We extended the age-structured SEIR (susceptible, latent, infectious, recovered) model of Medlock and Galvani [6] to include two levels of risk for complications due to influenza infection and parametrized this model using data from the 2009 H1N1 influenza pandemic. We also extended the framework to incorporate staggered delivery of vaccine doses.

Here we detail the model construction and parametrization and review the results.

S1 Mathematical Model

S1.1 Transmission Model

For modeling influenza transmission in the United States, we divide the population into the 17 age groups for ages 0, 1–4, 5–9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, and 75+. The numbers of people in each age group were parametrized using the estimated US 2007 population [17].
Within each age, we further divide the population into low risk and high risk for influenza complications, with high risk being identified by existing medical conditions such as asthma, heart disease, and pregnancy. The proportion high risk by age is given in Table S1 [8]. (Where the age groups for the proportion at high risk do not line up with our model age groups, we assumed that people are distributed uniformly within the model age groups. E.g. we assume that from the age group 15–19, 80% are under 18 and 20% are over 18.)

Each of the age–risk groups is then stratified by infection status. Let $S_{LUa}(t)$, $E_{LUa}(t)$, $I_{LUa}(t)$, and $R_{LUa}(t)$ be the respective numbers of unvaccinated low-risk susceptible, latent, infectious, and recovered people in age groups $a = 1, 2, \ldots, 17$. Let $S_{HUa}(t)$, $E_{HUa}(t)$, $I_{HUa}(t)$, and $R_{HUa}(t)$ be defined similarly, but for unvaccinated high-risk people. Now, let $S_{LVa}(t)$, $E_{LVa}(t)$, $I_{LVa}(t)$, $R_{LVa}(t)$, $S_{HVa}(t)$, $E_{HVa}(t)$, $I_{HVa}(t)$, and $R_{HVa}(t)$ be defined similarly for vaccinated people.
Table S1: Proportion at high risk for influenza complications.

<table>
<thead>
<tr>
<th>Ages</th>
<th>Proportion High Risk, P_{Ha}</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 m</td>
<td>1.51%</td>
</tr>
<tr>
<td>6 m–1</td>
<td>4.22%</td>
</tr>
<tr>
<td>1–4</td>
<td>8.86%</td>
</tr>
<tr>
<td>5–18</td>
<td>11.92%</td>
</tr>
<tr>
<td>19–24</td>
<td>18.79%</td>
</tr>
<tr>
<td>25–49</td>
<td>20.15%</td>
</tr>
<tr>
<td>50–64</td>
<td>33.83%</td>
</tr>
<tr>
<td>65+</td>
<td>53.15%</td>
</tr>
</tbody>
</table>

Compiled by the MIDAS High-Risk Segmentation Group [8]. High risk for influenza complications is defined as having a chronic condition that is indications receiving influenza vaccine, having an immunocompromised condition, or being pregnant. For adults, the chronic conditions that indicate vaccination are: current asthma, chronic bronchitis, emphysema, coronary heart disease, angina, heart attack, diabetes, stroke, weak kidney, epilepsy, cerebral palsy, movement disorders, and muscular dystrophies [2]. For children, these chronic conditions are: current asthma, congenital heart disease, ever diabetes, Down syndrome, ever cerebral palsy, ever muscular dystrophy, ever cystic fibrosis, ever sickle cell anemia, and seizures in past 12 months [2]. For children under 6 months, birth weight less than 1500 gm is also included [2]. Immunocompromised conditions are: cancer in the past 3 years [2], HIV/AIDS [3], dialysis [16], and having had an organ transplant [11]. Pregnancy is also included [2].
The infection dynamics are described by the differential equations

