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Using Ebolavirus genomic and epidemiological data, we con-
ducted the first joint analysis in which both data types were
used to fit dynamic transmission models for an ongoing out-
break. Our results indicate that transmission is clustered,
highlighting a potential bias in medical demand forecasts,
and provide the first empirical estimate of underreporting.
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The ongoing Ebola virus (EBOV) outbreak in West Africa is the
largest ever recorded and shows little evidence of attenuation.
As of 27 November 2014, the outbreak has spread mainly
from Guinea to the neighboring nations of Liberia and Sierra
Leone, with 15 935 cases reported as suspected, probable, or
confirmed, and 5689 reported deaths in these 3 countries [1].
The high viral load in the blood and excreta, associated with
late-stage infections and deceased patients, constitutes the high-
est risk for transmission [2]. Consequently, most transmission

events occur in hospitals, households, and funeral settings, po-
tentially contributing to an epidemic that is clustered in both
space and time [3].

Typical mass-action models of disease transmission assume
that infections occur between random pairs of individuals. In
contrast, social clustering implies that transmission events will
be correlated, occurring within mutually interconnected sub-
groups. Ignoring clustering can bias estimates of key epidemio-
logical parameters [4–6], such as the basic reproduction number
(R0, which indicates the early growth rate for an epidemic), can
result in biased vaccine efficacy trials and can negatively impact
assessments of necessary countermeasures, such as numbers of
hospital beds, personal protective equipment, and staff. To
overcome these biases, we investigated social clustering of the
underlying contact patterns through which Ebola virus disease
(EVD) spreads, parameterized by analysis of field-based infec-
tion contact and viral genome sequencing data. We provide the
first quantitative estimate of clustered transmission and under-
reporting for an ongoing outbreak.

METHODS

We fit a transmission-oriented phylodynamic model [7] to 78
EBOV genome sequences collected from >70% of the confirmed
cases arising in June 2014 of the current outbreak in Sierra
Leone [8]. This model infers a time-based evolutionary recon-
struction of the viral dynamics. We then used a Bayesian approach
[9] on the same genomic data to reconstruct the transmission
chains. We also fit a complementary susceptible exposed infec-
tious removed (SEIR) network model that estimated clustering
based on confirmed EVD cases and deaths [10, 11], inferring
parameters for a clustered (ϕ > 0) and a nonclustered population
(ϕ = 0). Parameters of these SEIR models were fitted to the cu-
mulative numbers of laboratory-confirmed EBOV cases and
laboratory-confirmed EBOV deaths obtained from the World
Health Organization Global Alert and Response news from 27
May to 31 August 2014 (Supplementary Appendix), and the
starting date for the SEIR model was sampled over the posterior
distribution for the initial case supplied by our phylodynamic
analysis.

RESULTS

The best-fit phylodynamic model for EBOV genomic data
yielded an estimate of R0 = 1.4 (95% highest posterior density
[HPD], 1.1–1.8). These results were robust to different prior
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and model specifications (Supplementary Methods). Using the
genomic data, we also reconstructed transmission chains (Fig-
ure 1A). The estimated number of secondary infections was
1.35. Both of our genomic analyses estimated similar starting
dates for the Sierra Leone outbreak, which were more recent
than those proposed by Gire et al [8] but are still compatible
with the initial Sierra Leone infections occurring at a known fu-
neral in May 2014 [8].

Our fit of the network-based SEIR model yielded an estimate
of the proportion of potential high-risk contacts of an infected
individual who are themselves contacts of ϕ = 0.71 (95% confi-
dence interval [CI], .66–.72) and an estimate of R0 = 1.29 (95%
CI, 1.27–1.37). Our comparison of epidemiological data ana-
lyzed by models with and without clustering provides strong ev-
idence for clustering in the underlying contact network
(Figure 1B; Supplementary Table 1).

Our analysis of EBOV genome sequences also provided an
estimate of the proportion of cases sampled of 58% (20%–

99% HPD). However, >70% of confirmed patients for the peri-
od of late May to mid-June in Sierra Leone were sequenced [8].
The discrepancy suggests that underreporting of cases is ap-
proximately 17%, with a maximum of 70%.

DISCUSSION

We have fitted both epidemiological and phylodynamic models
to genomic and case-based data from the 2014 EVD outbreak in
Sierra Leone, found evidence for clustered transmission, and es-
timated the underreporting rate. The evidence for clustered
transmission was obtained from the epidemiological analysis
of the case data. The phylodynamic inference provided an esti-
mate of the start date of the outbreak, which improved the

estimated SEIR parameters. Both the epidemiological and phy-
lodynamic models produced consistent estimates of epidemio-
logical parameters, supporting the consistency of our inference
of clustered transmission. The clustering of transmission we
infer has implications for the public health response such as
the rate at which health resources, such as hospital beds, are re-
quired, for deriving realistic predictions about epidemic poten-
tial, and for the design of vaccine trials.

