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Abstract

Contact network epidemiology is an approach to modeling the spread of infectious diseases that explicitly considers patterns of
person-to-person contacts within a community. Contacts can be asymmetric, with a person more likely to infect one of their contacts
than to become infected by that contact. This is true for some sexually transmitted diseases that are more easily caught by women than
men during heterosexual encounters; and for severe infectious diseases that cause an average person to seek medical attention and
thereby potentially infect health care workers (HCWs) who would not, in turn, have an opportunity to infect that average person. Here
we use methods from percolation theory to develop a mathematical framework for predicting disease transmission through semi-directed
contact networks in which some contacts are undirected—the probability of transmission is symmetric between individuals—and others
are directed—transmission is possible only in one direction. We find that the probability of an epidemic and the expected fraction of a
population infected during an epidemic can be different in semi-directed networks, in contrast to the routine assumption that these two
quantities are equal. We furthermore demonstrate that these methods more accurately predict the vulnerability of HCWs and the efficacy
of various hospital-based containment strategies during outbreaks of severe respiratory diseases.
r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many infectious diseases spread through direct person-to-person contact. Respiratory-borne diseases like influenza,
tuberculosis, meningococcal meningitis and SARS, spread through the exchange of respiratory droplets between people in
close physical proximity to each other. Sexually transmitted diseases like HIV, genital herpes, and syphilis spread through
intimate sexual contact. Explicit models of the patterns of contact among individuals in a community, contact network
models, provide a powerful approach for predicting and controlling the spread of such infectious diseases (Longini, 1988;
Sattenspiel and Simon, 1988; Morris, 1995; Kretzschmar et al., 1996; Ball et al., 1997; Morris and Kretzschmar, 1997;
Ferguson and Garnett, 2000; Hethcote, 2000; Lloyd and May, 2001; Newman, 2002; Sander et al., 2002; Keeling et al.,
2003; Meyers et al., 2003; Meyers et al., 2005). This approach has provided insight into the impact of simultaneous sexual
partners on HIV transmission (Morris and Kretzschmar, 1997) and effective public health strategies for controlling STDs
(Kretzschmar et al., 1996) and mycoplasma pneumonia (Meyers et al., 2003), among others.
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The simplest form of contact network model represents individuals as vertices and contacts as edges connecting
appropriate vertices. The undirected network depicted in Fig. 1A assumes that if vertices i and j share an edge, then the
probability that i infects j given that i is infective and j is susceptible is equal to the probability that j infects i given that i is
susceptible and j is infective. There are many diseases for which this assumption does not hold. For example, there may be
as much as a two-fold difference between male-to-female and female-to-male HIV transmission efficiency with females
much more vulnerable than males (Nicolosi et al., 1994); health care workers (HCWs) and patients may have asymmetric
transmission probabilities because, perhaps, patients are more likely to have immune deficiencies or caregivers are more
likely to be exposed to bodily fluids during medical procedures; mothers can transmit blood-borne diseases to offspring in
utero whereas there may be no opportunity for transmission in the reverse direction. We can model such asymmetries using
bipartite contact networks in which there are two classes of nodes that transmit disease to each other at different rates
(Fig. 1B). Mathematical methods for predicting the spread of disease on bipartite contact networks have been described in
Ball et al. (1997) and Meyers et al. (2003).

Asymmetry in disease transmission may also arise if the disease influences individual behavior. During an outbreak,
infected individuals may modify their typical patterns of interaction. In particular, they may visit a hospital or clinic at
which they come into contact with HCWs and other patients. Individuals that are not infected, however, will likely have no
contact with hospital personnel. Since we cannot know a priori which individuals will become infected, we cannot easily
capture such conditional contacts in a simple network model.

Directed edges, in which transmission occurs only in one direction, provide a way around this difficulty (Fig. 1C). A
directed edge leading from a member of the general population (P) to a HCW (H) reflects the following relationship: If P is
infected, he or she will expose H with some probability; but if H is infected, he or she will have no contact with P. Thus,
contact network models containing both directed and undirected edges (henceforth semi-directed networks) can be used to
model community-based disease transmission in which there is a substantial one-way flow of disease from the general
public into health care facilities. For respiratory diseases, predicting and controlling this flow is vital. Hospitals are
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Fig. 1. Contact networks: (A) undirected network; (B) bipartite network; and (C) semi-directed network.
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particularly vulnerable because of the frequent hospitalization of infected individuals with serious illness, the high number
of patients with pre-existing high acuity co-morbidity including those who are immunocompromised, and the close and
multiple physical contacts between infected individuals, caregivers, visitors and other patients. For these reasons, a
significant proportion of SARS transmission events occurred within hospitals (Avendano et al.; Varia et al., 2003).
Understanding and containing hospital-based transmission is critical not only for the protection of such individuals but
also for the prevention of community-wide spread outside the hospital.

Here we develop mathematical tools for predicting the spread of disease and impact of intervention on semi-directed
networks and then apply these tools to assess the impact of hospital-based transmission and intervention on the fate of an
outbreak. For part one, we use generating function methods to derive the probability and expected demographic
distribution of outbreaks, with and without public health intervention. This is an extension of both epidemiological theory
previously developed for undirected contact networks (Newman, 2002) and a general theory of random graphs containing
only directed edges (Newman et al., 2001). Many of the calculations are fundamentally equivalent to branching process
calculations, and it seems likely that some of the results presented here could be derived using branching process methods
as well (Jagers, 1975; Andersson, 1998). We show that in semi-directed networks the probability of an epidemic and the
expected fraction of the population infected during such an epidemic may be different. In contrast, many conventional
models assume the equality of these two epidemiological values, and then use disease incidence data to indirectly estimate
the probability of an epidemic (Anderson and May, 1991). Our analysis therefore suggests that this assumption may be
invalid for populations with asymmetric contact patterns. For part two, we make epidemiological predictions using a
simple model of urban contact patterns based on demographic data from the city of Vancouver, British Columbia. By
incorporating conditional contacts within health care settings, we more accurately assess the role of HCWs in disease
transmission and containment.

2. Derivations of epidemic quantities

2.1. Modeling the population and the disease

In a semi-directed network, each vertex (individual) has an undirected degree representing the number of undirected
edges joining the vertex to other vertices as well as both an in-degree and an out-degree representing the number of directed
edges incoming from other individuals and outgoing to other individuals, respectively. The undirected-degree and in-degree
indicate how many contacts can spread disease to the individual, and thus is related to the likelihood that an individual will
become infected during an epidemic; and the undirected-degree and out-degree indicate how many contacts may be
infected by that individual should he or she become infected, and thus is related to the likelihood that an individual will
contribute to an epidemic. The semi-directed degree distribution tells us the probability that a randomly chosen individual
will have a particular combination of an undirected-degree, in-degree, and out-degree.

One can predict analytically the spread of an infectious disease through a population given two basic inputs: the semi-
directed degree distribution and the probabilities of disease transmission along the edges of the network. Some pathogens,
like smallpox, are highly contagious and will thus have a high probability of moving along an edge in the network (Bozzette
et al., 2003). Other pathogens, like SARS, are less likely to be transmitted (Xu et al., 2004). For a given disease, the
probability of transmission along a particular edge will also depend on the health of the individuals lying at either end of
the edge and the nature of their interaction with each other.