\[
\frac{dS_{LUa}}{dt} = -\lambda a S_{LUa}, \quad (S1a)
\]
\[
\frac{dE_{LUa}}{dt} = \lambda a S_{LUa} - \tau E_{LUa}, \quad (S1b)
\]
\[
\frac{dI_{LUa}}{dt} = \tau E_{LUa} - (\gamma + \nu_{LUa}) I_{LUa}, \quad (S1c)
\]
\[
\frac{dR_{LUa}}{dt} = \gamma I_{LUa}, \quad (S1d)
\]
\[
\frac{dS_{HUa}}{dt} = -\lambda a S_{HUa}, \quad (S1e)
\]
\[
\frac{dE_{HUa}}{dt} = \lambda a S_{HUa} - \tau E_{HUa}, \quad (S1f)
\]
\[
\frac{dI_{HUa}}{dt} = \tau E_{HUa} - (\gamma + \nu_{HUa}) I_{HUa}, \quad (S1g)
\]
\[
\frac{dR_{HUa}}{dt} = \gamma I_{HUa}, \quad (S1h)
\]
\[
\frac{dS_{LVa}}{dt} = -(1 - \epsilon a) \lambda a S_{LVa}, \quad (S1i)
\]
\[
\frac{dE_{LVa}}{dt} = (1 - \epsilon a) \lambda a S_{LVa} - \tau E_{LVa}, \quad (S1j)
\]
\[
\frac{dI_{LVa}}{dt} = \tau E_{LVa} - (\gamma + \nu_{LVa}) I_{LVa}, \quad (S1k)
\]
\[
\frac{dR_{LVa}}{dt} = \gamma I_{LVa}, \quad (S1l)
\]
\[
\frac{dS_{HVa}}{dt} = -(1 - \epsilon a) \lambda a S_{HVa}, \quad (S1m)
\]
\[
\frac{dE_{HVa}}{dt} = (1 - \epsilon a) \lambda a S_{HVa} - \tau E_{HVa}, \quad (S1n)
\]
\[
\frac{dI_{HVa}}{dt} = \tau E_{HVa} - (\gamma + \nu_{HVa}) I_{HVa}, \quad (S1o)
\]
\[
\frac{dR_{HVa}}{dt} = \gamma I_{HVa} \quad (S1p)
\]

for \(a = 1, \ldots, 17 \). The progression rate to infectiousness is \(\tau \) and the recovery rate is \(\gamma \). The influenza-induced death rates for people in age group \(a \) are \(\nu_{LUa} \), \(\nu_{HUa} \), \(\nu_{LVa} \), and \(\nu_{HVa} \), respectively, for unvaccinated low-risk, unvaccinated high-risk, vaccinated low-risk, and vaccinated high-risk people. The
The force of infection is given by

$$\lambda_a = \sum_{\alpha=1}^{17} \frac{\beta \sigma_a \phi_{aa} (I_{LUa} + I_{HUa} + I_{LVa} + I_{HVa})}{N}$$

$$= \frac{\beta \sigma_a}{N} \sum_{\alpha=1}^{17} \phi_{aa} (I_{LUa} + I_{HUa} + I_{LVa} + I_{HVa}).$$

Here ϕ_{aa} is the number of contacts between a person in age group a with people in age group α, β is the probability of infection for a susceptible person who has contact with an infectious person, and σ_a is the relative susceptibility of people in age group a. The relative susceptibility incorporates the potential for older people to have some immunity to the current 2009 H1N1 strain due to exposure to a similar virus in the distant past. The total population size is N:

$$N_a = S_{LUa} + E_{LUa} + I_{LUa} + R_{LUa} + S_{HUa} + E_{HUa} + I_{HUa} + R_{HUa}$$

$$+ S_{LVa} + E_{LVa} + I_{LVa} + R_{LVa} + S_{HVa} + E_{HVa} + I_{HVa} + R_{HVa},$$

$$N = \sum_a N_a.$$
That is

\[
\begin{align*}
S_{LUa}(t_0) &= (1 - P_{Ha})N_a - 1, \\
S_{HUa}(t_0) &= P_{Ha}N_a - 1, \\
S_{LVa}(t_0) &= 0, \\
S_{HVa}(t_0) &= 0, \\
E_{LUa}(t_0) &= 0, \\
E_{HUa}(t_0) &= 0, \\
E_{LVa}(t_0) &= 0, \\
E_{HVa}(t_0) &= 0, \\
I_{LUa}(t_0) &= 1, \\
I_{HUa}(t_0) &= 1, \\
I_{LVa}(t_0) &= 0, \\
I_{HVa}(t_0) &= 0, \\
R_{LUa}(t_0) &= 0, \\
R_{HUa}(t_0) &= 0, \\
R_{LVa}(t_0) &= 0, \\
R_{HVa}(t_0) &= 0,
\end{align*}
\]

