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outbreak response,” by Eric Lofgren, M. Elizabeth Halloran,
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(111:18095–18096; first published December 10, 2014; 10.1073/
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VA 24061.
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of Biostatistics and Fred Hutchinson Cancer Research Center,
University of Washington.
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The 2014 outbreak of Ebola in West Africa
is unprecedented in its size and geographic
range, and demands swift, effective action
from the international community. Under-
standing the dynamics and spread of Ebola is
critical for directing interventions and extin-
guishing the epidemic; however, observational

studies of local conditions have been incom-
plete and limited by the urgent need to direct
resources to patient care.
Mathematical and computational models

can help address this deficiency through
work with sparse observations, inference on
missing data, and incorporation of the latest

information. These models can clarify how
the disease is spreading and provide timely
guidance to policymakers. However, the use
of models in public health often meets
resistance (1), from doubts in peer review
about the utility of such analyses to public
skepticism that models can contribute when
the means to control an epidemic are already
known (2). Even when they are discussed in
a positive light, models are often portrayed
as arcane and largely inaccessible thought
experiments (3). However, the role of models
is crucial: they can be used to quantify the
effect of mitigation efforts, provide guidance
on the scale of interventions required to
achieve containment, and identify factors
that fundamentally influence the course of
an outbreak.

Situational Awareness, Intervention
Planning, and Projections
During the 2014 Ebola outbreak, govern-
ments and nongovernment organizations
have used models to forecast the size of the
epidemic (4–8) and to predict the risk of
importation of cases from Africa (7), an area
of increasing concern. Model forecasts have
been used heavily to communicate the se-
verity of the epidemic if left unchecked (4–8).
As with all forecasts, there are qualifications
associated with such predictions. Precisely
because they can be used to quantify the se-
verity of a situation to policymakers, models
early in the epidemic may predict a more
severe epidemic than comes to pass not be-
cause they are wrong, but because they hel-
ped prompt a strong response. Despite the
limitations inherent to forecasting a social
system, formal models benefit from explicitly
laying out their assumptions and invite users
to examine and even alter them.
Models can also be used to explore areas of

uncertainty in the epidemic. They can ex-
amine parameters where there is disagree-
ment about a particular value or a range of

A woman has her temperature taken at the October Canton Fair in Guangdong province in
China, a front line in preventing the Ebola virus from entering the country. Image courtesy of
Shutterstock/plavevski.
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possible values (5). By comparing different
models (4–8) to uncover the source of their
disagreement, modelers can work with de-
cision makers and public health professionals
to identify key data that are critical to re-
solving these differences and solidifying our
understanding of the epidemic. Stochastic
models can incorporate uncertainty caused
by chance and statistical variation (6, 7), re-
sulting in a range of projections for epidemic
progression that presents policymakers with
optimistic and pessimistic scenarios. Appro-
priate responses to previous outbreaks, such
as the A/H1N1 influenza outbreak, have
benefitted from ensembles of potential sce-
narios to consider (9–11). These two types of
uncertainty, one that may be improved by
more information and one that is inherent to
the system, are both important and both ca-
pable of being explored using modeling (12).
The forecasts that models provide are

valuable not only for quantifying how an
epidemic might spread if left unchecked, but
also in evaluating the effectiveness of inter-
ventions. These forcasts provide a baseline
for measuring success against, and may
quantify how effective an intervention need
be to achieve containment. The most basic of
these analyses is the estimation of the effec-
tive reproductive number (RE), which is the
number of secondary cases caused by each
current case. If RE falls below one following
an intervention, this indicates that the disease
lacks further epidemic potential and the in-
cidence should decrease in time. Models may
also examine practical logistical questions,
such as travel bans or the placement of new
treatment centers that are not easily ad-
dressed by other study designs.

Epidemiological Explanations
Beyond asking, “How many and for how
long?” policymakers are asking, “Why here
and now?” Prior Ebola outbreaks have been
geographically confined to Central Africa,
occurred mainly in small rural communities,
and have been relatively small. Why has this
outbreak emerged in Western Africa, in urban
settings, and why has it spread unchecked?
Model-based risk assessment of emerging

pathogens can assess the potential for a major
epidemic, even in the absence of prior out-
breaks. In the case of Ebola, models analyzing
data from previous outbreaks (13) showed
the disease had the potential for epidemic
spread, and parameters from earlier out-
breaks have been found to be capable of
generating larger outbreaks in simulation
(14). This finding suggests both that there

may not be anything inherently different
about this Ebola outbreak, and that emerging
diseases should be considered for their epi-
demic potential, even in the absence of his-
torical precedent.
The use of models for this sort of de-

ductive reasoning is in contrast to the in-
ductive approach traditionally used in epi-
demiology. The analysis of an outbreak
begins with a causal argument (the model
itself), which is checked against observed data
to see if it is capable of producing the ob-
served results. Of course, consistency of the
observed data with the model does not imply
that the model is correct but it does provide
the context for a structured discussion of
potential transmission mechanisms. The
ability of model predictions to be tested—
and falsified—lies at the heart of science (15).

Models as Structured Reasoning
Models provide a means of incorporating
data from diverse sources to create a coherent
picture of disease dynamics. Some of this
information is familiar to epidemiologists:
transmission chains, genomic data, or the
geographical and temporal distribution of
cases. However, the data required extends
well beyond the traditional domain of epi-
demiology and public health. Cultural prac-
tices, social networks, formal and informal
transportation networks (16), and the in-
terface between human and animal pop-
ulations may all prove essential to fully
understand the epidemic.
It is this aspect of models, where implicit

assumptions are made explicit and gaps in
knowledge brought to light, that provides the

greatest opportunity for strengthening part-
nerships among modelers, policymakers, and
public health workers. Models show what
remains unknown, revealing targets for future
empirical research. This research, in turn,
improves the models. Finally, models allow
for exploration of counterfactual scenarios;
they provide a record of “what might have
been,” allowing public health authorities to
guard against accusations of either not taking
an epidemic seriously (when interventions fail
to contain the epidemic) or reacting too
strongly (when successful interventions read-
ily bring the epidemic under control).
Models of infectious disease spread are

important, not despite our lack of data, but
precisely because of our lack of data; they are
powerful tools to control infectious diseases as
they emerge and to prepare for the future. For
models to reach their potential, modelers,
those on the ground, and policymakers must
work in partnership to ensure that models are
answering policy-relevant questions and that
the data necessary to do so is accessible. Ini-
tiatives that encourage and facilitate these
partnerships—for example, the National Insti-
tutes of Health/National Institute of General
Medical Sciences Models of Infectious Disease
Agent Study program—must be strengthened
and supported so that disease outbreakmodels
work as a tool that helps save lives.
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