In (Newman, 2002), Newman showed that, when the rate of transmission of a disease between pairs of individuals is
assumed to be an i.i.d. random variable, the spread of the disease depends only on the mean total probability of
transmission between individuals, or transmissibility, and not on the individual probabilities for specific pairs. We make use
of this result here also, and henceforth consider only Td and Tu, the average probability that an infectious individual will
transmit the disease to a susceptible individual with whom they have a directed or undirected contact, respectively. Note
that average transmissibilities Td and Tu vary from disease to disease but are always in the range 0pTd , Tup1. We will
also consider the simpler case where average transmissibility is the same for directed and undirected edges, that is,
Td ¼ Tu ¼ T .

Suppose a disease begins to spread through a population from a particular vertex. In our model, transmission will occur
along each of the directed and undirected edges pointing out of that vertex with probabilities Td and Tu, respectively. If we
keep track of every edge in the network along which disease is transmitted and call these occupied edges, then we can
reconstruct the final size and distribution of the outbreak. In particular, the outbreak will include exactly the set of all
vertices that are connected to the initial vertex along a continuous path of occupied edges. Because of its resemblance to
bond percolation, this model can be analysed using mathematical methods from percolation theory (Newman, 2002;
Sander et al., 2002; Meyers et al., 2003). In what follows, we derive exact solutions for the expected size of an outbreak, the
probability of a large-scale epidemic, the size of such an epidemic, the risk to individuals as a function of their degree, and
the impact of various forms of intervention.
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2.2. Probability generating functions for semi-directed networks

In the theory of random directed graphs developed by Newman et al. (2001), one considers the joint probability
distribution pjk that a randomly chosen vertex has in-degree j and out-degree k. Then one defines a generating function
Fðx; yÞ whose coefficients are the probabilities in this distribution:

Fðx; yÞ ¼
X

jk

pjkx
jyk (1)

from which many properties of the network can then be derived. Adopting a similar approach for our semi-directed
networks, we consider the joint probability distribution pjkm that a vertex has j incoming edges, k outgoing edges, and m
undirected edges. Then we define a generating function G that generates this distribution thus:

Gðx; y; uÞ ¼
X

jkm

pjkmx
jykum. (2)

This function has the properties that

Gð1; 1; 1Þ ¼ 1 (3)

for any properly normalized pjkm, and

zd ¼ Gð1;0;0Þð1; 1; 1Þ ¼ Gð0;1;0Þð1; 1; 1Þ; zu ¼ Gð0;0;1Þð1; 1; 1Þ, (4)

where zd is the average in-degree and out-degree of a vertex for directed edges (the two must necessarily be the same, since
every outgoing directed edge must also be an incoming edge at some vertex) and zu is the average degree of undirected
edges. The notation Gðr;s;vÞ indicates differentiation of G with respect to its three arguments r, s, and v times, respectively, so
that, for example

Gð0;0;1Þ ¼
qG
qu

; Gð1;1;0Þ ¼
q2G
qxqy

. (5)

The excess degrees are the numbers of each type of edge emerging from a vertex arrived at by following an edge, not
including the incoming edge. Henceforth, subscript u refers to following an undirected edge in either direction and
subscripts d and r refer to following a directed edge in the designated and reverse direction, respectively.

The excess degrees are biased by the fact that edges are more likely to arrive at vertices with higher in- and undirected-
degree, in direct proportion to that degree. Thus the distribution of edges of the three types, incoming, outgoing, and
undirected, at a vertex reached by following a directed edge in the designated direction is jpjkm=Sjpjkm, and hence the excess
degree distribution is generated by

Hdðx; y; uÞ ¼
P

jkm jpjkmx
j$1ykum

P
jkm jpjkm

¼
1

zd
Gð1;0;0Þðx; y; uÞ. (6)

The generating function for the excess degree distribution for a directed edge in the reverse direction is

Hrðx; y; uÞ ¼
P

jkmkpjkmx
jyk$1um

P
jkmkpjkm

¼
1

zd
Gð0;1;0Þðx; y; uÞ. (7)

Similarly, the distribution at a vertex reached by following an undirected edge is generated by

Huðx; y; uÞ ¼
P

jkmmpjkmx
jykum$1

P
jkmmpjkm

¼
1

zu
Gð0;0;1Þðx; y; uÞ. (8)

We next modify these generating functions to consider the distribution of occupied edges, that is, edges along which
disease has been transmitted. In Appendix A.1, we derive the following probability generating function for the number of
occupied edges of a vertex:

Gðx; y; u;Td ;TuÞ ¼ Gð1þ ðx$ 1ÞTd ; 1þ ðy$ 1ÞTd ; 1þ ðu$ 1ÞTuÞ. (9)

Similarly, the probability generating functions for the excess number of occupied edges, that is, the number of edges
(excluding the arrival edge) emanating from a vertex arrived at by following a randomly chosen edge, are given by

Hdðx; y; u;Td ;TuÞ ¼ Hdð1þ ðx$ 1ÞTd ; 1þ ðy$ 1ÞTd ; 1þ ðu$ 1ÞTuÞ, (10)

Hrðx; y; u;Td ;TuÞ ¼ Hrð1þ ðx$ 1ÞTd ; 1þ ðy$ 1ÞTd ; 1þ ðu$ 1ÞTuÞ, (11)
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Huðx; y; u;Td ;TuÞ ¼ Huð1þ ðx$ 1ÞTd ; 1þ ðy$ 1ÞTd ; 1þ ðu$ 1ÞTuÞ. (12)

2.3. Predicting the fate of a small outbreak

In general, percolation theory describes the behavior of connected groups of vertices in a random graph. We use the
methods of percolation theory to predict the size of the infected cluster, that is, the number of vertices reached via disease
transmission along the edges in the network. For a fixed network of contacts, there typically exists a threshold transmission
rate below which only small, finite-sized outbreaks occur and above which large-scale epidemics (comparable to the size of
the entire network) are possible.

We begin by deriving the value of the epidemic threshold and the expected size of small outbreaks below the threshold.
These calculations assume that mildly contagious diseases spread in a tree-like fashion, causing only short transmission
chains that do not loop back on themselves. We relax this assumption later, when we turn to diseases that lie above the
epidemic threshold.

Let s denote the number of vertices contained in a small outbreak that begins at a randomly selected vertex. We now
introduce symbols g and h which should not be confused with G and H (above), respectively. Let g(w; Td, Tu) be the
generating function for the distribution of outbreak sizes:

gðw;Td ;TuÞ ¼
X

s

PsðTd ;TuÞws, (13)

where Ps(Td, Tu) is probability that a single initial case sparks an outbreak of size s at the specified average
transmissibilities. To solve for the average value of s, we first evaluate the size of an outbreak t that begins with a
transmission event along a randomly chosen edge. If that edge is directed, then the set of vertices reached by occupied edges
can be represented in graphical form as in the top row of Fig. 2. There are many possible outcomes: the disease does not
spread along the edge, it spreads along the edge but no further, it spreads along the edge and then subsequently along
another directed edge, it spreads along the edge and then subsequently along an undirected edge, it spreads along the
original edge and then subsequently along two different directed edges emanating from the same vertex, etc. We will
construct recursive equations to consider all possibilities.