(S2a) \hspace{1cm} (S2b) \hspace{1cm} (S2c) \hspace{1cm} (S2d) \hspace{1cm} (S2e) \hspace{1cm} (S2f) \hspace{1cm} (S2g) \hspace{1cm} (S2h) \hspace{1cm} (S2i) \hspace{1cm} (S2j) \hspace{1cm} (S2k) \hspace{1cm} (S2l) \hspace{1cm} (S2m) \hspace{1cm} (S2n) \hspace{1cm} (S2o) \hspace{1cm} (S2p)

where \(N_a \) is the number of people of age \(a \) (from the estimated 2007 US population \([17]\)) and \(P_{Ha} \) is the proportion of age group \(a \) who are high risk \([Table S1]\).

Numerical solution of the model differential equations was done using the LSODA routine \([5]\).

S1.2 Basic Reproductive Number

The basic reproductive number \((R_0) \) of model \([SI]\) was calculated using the next-generation matrix \([4, 6, 18]\). No closed form expression is available for \(R_0 \) for model \([SI]\): rather, it is given by the leading eigenvalue of a matrix depending on the model parameters.

Consider the case when no one in the population has been exposed to the
pathogen and there is no vaccination. Define the sub-matrices

\[F_L = [F_{Laa}] = \left[\beta \sigma_a \frac{(1 - P_{Ha}) N_a}{N} \phi_{aa} \right], \quad (S3a) \]

\[F_H = [F_{Haa}] = \left[\beta \sigma_a \frac{P_{Ha} N_a}{N} \phi_{aa} \right], \quad (S3b) \]

\[V_L = [V_{Laa}] = [\gamma + \nu_{La} \delta_{aa}], \quad (S3c) \]

\[V_H = [V_{Haa}] = [\gamma + \nu_{Ha} \delta_{aa}]. \quad (S3d) \]

Here, \(\delta_{aa} \) is the Dirac delta:

\[\delta_{aa} = \begin{cases}
1, & \text{if } a = \alpha, \\
0, & \text{otherwise.}
\end{cases} \quad (S4) \]

Now define the matrices

\[F = \begin{bmatrix} F_L & 0 \\ 0 & F_H \end{bmatrix}, \quad (S5a) \]

\[V = \begin{bmatrix} V_L & 0 \\ 0 & V_H \end{bmatrix}. \quad (S5b) \]

Finally,

\[R_0 = \rho \left(FV^{-1} \right), \quad (S6) \]

where \(\rho(M) \) is the largest magnitude of the eigenvalues of the matrix \(M \).

This calculation of \(R_0 \) is easily extended to include a population with both unvaccinated and vaccinated people.

S1.3 Optimal Vaccine Allocation

A vaccine delivery schedule is a list of amounts of vaccine available \((v_r)\) and the time (in days) at which they are available \((t_r)\), for \(r = 1, 2, \ldots, R \), for a total of \(R \) batches of vaccine availability. For example, a schedule with 45 million doses available on day \(t_1 \) and 20 million doses available each week thereafter for 3 weeks would have \(t_1 = t_1, v_1 = 45000000, t_2 = t_1 + 7, v_2 = 20000000, t_3 = t_1 + 14, v_3 = 20000000, \) and \(t_4 = t_1 + 21, v_4 = 20000000 \).

Let \(p_{Lr_aL} \) be the proportion of the vaccine that is available at time \(t_r \) that is given to low-risk people in age group \(a_L \) and \(p_{Hr_aH} \) be the proportion given to high-risk people in age group \(a_H \); these are the control variables. New
age groups, $a_L = 1, 2, \ldots, A_L$ and $a_H = 1, 2, \ldots, A_H$ have been introduced to allow for vaccine policies that have different age groups than those in model (S1) itself. In particular, we will consider that we wish to find the best way to distribute vaccine to the 5 low-risk age groups ($A_L = 5$) 0–4, 5–17, 18–44, 45–64, and 65+ and a single group for high-risk people of all ages ($A_H = 1$). The factor G_{Laal} is the fraction of low-risk people in model age group a who are also in vaccination age group a_L and G_{Haah} is defined similarly for high-risk people: these convert between the age groups used in model (S1) and those used as the basis for vaccine distribution. For our age groups, these are