Our estimates of the reproductive number are lower than
those from other modeling studies, all of which assumed that
transmission occurs in a population without clustering and
that infectious and susceptible individuals mix randomly [12–
14]. The discrepancy between our results and earlier studies
can be attributed to our relaxation of the strong assumption
that susceptible and infectious individuals mix randomly. Our
model demonstrates that as social clustering increases, the inter-
actions between infected and susceptible individuals underlying
transmission decrease, because contacts are shared among in-
fectious individuals. In turn, this decrease in the contact rate be-
tween infectious and susceptible individuals requires an
estimated 1.5- to 12.5-fold greater infectiousness to explain
the spread of disease (Supplementary Table 1). This nonlinear
interaction between higher infectiousness and decreased con-
tact rates between susceptible and infectious individuals yields
an R0 that is lower for a clustered disease such as EVD.

The primary transmission routes of EBOV are within house-
holds, at funerals, and in healthcare facilities. These transmis-
sion routes involve greater clustering than among random
groups [15, 16]. For example, we estimated a clustering coeffi-
cient of ϕ = 0.21 (95% CI, .196–.223) from empirical contact
tracing data obtained from the Liberian Ministry of Health
and Social Welfare. In addition, by including clustering in the

Figure 1. Evidence for clustered transmission and the reconstructed transmission chains in the 2014 West African Ebola virus outbreak in Sierra Leone. A,
The inferred transmission tree between the patients whose Ebola virus genomes were sequenced. Colors indicate the inferred infection date, edge color
indicates the number of mutations, and node sizes are proportional to the inferred number of infections. B, Cumulative incidence (pink circles) and mortality
(red squares) of laboratory-confirmed Ebola virus disease cases in Sierra Leone, based on data from the World Health Organization Global Alert and Re-
sponse news from 27 May to 30 August 2014. Support for a clustered model is demonstrated by its improved fit (solid lines) relative to the unclustered model
(dashed lines), based both on incidence (blue lines) and mortality data (gray lines).
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network, we were able to more accurately capture the early
growth trends of the outbreak compared with an unclustered
model (Figure 1B). Although the 2 genomic-based methods
do not estimate clustering coefficients, they can still produce
unbiased parameter estimates if clustered transmission occurs.
Although the uncertainty in the phylodynamic model parame-
ters might appear wide relative to our estimate, the confidence
intervals exclude other published R0 estimates [12–14].

The agreement of our empirical, network, and genomic anal-
yses supports a conclusion of significant social clustering, a con-
clusion that is robust to likely underreporting. Early estimates of
this EVD outbreak suggested that for every case reported, >2 ad-
ditional cases went unreported [17]. Any underreporting will
lead our SEIR model to underestimate the clustering coefficient.
In this respect, our estimate of the clustering coefficient will be
conservative. Our phylodynamic estimate of underreporting is
unbiased as long as underreporting is random. Although our
estimate of underreporting has high uncertainty, our estimate
that 17% of total actual cases go unreported is well below the
early estimate of that 250% of reported cases equaling the actual
total cases [17]. Underreporting could thus be far less prevalent
than previous estimates implied.

The results of this analysis have important public health and
clinical implications. First, the documentation of a high degree
of clustering again highlights the importance of contact tracing.
Specifically, if secondary cases are most likely to be close contacts
of infected patients, identifying exposed individuals will be easier
and quarantine procedures more effective. However, the discrep-
ancy between the clustered and unclustered models decreases as
the epidemic progresses (Figure 1). The improved fit of the un-
clustered model suggests that as EVD cases increase, moving out
of the household and into the community, transmission may be-
come less clustered. In turn, this implies that contact tracing may
have a narrow window of effectiveness, highlighting the impor-
tance of rapid intervention [18]. Second, when predicting health
resource demands, models must account for both clustered trans-
mission and potentially lower R0 values. Accounting for these
factors may reduce the total estimated outbreak size and decrease
the rate of disease spread [6]. Third, genome sequences from
other countries would allow for R0 comparisons and the quanti-
fication of viral circulation across borders, a task that is challeng-
ing with most other types of data that are readily available during
an ongoing outbreak. Finally, vaccination clinical trial design for
the current EBOVoutbreak should incorporate complexities aris-
ing as a consequence of disease clustering [19]. Typically, in a
more clustered population, an individual has a higher risk
of multiple exposures, thereby increasing the individual’s risk
of infection. This observation makes highly clustered populations
better candidates for vaccine efficacy trials than less clustered
populations. However, natural immunity from previous ex-
posures and asymptomatic infection [20], which might mitigate

the vaccine’s effect size, are also more prevalent in highly clus-
tered populations. Further research into the clustered transmis-
sion of EVD, natural immunity, and potential asymptomatic
infection is warranted.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org). Supplementary materials consist of data pro-
vided by the author that are published to benefit the reader. The posted
materials are not copyedited. The contents of all supplementary data are
the sole responsibility of the authors. Questions or messages regarding
errors should be addressed to the author.
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