We define a new generating function hd(w; Td, Tu), which generates the probability distribution of t thus:

hdðw;Td ;TuÞ ¼
X

t

QtðTd ;TuÞwt, (14)

where Qt(Td, Tu) is the probability that an outbreak beginning from a randomly chosen edge in the network will be size t.
Fig. 2 illustrates that hd(w;Td, Tu) satisfies a recursive condition of the form

hdðw;Td ;TuÞ ¼ wHd ð1; hdðw;Td ;TuÞ; huðw;Td ;TuÞ;Td ;TuÞ, (15)

where hu(w) is the corresponding generating function for undirected edges, which itself satisfies a condition of the form

huðw;Td ;TuÞ ¼ wHuð1; hdðw;Td ;TuÞ; huðw;Td ;TuÞ;Td ;TuÞ (16)

as depicted in the bottom row of Fig. 2. The self-consistent solutions of Eqs. (15) and (16) give the distribution of t, given
definitions (10) and (12) ofHd andHu. It follows that s, the size of an outbreak starting from a randomly chosen vertex, is
distributed according to

gðw;Td ;TuÞ ¼ wGð1; hdðw;Td ;TuÞ; huðw;Td ;TuÞ;Td ;TuÞ. (17)
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Fig. 2. Future transmission diagram. When disease is transmitted along a directed (top) or undirected (bottom) edge, we can consider all possible patterns
of future transmission. Starting from a directed edge, for example, the disease may not spread along the edge, it may spread along the edge but no further,
it may spread along the original edge and then subsequently along another directed edge, it may spread along the original edge and then subsequently
along an undirected edge, it may spread along the original edge and then subsequently along two different directed edges emanating from the same vertex,
etc. We construct recursive equations to consider all possible outcomes beginning from a single directed or undirected edge.
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Consider now the average size of an outbreak starting from a random vertex /sS, which is given by

hsi ¼
X

s

sPsðTd ;TuÞ ¼ g0ð1;Td ;TuÞ, (18)

where the prime denotes differentiation with respect to the first variable. In Appendix A.2, we derive the following
expression for /sS in terms of the disease transmissibility and the pgf’s for the degree distribution and excess degree
distribution:

hsi ¼ 1þ
TdG

ð0;1;0Þð1$ TuðHð0;0;1Þ
u $Hð0;0;1Þ

d ÞÞ þ TuG
ð0;0;1Þð1$ Td ðH

ð0;1;0Þ
d $Hð0;1;0Þ

u ÞÞ

ð1$ TdH
ð0;1;0Þ
d Þð1$ TuH

ð0;0;1Þ
u Þ $ TdTuH

ð0;0;1Þ
d Hð0;1;0Þ

u

, (19)

where the arguments of all generating functions are set to (1,1;1). Thus, we can predict the expected size of an outbreak
given the semi-directed degree distribution and transmissibilities Td and Tu of the disease. If average transmissibilities along
directed and undirected edges are equal (Td ¼ Tu ¼ T), then the expected size of the outbreak is given by

hsi ¼ 1þ
TGð0;1;0Þð1$ TðHð0;0;1Þ

u $Hð0;0;1Þ
d ÞÞ þ TGð0;0;1Þð1$ TðHð0;1;0Þ

d $Hð0;1;0Þ
u ÞÞ

ð1$ THð0;1;0Þ
d Þð1$ THð0;0;1Þ

u Þ $ T2Hð0;0;1Þ
d Hð0;1;0Þ

u

. (20)

The expression for /sS diverges when the denominator in Eq. (19) is zero, and only predicts the expected size of the
outbreak when the denominator is greater than zero. Thus the equation

ð1$ TdH
ð0;1;0Þ
d Þð1$ TuH

ð0;0;1Þ
u Þ $ TdTuH

ð0;0;1Þ
d Hð0;1;0Þ

u ¼ 0 (21)

marks the phase transition at which the size of an outbreak first becomes extensive. Solving Eq. (21) for a given 0pTdp1,
we derive the critical transmissibility Tcu at which a large-scale epidemic becomes possible:

Tcu ¼
1$ TdH

ð0;1;0Þ
d

Hð0;0;1Þ
u $ TdðH

ð0;1;0Þ
d Hð0;0;1Þ

u $Hð0;0;1Þ
d Hð0;1;0Þ

u Þ
. (22)

Similarly, for some 0pTup1, the critical value is defined by

Tcd ¼
1$ TuH

ð0;0;1Þ
u

Hð0;1;0Þ
d $ TuðH

ð0;1;0Þ
d Hð0;0;1Þ

u $Hð0;0;1Þ
d Hð0;1;0Þ

u Þ
. (23)

Thus, there is a line defined by (22) and (23) of transmissibility values, below which we expect only small outbreaks of
expected size /sS and above which an epidemic is possible. If average transmissibility is the same for directed and
undirected edges, then there is a single critical transmissibility:

Tc ¼
ðHð0;1;0Þ

d þHð0;0;1Þ
u Þ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHð0;1;0Þ

d þHð0;0;1Þ
u Þ2 $ 4ðHð0;1;0Þ

d Hð0;0;1Þ
u $Hð0;0;1Þ

d Hð0;1;0Þ
u Þ

q

2ðHð0;1;0Þ
d Hð0;0;1Þ

u $Hð0;0;1Þ
d Hð0;1;0Þ

u Þ
, (24)

whichever value is positive. We call {Tcd, Tcu} (or Tc) the epidemic threshold. By differentiating Eqs. (6) and (8) and
substituting the results into Eqs. (22) or (24) one can express the epidemic threshold in terms of the underlying structure of
the contact network.

2.4. A simple example

We use these formulas to predict the spread of disease on a simple network in which all three degree distributions are
Poisson with mean in-degree and out-degree of zd and mean undirected degree of zu. The pgf for the degree distribution is
given by

Gðx; y; uÞ ¼
X

jkm

zjde
$zd

j!

 !
zkde

$zd

k!

" #
zmu e

$zu

m!

" #
xjykum ¼ ezd ðxþy$2Þþzuðu$1Þ. (25)

The excess degree pgf’s for this network are identical to the original degree distribution, that is,
Hdðx; y; uÞ ¼ Hrðx; y; uÞ ¼ Huðx; y; uÞ ¼ Gðx; y; uÞ. Therefore the expected size of an epidemic is defined by

hsi ¼
1

1$ Tdzd $ Tuzu
. (26)

ARTICLE IN PRESS
L.A. Meyers et al. / Journal of Theoretical Biology 240 (2006) 400–418 405



We plot /sS for a Poisson semi-directed network in Fig. 3A. By setting the denominator equal to zero, we find an
epidemic threshold line of

Tcdzd þ Tcuzu ¼ 1 (27)

as depicted in Fig. 3B.