$$G_L = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0.8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.2 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad (S7a)$$

with 0.8 and 0.2 arising because we assume that 80% of 15–19 year-olds are under 18 and 20% are 18 or older, and

$$G_H = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}, \quad (S7b)$$

since high-risk people of all ages are combined into one vaccination group. Then, given the proportions vaccinated in the vaccination age groups, p_{Lra_L} and p_{Hra_H}, the quantities

$$q_{Lra} = \sum_{a_L} G_{Laal} p_{Lra_L}, \quad (S8a)$$

$$q_{Hra} = \sum_{a_H} G_{Haah} p_{Hra_H}, \quad (S8b)$$

are the proportions vaccinated in the model age groups.

We take vaccination to only be done to unvaccinated susceptible people and to instantaneously protect people, so that the state variables change discontinuously at $t = t_r$:

$$S_{LUa}(t_r^+) = (1 - q_{Lra}) S_{LUa}(t_r^-), \quad (S9a)$$

$$S_{HUA}(t_r^+) = (1 - q_{Hra}) S_{HUA}(t_r^-), \quad (S9b)$$

$$S_{LVA}(t_r^+) = S_{LVA}(t_r^-) + q_{Lra} S_{LUa}(t_r^-), \quad (S9c)$$

$$S_{HVA}(t_r^+) = S_{HVA}(t_r^-) + q_{Hra} S_{HUA}(t_r^-), \quad (S9d)$$

8
with the other state variables remaining the same.

The cumulative number of infections at time T is

$$N_{ILa}(T) = N_{LUa}(0) + \sum_r \left[S_{LUa}(t_r^+) - S_{LUa}(t_r^-)\right] - S_{LUa}(T), \quad (S10a)$$

$$N_{HJa}(T) = N_{HJa}(0) + \sum_r \left[S_{HJa}(t_r^+) - S_{HJa}(t_r^-)\right] - S_{HJa}(T), \quad (S10b)$$

$$N_{ILA}(T) = N_{LVa}(0) + \sum_r \left[S_{LVa}(t_r^+) - S_{LVa}(t_r^-)\right] - S_{LVa}(T), \quad (S10c)$$

$$N_{IHJa}(T) = N_{HVa}(0) + \sum_r \left[S_{HVa}(t_r^+) - S_{HVa}(t_r^-)\right] - S_{HVa}(T), \quad (S10d)$$

for unvaccinated low-risk, unvaccinated high-risk, vaccinated low-risk, and
vaccinated high-risk people, respectively. The middle terms in equations [S10], those with the summations, account for the change in vaccination
status when vaccine is distributed. Here

$$N_{LUa} = S_{LUa} + E_{LUa} + I_{LUa} + R_{LUa}, \quad (S11a)$$

$$N_{HJa} = S_{HJa} + E_{HJa} + I_{HJa} + R_{HJa}, \quad (S11b)$$

$$N_{LVa} = S_{LVa} + E_{LVa} + I_{LVa} + R_{LVa}, \quad (S11c)$$

$$N_{HVa} = S_{HVa} + E_{HVa} + I_{HVa} + R_{HVa}, \quad (S11d)$$

are the numbers of people summed over infection status. The cumulative
number of deaths is

$$N_{Da}(T) = N_a(0) - N_a(T), \quad (S12)$$

where N_a is the total number of people in age group a

$$N_a = N_{LUa} + N_{HJa} + N_{LVa} + N_{HVa}. \quad (S13)$$

We will minimize, at the end time T, the objective function that is either
total deaths

$$D(T) = \sum_a N_{Da}(T) \quad (S14)$$

or total hospitalizations

$$H(T) = \sum_a \left[c_{La} N_{ILA}(T) + c_{Ha} N_{IHJa}(T)\right]; \quad (S15)$$

where

$$N_{ILA} = N_{ILUa} + N_{ILVa}, \quad (S16a)$$

$$N_{IHJa} = N_{IHJa} + N_{IHVa}, \quad (S16b)$$
are the numbers of infections in age group a to low-risk and high-risk people, respectively, and c_{La} and c_{Ha} are the case hospitalizations for low-risk and high-risk people in age group a. Note that here we have assumed that the risk of hospitalization is independent of vaccination status.

