sparse

and small-world networks less sparse than comparable

randomly vaccinated networks (figure 3b), which explains

the patterns of herd immunity seen in figure 1.

On small-world networks, the analysis and the

simulations agree for hkir but not hkrir. Simulations yield

substantial variation in hkrir, consistently lower than the

predicted analytic value (figure 1a). The percolation-based

quantities derived for hkrir are based on the assumptions

that may not hold true for small-world graphs having a high

degree of (non-random) clustering (also see Newman &

Watts (1999), Volz (2004) and Newman (2005) for a

discussion of analytical methods for clustered networks).

The high degree of clustering also results in the greater

variance in residual degree as epidemics occasionally fade

out, leaving relatively contiguous and highly connected

clusters of nodes. This clustering of nodes further explains

the relatively low herd immunity on small-world networks

due to prior epidemics; the susceptible nodes that have

survived an epidemic tend to be contiguous and are of

similar mean degree to the original network (figure 1a).

Random vaccination, in contrast, removes nodes and edges

homogenously throughout the community, thus conferring

a higher degree of sparseness, and protection, throughout

the residual network.
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4. DISCUSSION
The underlying pattern of contacts between individuals

strongly impacts the susceptibility of a population to

pathogen invasion (Pastor-Satorras & Vespignani 2001)

and epidemic spread (Newman 2002; Barthelemy et al.

2005; Meyers et al. 2005). Less studied is the degree

to which epidemic spread affects the structure of

contac networks through node ‘death’ or immunization.

Barthelemy et al. (2005) has characterized this pattern as a

hierarchical cascade, in which the infection passes through

nodes of progressively lower degree. As a result, the

structure of the sub-network of interacting hosts will

evolve towards lower mean degree and lower variance in

degree. Here, we have shown that the structural evolution

of communities experiencing epidemics can be charac-

terized in terms of two quantities: frailty (the reduction

in connectivity due to the selective removal of highly

connected nodes) and interference (the reduction in con-

nectivity due to the removal of neighbouring nodes).

Following an immunizing epidemic, we found the

residual network to bear little signature of the original

geometry; the result is usually a collection of weakly

connected and largely isolated nodes. Newman (2005)

showed that, in general, subsequent pathogens must be

more transmissible to invade these previously exposed

sparse networks. Interestingly, the structural evolution to

this endpoint differs depending on the topology of the

original network. Networks with highly skewed contact

distributions are quickly homogenized due to the rapid

cascade of infection through the highest degree (most

frail) individuals (Barthelemy et al. 2005). In contrast, the

comparatively homogenous Poisson and small-world

networks are primarily shaped by interference as neigh-

bouring nodes gain immunity effectively resulting in local

cordons sanitaire.

The interaction between network geometry and struc-

tural evolution due to epidemic spread sheds light on the

process of epidemic fadeout and the related problem of

vaccine deployment. Albert et al. (2000) showed that scale-

free networks are more susceptible to degree-ordered node

removal than the Poisson networks. In our simulations, the

frailty of high-degree nodes to epidemic spread effectively

creates an ordered removal of nodes resulting in more rapid

degradation of structure on skewed networks. The rapid

homogenization of skewed networks under natural epi-

demics results in residual networks, which are robuster to
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secondary epidemics than randomly vaccinated networks.

On Poisson networks, for which the structural evolution

under natural epidemics is largely independent of node

degree (i.e. interference), natural epidemic spread pro-

duces residual networks that are no more robust to

subsequent epidemics than if randomly vaccinated.

Intriguingly, random vaccination of small-world networks

offers more protection than immunization by natural

epidemic spread. This pattern can be attributed to the

high degree of clustering on small-world networks (Watts &

Strogatz 1998) as random vaccination tends to distribute

some vaccinated nodes in all the clusters. While much of

the discussion of social networks has focused on the degree

distribution, these results suggest that higher order

structural properties, such as clustering, can have import-

ant implications for the epidemiological evolution and

robustness of populations.

Many pathogens exhibit recurrent outbreaks with a

more or less regular inter-epidemic period (Anderson &

May 1991). The intervening build-up of susceptible

individuals, through births and loss of immunity, leads

to the breakdown of herd immunity and increasing

population vulnerability. Though typically described in

terms of cycles in the number or density of susceptible and

infectious hosts, these recurrent outbreaks should result in

a concomitant cycling in the geometry of the active contact

network. The build-up of susceptible nodes following an

epidemic leads to an increase in the mean and variance of

node degree (see electronic supplementary material). The

contact network thereby becomes more susceptible to a

subsequent outbreak, which will result in the breakdown

of connectivity and begin the cycle anew. For recurring

diseases, this suggests that vaccine priorities should be

designed to complement naturally acquired immunity in

the inter-epidemic periods, perhaps with special attention

to the highly connected, and thus high-risk, individuals

that have not recently been infected.

The authors acknowledge the Santa Fe Institute (SFI) and the
SFI program on robustness in social processes, which is funded
by the James S. McDonnell Foundation. This work was
funded in part by a fellowship from the Pennsylvania State
University Information and Technology Services to M.J.F.
ENDNOTE
1This is a critical assumption that may not hold for networks with

high degrees of clustering, for example, the small-worlds networks

examined here. For such networks, the contact patterns in the

residual network are less impacted by the epidemic, and thus our

predicted value of hkrir serves as a lower bound for the actual average

residual degree.
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