2.5. Probability and size of a large-scale epidemic

When the transmissibility of a disease is larger than the epidemic threshold, then Eq. (19) no longer indicates the size of
the infected subpopulation. This is because transmission is so rampant that the chains of transmission are likely to loop
back upon themselves, thus violating the assumption underlying the calculations depicted in Fig. 2.

When we are above the epidemic threshold, in the region in which epidemics can occur, we would like to know two
quantities: the probability that a large-scale epidemic occurs and the fraction of individuals that are infected in that case.
These quantities are equivalent to Sin and Sout—the fraction of vertices from which an extensive numbers of others can be
reached by following occupied edges and the fraction of vertices contained in such an extensive interconnected group,
respectively. In the language of percolation, these are the giant strongly connected component (GSCC) plus the giant in-
component (GIN) and the GSCC plus the giant out-component (GOUT) defined by occupied edges. Fig. 4 illustrates the
component structure of semi-directed networks. The relative size of the region shaded in vertical lines indicates the
probability that any single infection will lead to a wide-spread epidemic, and the relative size of the region shaded in
horizontal lines indicates the expected fraction of the population that will become infected during such an epidemic.

To calculate the typical size of a large-scale epidemic, we make use of the following argument. All vertices in the GSCC
and GOUT are reachable from an extensive number of others (those in the GSCC and GIN), and all vertices that are not in
these components are not reachable from an extensive number of others. We can calculate from how many vertices a
randomly chosen vertex is reachable by following occupied edges backwards from that vertex and finding the resulting
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Fig. 3. Simple semi-directed network. (A) The expected size of a small outbreak as a function of Td and Tu for a Poisson semi-directed network with
Poisson parameters zd ¼ 2 and zu ¼ 3. (B) The epidemic threshold for a Poisson semi-directed network with Poisson parameters zd and zu.
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component. This is precisely the reverse of the calculation we performed in the previous section, and allows us to derive the
fraction of the graph contained in the largest occupied component, that is, the size of a large epidemic.

In Appendix A.3, we derive the following expression for the fraction of the population infected during a large-scale
epidemic:

Ssize ¼ 1$
X

jkm

pjkmð1þ ða$ 1ÞTd Þjð1þ ðb$ 1ÞTuÞm, (28)

where a and b are solutions of

a ¼
P

jkmkpjkmð1þ ða$ 1ÞTdÞjð1þ ðb$ 1ÞTuÞmP
jkmkpjkm

, (29)

b ¼
P

jkmmpjkmð1þ ða$ 1ÞTdÞjð1þ ðb$ 1ÞTuÞm$1

P
jkmmpjkm

. (30)

In most cases (28) is not solvable in closed form, but once we have the degree distribution (the pjkm’s) and
transmissibilities Td and Tu it can be solved numerically by simple iteration, starting from appropriate initial values.

As discussed in Appendix A.3, one can similarly calculate the probability that an infection at a randomly chosen
vertex will lead to a large-scale epidemic (Sprob). This quantity is equal to the size of the GSCC plus the GIN and is
given by

Sprob ¼ 1$
X

jkm

pjkmð1þ ða$ 1ÞTdÞkð1þ ðb$ 1ÞTuÞm, (31)

where a and b are solutions of

a ¼
P

jkmjpjkmð1þ ða$ 1ÞTdÞkð1þ ðb$ 1ÞTuÞmP
jkmjpjkm

, (32)

b ¼
P

jkmmpjkmð1þ ða$ 1ÞTdÞkð1þ ðb$ 1ÞTuÞm$1

P
jkmmpjkm

. (33)

Note that a and b in Eqs. (31)–(33) are the probabilities that infection at a vertex at the end of a randomly selected
directed and undirected edge (respectively) will not spark a large-scale epidemic. If average transmissibility is the same for
directed and undirected edges, then simply substitute the single transmissibility value T for Td and Tu in Eqs. (28), (29),
(30), (31), (32), and (33).

These basic epidemiological quantities—the epidemic threshold and the fate of outbreaks on either side of the
threshold—have been derived previously for completely directed (Newman, 2002) and completely undirected networks
(Schwartz et al., 2002). We provide these formulae in Appendix A.4.

2.6. A simple example

Compartmental epidemiological models assume that the probability and expected size of an epidemic are always equal
(Anderson and May, 1991; Hethcote, 2000). While this is true for undirected networks, these two values can be different in
directed and semi-directed networks. We demonstrate this using three different networks: (N1) a completely undirected
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Fig. 4. Structure of a semi-directed network. The largest set of vertices for which you can move between any two by following edges in the correct
direction is the giant strongly connected component (GSCC). The set of vertices not contained in the GSCC that can be reached by following edges in the
correct direction from the GSCC is called the giant out-component (GOUT). The set of vertices not contained in the GSCC from which the GSCC can be
reached by following edges in the correct direction is called the giant in-component (GIN). Vertices that are not in the GSCC, GIN, or GOUT but can
either be reached from the GIN or can reach the GOUT are in the tendrils of the network.

L.A. Meyers et al. / Journal of Theoretical Biology 240 (2006) 400–418 407



Poisson network with mean degree z (where z is an even integer) that has generating function

GN1ðxÞ ¼
X

j

zje$z

j!

" #
xj ¼ ezðx$1Þ, (34)

(N2) a semi-directed network with a Poisson distribution of undirected edges of mean degree z=2, a Poisson in-degree
distribution of mean z=2, and a regular out-degree distribution in which every vertex has an out-degree of exactly z=2 that
has generating function

GN2ðx; y; uÞ ¼
X

jm

ðz=2Þje$z=2

j!

" #
ðz=2Þme$z=2

m!

" #
xjyz=2um

¼ eðz=2Þðxþu$2Þyz=2 ð35Þ

and (N3) a fully directed network with a Poisson in-degree distribution of mean z, and a regular out-degree distribution in
which every vertex has an out-degree of exactly z that has generating function

GN3ðx; yÞ ¼
X

j

zje$z

j!

" #
xjyz ¼ ezðx$1Þyz. (36)

These three networks have the same total number of incoming and outgoing contacts since every undirected edge
includes two incoming and two outgoing contacts while every directed edge includes a single incoming contact and a single
outgoing contact. We use different in- and out-degree distributions to demonstrate the inequality of Sprob and Ssize, because
semi-directed and directed networks with identical in- and out-degree distributions have an equal-sized GIN and GOUT
and therefore equal values of Sprob and Ssize.

All three networks share the same epidemic threshold of Tc ¼ 1=z. Above the threshold, the probabilities and expected
sizes of epidemics in these networks are predicted by the following equations:

SN1 ¼ SN2size ¼ SN3size ¼ 1$ ezðu$1ÞT where u ¼ ezðu$1ÞT , (37)

SN2prob ¼ 1$ ð1þ ða$ 1ÞTÞz=2ez=2ða$1ÞT where a ¼ ð1þ ða$ 1ÞTÞz=2ez=2ða$1ÞT , (38)

SN3prob
¼ 1$ ð1þ ðw$ 1ÞTÞz; where w ¼ ð1þ ðw$ 1ÞTÞz. (39)

Fig. 5 illustrates these predictions for two sets of networks (z ¼ 4 and 8). For each set of networks, all three share the
same expected size of an epidemic. The probability of an epidemic is identical to the expected size of an epidemic in the
undirected network, much larger than the expected size in the completely directed network, and at an intermediate value in
the semi-directed network. Our particular choice of in- and out-degree distributions yields networks with GIN larger than
GOUT. If we reverse these two distributions, then GOUT would be larger than GIN, and therefore, the expected size of the
epidemic would be larger than the probability of an epidemic.