The problem is, given the starting time (t_0), the end time (T) and the vaccine delivery schedule (t_1, t_2, \ldots, t_R and v_1, v_2, \ldots, t_R), find the p_{Lra} and p_{HraH} that minimize objective function (S14) or (S15), subject to the feasibility conditions

$$0 \leq p_{Lra} \leq 1, \quad (S17a)$$
$$0 \leq p_{HraH} \leq 1, \quad (S17b)$$
$$\sum_a [q_{Lra} S_{LUa} + q_{Hra} S_{HUa}] \leq v_r, \quad (S17c)$$

the latter of which ensures that the number of vaccines used is below the number available; the initial conditions ($S2$) at $t = t_0$; the differential equations ($S1$) on $t_k < t \leq t_{k+1}$ for $k = 0, 1, 2, \ldots, R$, where $t_{R+1} = T$; and the jump conditions ($S9$) at $t = t_r$ for $r = 1, 2, \ldots R$.

For a given vaccine distribution schedule, the optimal vaccine allocations were found numerically using the constrained optimization by linear approximation (COBYLA) algorithm [12], run 3 times with random initial vaccination levels. We took the optimum to be the result with the smallest value of the objective function among these 3 runs.

S2 Parameter Values

The model epidemiological parameters are listed in Table S2. The latent period, the time between becoming infected and becoming infectious, has not been estimated directly, but the incubation period, the time between becoming infected and becoming symptomatic, has [10] [15]. We assumed that a person becomes infectious 1 day before becoming symptomatic [10], so that the latent period is 1 day shorter than the incubation period. Analysis of the first 11 cases of 2009 H1N1 documented by the U.S. Centers for Disease Control and Prevention found a median incubation period of 3 days [15]. The infectious period is not known for 2009 H1N1, so we have taken it to be 7 days as the upper end of the range from seasonal influenzas [10].

In addition, we parametrized the contact matrix (ϕ_{aa}), which describes the number of potentially transmitting contacts per day between a person in
Table S2: Epidemiological parameter values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ages</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latent period, $1/\tau$</td>
<td>all</td>
<td>2 d</td>
<td>[10, 15]</td>
</tr>
<tr>
<td>Infectious period, $1/\gamma$</td>
<td>all</td>
<td>7 d</td>
<td>[10]</td>
</tr>
<tr>
<td>Relative susceptibility, σ_a</td>
<td>0–4</td>
<td>1</td>
<td>[8]</td>
</tr>
<tr>
<td></td>
<td>5–24</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25–49</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50–64</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Vaccine efficacy against infection, ϵ_a</td>
<td>< 6 m</td>
<td>0</td>
<td>[1]</td>
</tr>
<tr>
<td></td>
<td>6 m–64</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Vaccine efficacy against death, δ_a</td>
<td>0–19</td>
<td>0.75</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td>20–64</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Case mortality (per 1000 cases), d_a</td>
<td>0–4</td>
<td>0.22</td>
<td>[13]</td>
</tr>
<tr>
<td></td>
<td>5–17</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18–64</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Case hospitalization (per 1000 cases), c_a</td>
<td>0–4</td>
<td>21.9</td>
<td>[13]</td>
</tr>
<tr>
<td></td>
<td>5–17</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18–64</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>5.7</td>
<td></td>
</tr>
</tbody>
</table>

age group a and people in age group α, as in Medlock and Galvani [6], using survey-based data [9].

In our model, the only impact of being in the high-risk group was an increased risk of adverse outcomes, death and hospitalization, from influenza infection. We assumed that high-risk people are 9 times more likely to die from an infection and 3 times more likely to be hospitalized. These risk ratios are consistent with those found for seasonal influenzas [see 7 and references therein].