2.7. Initial conditions

We can refine our predictions if we know something about the behavior of patient zero—the first case of disease in a
population. Suppose, for instance, that we know patient zero has out-degree k and undirected-degree m. The probability
that he or she will spark a large-scale epidemic is just the probability that transmission of the disease along at least one of
the edges emanating from patient zero will lead to an epidemic. For any one of its k out edges and m undirected edges, the
probability that the disease is not transmitted along the edge is 1$ Td and 1$ Tu, respectively. As defined in Eqs. (32) and
(33), a and b are the probabilities that an outbreak traveling along a given directed or undirected edge will spread to only a
local component of the population. Thus the probability that disease is transmitted along one of the k þm edges but does
not proceed from there into a full-blown epidemic is Tda for a directed edge or Tub for an undirected edge, and the overall
probability that patient zero will spark an epidemic is given by

ekm ¼ 1$ ð1$ Td þ TdaÞkð1$ Tu þ TubÞm. (40)

The probability that an outbreak of size N will lead to a large-scale epidemic is 1$
QN

i¼1ð1$ ekimi
Þ, where ki is the out-

degree and mi is the undirected-degree of individual i. This is just one minus the probability that none of the N infected
individuals sparks an epidemic. If we know the number of current cases but not their contact patterns, then our best
estimate for the probability of an epidemic is calculated similarly, with each of the ð1$ ekimi

Þ’s replaced with the probability
that a typical infected individual does not spark an epidemic. Such an individual was infected either along a directed edge
with a priori probability zd=ðzd þ zu) or along an undirected edge with a priori probability zu=ðzd þ zu). The number of
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edges through which the individual can start an epidemic is given by the excess degree generating functions Hd and Hu,
and the probability that one of those edges will not give rise to an epidemic is 1$ Td þ Tda for a directed edge and
1$ Tu þ Tub for an undirected edge. Thus the probability that a typical infected individual does not start an epidemic is
given by

zdHdð1; ð1$ Td þ TdaÞ; ð1$ Tu þ TubÞÞ þ zuHuð1; ð1$ Td þ TdaÞ; ð1$ Tu þ TubÞÞ
zd þ zu

, (41)

and the probability that an outbreak of size N sparks an epidemic is given by

1$
zdHdð1; ð1$ Td þ TdaÞ; ð1$ Tu þ TubÞÞ þ zuHuð1; ð1$ Td þ TdaÞ; ð1$ Tu þ TubÞÞ

zd þ zu

" #N

(42)

where a and b are as described by Eqs. (32) and (33). Simplifying slightly, we can rewrite Eq. (42) as

1$
P

jkm
jpjkmð1$TdþTdaÞ

kð1$TuþTubÞmþ
P

jkm
mpjkmð1$TdþTdaÞ

kð1$TuþTubÞm$1

P
jkm

ðjþmÞpjkm

 !N

. (43)

Appendix A.4 provides the analogous equations for completely directed and completely undirected networks.

2.8. Individual risk and intervention

The likelihood that an individual of in-degree j and undirected-degree m will be infected during an epidemic is equal to
one minus the probability that none of his or her j þm contacts will transmit the disease to him or her. The probability that
a contact does not transmit the disease is equal to the probability that the contact was infected, but did not transmit the
disease, 1$ Td for a contact along a directed edge and 1$ Tu for a contact along an undirected edge, plus the probability
that the contact was not infected in the first place, Tda for a contact along a directed edge or Tub for a contact along an
undirected edge, where a and b are as defined by Eqs. (29) and (30). Thus, a randomly chosen vertex of in-degree j and
undirected-degree m will become infected with probability

njm ¼ 1$ ð1$ Td þ TdaÞjð1$ Tu þ TubÞm. (44)

ARTICLE IN PRESS

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T

S

z = 8
z = 4

SN1 = SN2size
 = SN3size

SN3probSN2prob
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When a single individual of degrees j, k, m lowers the likelihood of transmission to or from himself or herself (by wearing
a face mask in the case of an air-borne disease, for example) from Td and Tu to fdTd and fuTu (0pfd , fup1), then the
expressions for the likelihood of causing an epidemic and becoming infected during an epidemic become

efkm ¼ 1$ ð1$ fdTd þ fdTdaÞkð1$ fuTu þ fuTubÞm, (45)

nfjm ¼ 1$ ð1$ fdTd þ fdTdaÞjð1$ fuTu þ fuTubÞm, (46)

where a, b, a, and b are as in Eqs. (29), (30), (32), and (33).
Note that these two quantities are different for some semi-directed networks, whereas they are always identical for

undirected networks (Appendix A.4).

3. A case study in hospital-based transmission of respiratory disease

3.1. The contact networks

We have previously developed a method to simulate urban contact networks based on demographic data for the city of
Vancouver, British Columbia (Statistics Canada, 2001; BC Stats, 2002; Centre for Health Sevices and Policy Research,
2002; Vancouver School Board, 2002; BC Stats, 2003; Meyers et al., 2005). Using the degree distribution from a contact
network model containing 10,000 households ('25,000 individuals), we predict the fate of an outbreak for a spectrum of
respiratory-borne diseases for which hospitalization is likely. As reported in (Meyers et al., 2005), the undirected-degree
distribution is roughly exponential. The in-degree and out-degree distributions are solely determined by the flow of infected
people into health care facilities. In this model, we make the simple assumption that each non-HCW member of the
population has three directed edges pointing to randomly chosen HCWs in his or her local hospital. Thus a typical
individual has out-degree of three and in-degree of zero; and a typical HCW has out-degree of zero and in-degree ranging
from 409 to 530. Because the mode of transmission (respiratory-borne) is the same for directed and undirected edges in
this network, we assume that there is a single average transmissibility across the entire network, that is, Td ¼ Tu ¼ T .
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Fig. 6. Epidemiological predictions on undirected and semi-directed contact networks. This graph shows the expected size of small outbreaks below the
epidemic threshold (left), and the probability and expected size of a large-scale epidemic above the epidemic threshold (rate) for diseases with various
transmission rates (T) spreading through an urban contact network. The predictions for the semi-directed and undirected networks are shown in black and
gray, respectively.
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(This assumption would not be appropriate for a disease in which directed and undirected edges represented different
modes of transmission.)

Using the formulae derived above, we calculated the epidemic threshold for this particular contact network, the expected
size of an outbreak for diseases below the epidemic threshold, and the probability and expected size of an epidemic for
diseases above the epidemic threshold (Fig. 6). The inclusion of one-directional disease transmission from the general
public into health care settings significantly increases the vulnerability of a population. The epidemic threshold is lowered
from Tc ¼ 0:0322 to 0.0278. The lower the transmissibility of the disease, the more pronounced the impact of hospital-
based transmission. For diseases close to the epidemic threshold, the probability of an epidemic in the more realistic semi-
directed network is more than double that of the simpler undirected network. Note that if an epidemic does ensue, the
expected size of an epidemic is almost identical for the two contact networks.

We can also predict the role of HCWs in the spread of disease and the impact of intervention. There are two basic
categories of intervention (Meyers et al., 2005; Pourbohloul et al., 2005). Contact reducing interventions modify the basic
patterns of interaction. Within hospitals, for example, suspected cases are isolated in negative pressure rooms and the
number of caregivers attending to such patients is limited. For the population at large, public health officials may
implement quarantines and travel restrictions. Such interventions can be modeled by removing appropriate edges from the
contact network. Vaccination prior to an outbreak, which entails removing a vertex and all of its edges from the contact
network, is the extreme form of such interventions. Transmission reducing interventions like the use of facemasks, surgical
gowns, and hand washing lower the probability of infecting existing contacts.

During an outbreak of a new infectious disease, the patient burden to hospitals may be so severe that health care officials
cannot reasonably lower the number of contacts between HCWs and patients. Instead, as with SARS, they often
implement strict hygienic precautions that lower transmissibility (Le et al., 2003; McDonald et al., 2004). Fig. 7 illustrates
the impact of various levels of transmission reducing interventions within hospitals. Here we assume that the average
transmission rate along directed edges only (Td) is reduced. This models hygienic precautions taken by HCWs while
treating suspected cases of the disease. If a HCW becomes infected, the threat remains high because of a large number of
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uncontrolled undirected contacts with other HCWs and patients who are hospitalized for other conditions. These measures
would therefore be more effective if they were extended to all HCW–patient interactions. In sum, the use of transmission
reducing interventions by HCWs treating suspected cases will protect the population only when they block transmission to
hospital personnel entirely.

In the absence of organized intervention, individuals may choose to take precautions. Before much was known about
SARS, HCWs made individual choices about prevention, and later in the outbreak, some members of the general public
voluntarily wore facemasks (Tang and Wong, 2004). In Fig. 8, we show the personal impact of such precautions. On
average, taking drastic transmission reducing measures can significantly lower the probability of becoming infected during
an epidemic. Yet HCWs are not nearly as protected by such individual measures as are members of the general public. This
stems from the sheer numbers of potential contacts between HCWs and infected patients.

4. Discussion

We have derived a number of important epidemiological quantities for semi-directed contact networks in which the
average transmissibility can be different for directed and undirected contacts. When there are, in fact, two different
transmission rates, the epidemic threshold becomes a line dividing the space of transmission rates into a region in which
there are only small outbreaks that die out before reaching a sizable fraction of the population and another region in which
an epidemic is possible (Fig. 3).

Above the epidemic threshold, semi-directed networks are more complicated than undirected networks. When the in-
degree and out-degree distributions differ, then so do the probability of an epidemic and the expected incidence should one
occur. We have illustrated the differences between undirected, semi-directed, and directed networks using three simple
networks that share the same total number of contacts. The gap between the probability and expected size of an epidemic is
non-existent for the undirected networks, quite large for the directed network, and somewhere in between for the semi-
directed network (Fig. 5). In addition to these fundamental epidemiological quantities, we have also calculated the
probability of an epidemic as a function of the degree of the first case and the impact of control measures on the complying
individual and the population as a whole.

We have applied these methods to study the pivotal role of hospitals in the spread of air-borne diseases through
communities. Worldwide outbreaks of SARS between November 2002 and May 2003 increased public awareness about the
devastating human, economic and psychological impact of emerging infectious diseases. SARS probably emerged in
Southern China from an animal reservoir and was transmitted primarily through respiratory droplets and secondarily
through aerosolized gastrointestinal secretions (Donnelly et al., 2003). From the beginning, SARS exhibited distinctive
epidemiological patterns. During its initial four months of spread in China, 32% of confirmed cases were HCWs and 39%
were food handlers (hence the hypothesis that cooking wild animals was the primary route of SARS transmission into
human populations), yet there were no cases among schoolchildren or housewives (Xu et al., 2004).

As SARS spread out from China, the fate of outbreaks was tightly linked to containment efforts within hospitals
(Le et al., 2003; McDonald et al., 2004). For example, the first cases of SARS in Vancouver and Toronto were infected
almost simultaneously while staying in Hotel M in Hong Kong. Whereas the Toronto case sparked a sizeable outbreak that
involved extensive hospital-based transmission, no secondary cases occurred from the initial Vancouver case. The
successful containment in Vancouver may have stemmed from rigorous hospital precautions. In particular, the Vancouver
emergency room at which the first case sought treatment had recently participated in an infection control audit that
emphasized the importance of barrier precautions for all acute onset respiratory infections (World Health Organization,
2003, 2004; Skowronski et al., 2005). In contrast, patient zero in Toronto died at home as an undiagnosed case of SARS
after infecting several relatives. The first case to arrive in a Toronto hospital (on March 7, 2003) was a second-generation,
locally acquired case. He was treated with nebulized salbutamol in the emergency room, where he remained for 18 h
without special precautions. After 21 h, he was placed in air-borne isolation in the ICU for possible tuberculosis, and
droplet and contact precautions were not applied until his fourth day in the hospital. By the time he died on March 13, he
had infected several HCWs and thereby exacerbated the Toronto outbreak (Poutanen et al., 2003; Varia et al., 2003).

Given the importance of hospitals to the transmission and control of diseases like SARS, we have developed a
mathematical framework that explicitly models the flow of patients into hospitals during outbreaks. In particular, we
demonstrate that a semi-directed contact network can capture a conditional contact between a layperson and a HCW that
only occurs if the layperson becomes infected and goes to the hospital. We can rapidly predict the spread of disease through
such a network using an extension of the methods developed in (Newman, 2002) and (Meyers et al., 2005).

When we add interactions between HCWs and infected patients to our model, the predicted epidemic threshold—the
critical transmission rate above which outbreaks may evolve into full-blown epidemics—decreases and the risk of infection
for HCWs dramatically increases. Furthermore, interventions targeted at reducing the likelihood of transmission from
patients and HCWs may significantly lower the likelihood of an epidemic. Thus, models that ignore hospital-based
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transmission may underestimate both the threat of an epidemic and the impact of control measures targeted at protecting
HCWs from the onslaught of patients they may face during an outbreak.

The extension of contact network epidemiology to semi-directed graphs will allow us to build and rapidly analyse more
realistic models of infectious disease transmission when there are asymmetries in disease causing contacts. As our hospital
example demonstrates, such models may provide important new insights into epidemiological patterns and public health
strategy.
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Appendix A

A.1. Probability generating functions for the number of occupied (infected) edges

Following Newman (2002), we write the generating function for the number of occupied edges of a vertex in the form

Gðx; y; u;Td ;TuÞ ¼
X1

a¼0

X1

b¼0

X1

c¼0

X1

j¼a

X1

k¼b

X1

m¼c

pjkm

"
j

a

 !