We assumed that the empirical case mortality (d_a, Table S2) was to people with the same proportion of the risk groups as the overall population (Table S1) and, of course, to all unvaccinated people. The case mortality for
low-risk, unvaccinated people is then

$$d_{LUa} = \frac{d_a}{(1 - P_{Ha}) + 9P_{Ha}}. \quad (S18)$$

Then the case mortality in terms of the model parameters recovery rate (γ) and death rate for low-risk, unvaccinated people (ν_{LUa}), is

$$d_{LUa} = \frac{\nu_{LUa}}{\gamma + \nu_{LUa}}. \quad (S19)$$

Therefore,

$$\nu_{LUa} = \gamma \frac{d_{LUa}}{1 - d_{LUa}}. \quad (S20a)$$

This is the death rate for low-risk, unvaccinated people. The case mortality for low-risk, vaccinated people is then reduced by the vaccine efficacy against death (δ_a), giving

$$\nu_{LVa} = \gamma \frac{(1 - \delta_a)d_{LUa}}{1 - (1 - \delta_a)d_{LUa}}. \quad (S20b)$$

We assume high-risk people have a 9 times higher risk of death (Table S3), so that the death rates are

$$\nu_{HUa} = \gamma \frac{9d_{HUa}}{1 - 9d_{HUa}}; \quad (S20c)$$

$$\nu_{HVa} = \gamma \frac{9(1 - \delta_a)d_{HUa}}{1 - 9(1 - \delta_a)d_{HUa}}. \quad (S20d)$$

Note here that we have assumed that the vaccine efficacy against death reduces the case mortality by the same relative amount in both low-risk and high-risk people.

Similarly, we took the empirical case hospitalization (c_a) to be to people in the same proportion of the risk groups as the overall population. Then the model case hospitalization for low-risk people (c_{La}) is

$$c_{La} = \frac{c_a}{(1 - P_{Ha}) + 3P_{Ha}}. \quad (S21)$$

and the case hospitalization for high-risk people to be 3 times higher (Table S3), $c_{Ha} = 3c_{La}$.

The one remaining parameter, the probability of transmission given a suitable contact (β), was then chosen so that the model’s basic reproductive number (in the absence of vaccination) had a proscribed value. We considered $R_0 = 1.2, 1.4, 1.7,$ and 2.0.

12
Table S3: Relative risk of averse outcomes for high-risk people versus low-risk people.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>9</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>3</td>
</tr>
</tbody>
</table>

From Meltzer et al. [7]. See text for more.

S3 Results

Figure S1 shows epidemic curves for different age groups for an outbreak with \(R_0 = 1.4 \) and no vaccination. The transmission model has 17 age groups: the 17 age groups were combined into just 5 age groups to simplify the figure.

To simulate the ongoing 2009 H1N1 influenza pandemic, we took the estimate of 1 million cumulative cases on 1 August 2009 [14] and the vaccine delivery schedule as 45 million doses on 15 October 2009 and 20 million doses each week thereafter. We compared vaccine delivery schedules with only the first batch of 45 million doses; with two batches, a 45 million dose batch and then a 20 million dose batch; with three batches, 45 million dose batch and then two 20 million dose batches; and so on, up to a 45 million dose batch followed by eight 20 million dose batches. In addition, we also compared two more delivery schedules, a single batch of 125 million doses on 15 October and a single batch of 125 million doses before the outbreak began. For each of these vaccine delivery schedules, we found the optimal age- and risk-dependent allocation that minimized either deaths or hospitalizations (Figures 1, 2, & S2–S15).

Figures S8–S15 show the optimal allocations of multiple batches of vaccine for a given number of batches. Of particular interest is that the optimal allocations for multiple batches cannot be found by iteratively finding the optimal allocation for the first batch, then for the second batch given the allocation for the first batch, and so on. The optimal allocation in each batch depends on the total number of batches. For example, for \(R_0 = 1.2 \) and deaths averted (Figure S8), the optimal allocation when there are 2 total batches of vaccine includes vaccinating some 18–44 year olds in the second batch, while, when there are 3 total batches of vaccine, vaccinating 18–44 year olds is not optimal.
Figure S1: Model epidemic curves for different age groups with $R_0 = 1.4$ and no vaccination.
Figure S2: Optimal vaccine allocation for different vaccine delivery schedules, different values of R_0, and different objectives. The delivery schedule “45M + 4 × 20M doses” corresponds to 5 batches of vaccine delivery: 45M doses on 15 October and 20M doses each of the following 4 weeks. The different shades of blue correspond to the optimal allocation of the different delivery batches: i.e. the darkest blue describes the optimal allocation for the first 45M doses, the next darkest shade describes the allocation for the 20M doses delivered the following week, and so on. The graphs for $R_0 = 1.4$ and 1.7 are in the main text.
Figure S3: The impact on infections, deaths, and hospitalizations for different vaccine delivery schedules, different values of R_0, and different objectives. The graphs for $R_0 = 1.4$ are in the main text.
Figure S4: The time course of cumulative infections, deaths, and hospitalizations for different vaccine delivery schedules and different objectives with $R_0 = 1.2$.

No vaccine, 45M + 4 \times 20M doses, 125M doses on 15 Oct, 125M doses before outbreak.
Figure S5: The time course of cumulative infections, deaths, and hospitalizations for different vaccine delivery schedules and different objectives with $R_0 = 1.4$.

No vaccine | 45M + 4 x 20M doses | 125M doses on 15 Oct | 125M doses before outbreak
Figure S6: The time course of cumulative infections, deaths, and hospitalizations for different vaccine delivery schedules and different objectives with $R_0 = 1.7$.
Figure S7: The time course of cumulative infections, deaths, and hospitalizations for different vaccine delivery schedules and different objectives with $R_0 = 2.0$.
Figure S8: Optimal vaccine allocation for different numbers of vaccine batches for $R_0 = 1.2$ and deaths averted. The delivery schedules consist of from 1 to 8 batches of vaccine delivered in intervals of 1 week, with the first batch being 45M doses and subsequent batches being 20M doses. Each graph shows the optimal allocation given the number of batches of vaccine available.
Figure S9: Optimal vaccine allocation for different numbers of vaccine batches for $R_0 = 1.2$ and hospitalizations averted. The delivery schedules consist of from 1 to 8 batches of vaccine delivered in intervals of 1 week, with the first batch being 45M doses and subsequent batches being 20M doses. Each graph shows the optimal allocation given the number of batches of vaccine available.
Figure S10: Optimal vaccine allocation for different numbers of vaccine batches for $R_0 = 1.4$ and deaths averted. The delivery schedules consist of from 1 to 8 batches of vaccine delivered in intervals of 1 week, with the first batch being 45M doses and subsequent batches being 20M doses. Each graph shows the optimal allocation given the number of batches of vaccine available.
Figure S11: Optimal vaccine allocation for different numbers of vaccine batches for \(R_0 = 1.4 \) and hospitalizations averted. The delivery schedules consist of from 1 to 8 batches of vaccine delivered in intervals of 1 week, with the first batch being 45M doses and subsequent batches being 20M doses. Each graph shows the optimal allocation given the number of batches of vaccine available.
Figure S12: Optimal vaccine allocation for different numbers of vaccine batches for $R_0 = 1.7$ and deaths averted. The delivery schedules consist of from 1 to 8 batches of vaccine delivered in intervals of 1 week, with the first batch being 45M doses and subsequent batches being 20M doses. Each graph shows the optimal allocation given the number of batches of vaccine available.
Figure S13: Optimal vaccine allocation for different numbers of vaccine batches for $R_0 = 1.7$ and hospitalizations averted. The delivery schedules consist of from 1 to 8 batches of vaccine delivered in intervals of 1 week, with the first batch being 45M doses and subsequent batches being 20M doses. Each graph shows the optimal allocation given the number of batches of vaccine available.
Figure S14: Optimal vaccine allocation for different numbers of vaccine batches for $R_0 = 2.0$ and deaths averted. The delivery schedules consist of from 1 to 8 batches of vaccine delivered in intervals of 1 week, with the first batch being 45M doses and subsequent batches being 20M doses. Each graph shows the optimal allocation given the number of batches of vaccine available.
Figure S15: Optimal vaccine allocation for different numbers of vaccine batches for $R_0 = 2.0$ and hospitalizations averted. The delivery schedules consist of from 1 to 8 batches of vaccine delivered in intervals of 1 week, with the first batch being 45M doses and subsequent batches being 20M doses. Each graph shows the optimal allocation given the number of batches of vaccine available.
References