Ta
d ð1$ TdÞj$a

k

b

 !

Tb
dð1$ TdÞk$b

m

c

 !

Tc
uð1$ TuÞm$cxaybuc

#

¼
X

jkm

pjkm
Xj

a¼0

j

a

 !

ðTdxÞað1$ TdÞj$a

"
Xk

b¼0

k

b

 !

ðTdyÞbð1$ TdÞk$b
Xm

c¼0

m

c

 !

ðTuuÞcð1$ TuÞm$c

#

.

ð47Þ

Applying the binomial formula ððaþ bÞn ¼
Pn

k¼0a
n$kbkÞ, this generating function simplifies to

Gðx; y; u;Td ;TuÞ ¼
X

jkm

pjkmð1$ Td þ xTdÞjð1$ Td þ yTdÞkð1$ Tu þ uTuÞm

¼ Gð1þ ðx$ 1ÞTd ; 1þ ðy$ 1ÞTd ; 1þ ðu$ 1ÞTuÞ. ð48Þ

We similarly derive the probability generating function for the number of occupied edges (excluding the arrival edge)
emanating from a vertex arrived at by following a randomly chosen edge:

Hdðx; y; u;Td ;TuÞ ¼ Hdð1þ ðx$ 1ÞTd ; 1þ ðy$ 1ÞTd ; 1þ ðu$ 1ÞTuÞ, (49)

Hrðx; y; u;Td ;TuÞ ¼ Hrð1þ ðx$ 1ÞTd ; 1þ ðy$ 1ÞTd ; 1þ ðu$ 1ÞTuÞ, (50)

Huðx; y; u;Td ;TuÞ ¼ Huð1þ ðx$ 1ÞTd ; 1þ ðy$ 1ÞTd ; 1þ ðu$ 1ÞTuÞ. (51)

Eq. (48) implies that

Gðx; y; u; 1; 1Þ ¼ Gðx; y; uÞ, (52)

Gð1; 1; 1;Td ;TuÞ ¼ Gð1; 1; 1Þ, (53)

Gð1;0;0Þð1; 1; 1;Td ;TuÞ ¼ TdG
ð1;0;0Þð1; 1; 1Þ, (54)

Gð0;1;0Þð1; 1; 1;Td ;TuÞ ¼ TdG
ð0;1;0Þð1; 1; 1Þ, (55)

Gð0;0;1Þð1; 1; 1;Td ;TuÞ ¼ TuG
ð0;0;1Þð1; 1; 1Þ (56)

and similarly for Hd , Hr, and Hu.
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A.2. Derivation of the size of a small outbreak

As explained in the text, the generating functions for the size of an outbreak beginning with a randomly chosen edge are
given by

hdðw;Td ;TuÞ ¼ wHd ð1; hdðw;Td ;TuÞ; huðw;Td ;TuÞ;Td ;TuÞ, (57)

huðw;Td ;TuÞ ¼ wHuð1; hdðw;Td ;TuÞ; huðw;Td ;TuÞ;Td ;TuÞ (58)

for directed and undirected starting edges, respectively. Furthermore, the generating function for the size of an outbreak
starting from a randomly chosen vertex is given by

gðw;Td ;TuÞ ¼ wGð1; hdðw;Td ;TuÞ; huðw;Td ;TuÞ;Td ;TuÞ. (59)

Here we derive the expected size of such an outbreak

hsi ¼
X

s

sPsðTd ;TuÞ ¼ g0ð1;Td ;TuÞ, (60)

where the prime denotes differentiation with respect to the first variable. Differentiating equations (15), (16), and (17),
we find

g0ð1;Td ;TuÞ ¼ 1þ Gð0;1;0;0Þð1; 1; 1;Td ;TuÞh0dð1;Td ;TuÞ þ Gð0;0;1;0Þð1; 1; 1;Td ;TuÞh0uð1;Td ;TuÞ, (61)

h0dð1;Td ;TuÞ ¼ 1þHð0;1;0;0Þ
d ð1; 1; 1;Td ;TuÞh0dð1;Td ;TuÞ þHð0;0;1;0Þ

d ð1; 1; 1;Td ;TuÞh0uð1;Td ;TuÞ, (62)

h0uð1;Td ;TuÞ ¼ 1þHð0;1;0;0Þ
u ð1; 1; 1;Td ;TuÞh0d ð1;Td ;TuÞ þHð0;0;1;0Þ

u ð1; 1; 1;Td ;TuÞh0uð1;Td ;TuÞ, (63)

where we have made use of the fact that hdð1;Td ;TuÞ ¼ huð1;Td ;TuÞ ¼ 1. Solving Eqs. (62) and (63) simultaneously
we find

h0dð1;Td ;TuÞ ¼
1$Hð0;0;1;0Þ

u þHð0;0;1;0Þ
d

ð1$Hð0;1;0;0Þ
d Þð1$Hð0;0;1;0Þ

u Þ $Hð0;0;1;0Þ
d Hð0;1;0;0Þ

u

, (64)

h0uð1;Td ;TuÞ ¼
1$Hð0;1;0;0Þ

d þHð0;1;0;0Þ
u

ð1$Hð0;1;0;0Þ
d Þð1$Hð0;0;1;0Þ

u Þ $Hð0;0;1;0Þ
d Hð0;1;0;0Þ

u

, (65)

where the arguments of all generating functions are set to (1,1;1;Td,Tu). Substituting these expressions into Eq. (61), we
calculate the expected size of an outbreak beginning at a random vertex:

hsi ¼ 1þ
Gð0;1;0;0Þð1$Hð0;0;1;0Þ

u þHð0;0;1;0Þ
d Þ þ Gð0;0;1;0Þð1$Hð0;1;0;0Þ

d þHð0;1;0;0Þ
u Þ

ð1$Hð0;1;0;0Þ
d Þð1$Hð0;0;1;0Þ

u Þ $Hð0;0;1;0Þ
d Hð0;1;0;0Þ

u

. (66)

Eqs. (52)–(56) allow us to separate transmissibilities Td and Tu from the semi-directed degree distributions as
follows:

hsi ¼ 1þ
TdG

ð0;1;0Þð1$ TuðHð0;0;1Þ
u $Hð0;0;1Þ

d ÞÞ þ TuG
ð0;0;1Þð1$ Td ðH

ð0;1;0Þ
d $Hð0;1;0Þ

u ÞÞ

ð1$ TdH
ð0;1;0Þ
d Þð1$ TuH

ð0;0;1Þ
u Þ $ TdTuH

ð0;0;1Þ
d Hð0;1;0Þ

u

, (67)

where the arguments of all generating functions are now set to (1,1;1).

A.3. Derivation of the size and probability of a large epidemic

Suppose we start at a randomly chosen edge and move backwards along directed edges and along undirected edges,
traversing each directed and undirected edge with probability Td or Tu, respectively. Then the distribution of the sizes of the
resulting components is generated by hr(w; Td, Tu) (if starting from a random directed edge) and hur(w; Td, Tu) (if starting
from a random undirected edge) which satisfy

hrðw;Td ;TuÞ ¼ wHrðhrðw;Td ;TuÞ; 1; hurðw;Td ;TuÞ;Td ;TuÞ (68)

and

hurðw;Td ;TuÞ ¼ wHuðhrðw;Td ;TuÞ; 1; hurðw;Td ;TuÞ;Td ;TuÞ. (69)
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It follows that the distribution of components from which a randomly chosen vertex (rather than edge) can be reached is
generated by

grðw;Td ;TuÞ ¼ wGðhrðw;Td ;TuÞ; 1; hurðw;Td ;TuÞ;Td ;TuÞ. (70)

The fraction of the graph filled by vertices for which the corresponding component is finite in size is then given by
gr(1;Td, Tu) and hence Sout ¼ 1$ grð1;Td ;TuÞ giving

Sout ¼ 1$ Gða; 1; b;Td ;TuÞ, (71)

where a ( hrð1;Td ;TuÞ and b ( hurð1;Td ;TuÞ are solutions of

a ¼ Hrða; 1; b;Td ;TuÞ; b ¼ Huða; 1; b;Td ;TuÞ. (72)

Translating into epidemiological terms, we can predict the size of a large-scale epidemic from the degree distribution and
transmissibility with

Ssize ¼ Sout ¼ 1$
X

jkm

pjkmð1þ ða$ 1ÞTdÞjð1þ ðb$ 1ÞTuÞm, (73)

where a and b are solutions of

a ¼
P

jkmkpjkmð1þ ða$ 1ÞTdÞjð1þ ðb$ 1ÞTuÞmP
jkmkpjkm

, (74)

b ¼
P

jkmmpjkmð1þ ða$ 1ÞTdÞjð1þ ðb$ 1ÞTuÞm$1

P
jkmmpjkm

. (75)

Similarly, one can calculate Sin, the size of the GSCC plus the GIN, which is the fraction of vertices from which an
extensive number of others can be reached. In epidemiology, this is Sprob, the probability that a single randomly placed
infection will spark a large-scale epidemic. By analogy with Eqs. (71) and (72), Sin is given by

Sin ¼ 1$ Gð1; a; b;Td ;TuÞ, (76)

where

a ¼ Hdð1; a; b;Td ;TuÞ; b ¼ Huð1; a; b;Td ;TuÞ. (77)

In terms of the degree distribution and transmissibility of disease, Eqs. (76) and (77) become

Sprob ¼ Sin ¼ 1$
X

jkm

pjkmð1þ ða$ 1ÞTdÞkð1þ ðb$ 1ÞTuÞm, (78)

where a and b are solutions of

a ¼
P

jkm jpjkmð1þ ða$ 1ÞTdÞkð1þ ðb$ 1ÞTuÞmP
jkm jpjkm

, (79)

b ¼
P

jkmmpjkmð1þ ða$ 1ÞTdÞkð1þ ðb$ 1ÞTuÞm$1

P
jkmmpjkm

. (80)

A.4. Epidemic quantities for completely directed and completely undirected graphs

A.4.1. Basic quantities
The epidemic threshold, expected size of a small outbreak, probability of a large scale epidemic and the expected size of

such an epidemic have been derived previously for both undirected networks (Newman, 2002) and completely directed
networks (Schwartz et al., 2002). For directed networks, the expected size of a small outbreak is given by

hsi ¼ 1þ
TGð0;1Þð1; 1Þ

1$ THð0;1Þ
d ð1; 1Þ

(81)
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when the denominator on the right-hand side is greater than zero. This yields an epidemic threshold of

Tc ¼
1

Hð0;1Þ
d ð1; 1Þ

. (82)

For transmissibility above Tc, the expected size of an epidemic is given by

Sd
size ¼ 1$

X

jk

pjkð1þ ðv$ 1ÞTÞj , (83)

where v is the solution to the equation

v ¼
P

jkkpjkð1þ ðv$ 1ÞTÞj
P

jkkpjk
(84)

and the probability that such an epidemic will arise in the first place is given by

Sd
prob ¼ 1$

X

jk

pjkð1þ ðw$ 1ÞTÞk, (85)

where w is the solution to the equation

w ¼
P

jkjpjkð1þ ðw$ 1ÞTÞk
P

jkjpjk
. (86)

For undirected networks, the expected size of a small outbreak is given by

hsi ¼ 1þ
TG0ð1Þ

1$ TH0ð1Þ
(87)

with an epidemic threshold of

Tc ¼
1

H0ð1Þ
. (88)

For T4Tc, the probability and expected size of an epidemic in an undirected network are identical and given by

Su ¼ Su
size ¼ Su

prob ¼ 1$
X

m

pmð1þ ðu$ 1ÞTÞm, (89)

where u is the solution to the equation

u ¼
P

mmpmð1þ ðu$ 1ÞTÞm$1

P
mmpm

. (90)

A.4.2. Initial conditions and individual risk
First consider a completely directed network. If patient zero has out-degree k, then the probability that he or she will

spark a large-scale epidemic is given by

ek ¼ 1$ ð1$ T þ TwÞk, (91)

where w is the solution to (86). If he or she complies with an intervention that lowers the probability of transmission to
others by a factor fð0pfp1Þ, then the probability of sparking an epidemic is reduces to

efk ¼ 1$ ð1$ fT þ fTwÞk. (92)

If there is an initial outbreak of N cases (of unknown degree), then the probability of a large-scale epidemic is given by

1$
P

jk
jpjkð1$TþTwÞk

P
jk
jpjk

 !N

, (93)

where w is the solution to (86).
During a large-scale epidemic, the probability that a randomly chosen vertex of in-degree j will become infected is

given by

nj ¼ 1$ ð1$ T þ TvÞj , (94)
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where v is the solution to (84). If he or she complies with an intervention that lowers the likelihood of transmission from
infected contacts by a factor fð0pfp1Þ, then the probability of infection is reduced to

nj ¼ 1$ ð1$ fT þ fTvÞj . (95)

We next give the analogous formulae for undirected networks. These were originally derived in Meyers et al. (2005). If
patient zero has degree k, then the probability that he or she will spark a large-scale epidemic is given by

ek ¼ 1$ ð1$ T þ TuÞk, (96)

where u is the solution to (90). If he or she complies with an intervention that lowers the probability of transmission to
others by a factor fð0pfp1Þ, then the probability of sparking an epidemic is reduces to

efk ¼ 1$ ð1$ fT þ fTuÞk. (97)

If there is an initial outbreak of N cases (of unknown degree), then the probability of a large-scale epidemic is given by

1$
P

k
kpkð1$TþTuÞk$1

P
k
kpk

 !N

, (98)

where u is the solution to (90).
During a large-scale epidemic, the probability that a randomly chosen vertex of degree k will become infected is given by

nk ¼ 1$ ð1$ T þ TuÞk, (99)

where u is the solution to (90). If he or she complies with an intervention that lowers the likelihood of transmission from
infected contacts by a factor fð0pfp1Þ, then the probability of infection is reduced to

nk ¼ 1$ ð1$ fT þ fTuÞk. (100)
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