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We provide a data-driven method for optimizing pharmacy-
based distribution of antiviral drugs during an influenza pan-
demic in terms of overall access for a target population and 
apply it to the state of Texas, USA. We found that during the 
2009 influenza pandemic, the Texas Department of State 
Health Services achieved an estimated statewide access of 
88% (proportion of population willing to travel to the nearest 
dispensing point). However, access reached only 34.5% of 
US postal code (ZIP code) areas containing <1,000 under-
insured persons. Optimized distribution networks increased 
expected access to 91% overall and 60% in hard-to-reach 
regions, and 2 or 3 major pharmacy chains achieved near 
maximal coverage in well-populated areas. Independent 
pharmacies were essential for reaching ZIP code areas 
containing <1,000 underinsured persons. This model was 
developed during a collaboration between academic re-
searchers and public health officials and is available as a 
decision support tool for Texas Department of State Health 
Services at a Web-based interface.

Influenza pandemics occur when novel strains of the in-
fluenza virus emerge in human populations and spread 

worldwide (1). There were 3 influenza pandemics in the 
20th century (1918, 1957, and 1968), and 1 has occurred 
so far in the 21st century (2009). The 1918 Spanish flu 
pandemic was far more severe than the others, causing an 
estimated 50 million deaths globally (2). In contrast, the 
2009 pandemic had an estimated death toll of 284,000 (3). 
Experts conjecture that the risk for new pandemics will 
increase in the coming decades (4), and several emerging 
threats are already under surveillance. A highly pathogenic 
avian influenza A (H5N1) virus  has occasionally been in-
fecting humans in Asia, Africa, and Europe since 1997 (5); 
the first human case in North America was reported in Jan-
uary 2014 (6). Since March 2013, China has been trying to 
contain an ongoing outbreak of a highly pathogenic avian 
influenza (H7N9) virus (7,8).

The primary control measures for pandemic influ-
enza are antiviral medications and vaccines (9), as well 
as nonpharmaceutical interventions, such as social dis-
tancing measures, school closures, and hygienic precau-
tions (10). Although the efficacy of influenza vaccines 
depends on factors such as patient age and virus type/
subtype (11), these vaccines are arguably the best in-
tervention strategy (1). However, because development 
and deployment of effective vaccines for a new influenza 
virus may take several months (12), antiviral drugs and 
nonpharmaceutical interventions are particularly critical 
for early pandemic control.

Antiviral drugs are believed to reduce disease sever-
ity and duration of infectiousness in individual patients, if 
taken sufficiently early (9), and to protect contacts of in-
fected persons, if taken prophylactically (13–15). Some 
studies have suggested that aggressive treatment policies 
can effectively mitigate local transmission (16,17). In 
preparation for future influenza pandemics, the US Depart-
ment of Health and Human Services therefore maintains a 
large Strategic National Stockpile (SNS) of antiviral drugs 
(18), and most states include SNS antiviral drugs as a major 
component of their pandemic response plans (19–22).

After detection of the new influenza A(H1N1)pdm09 
virus in April 2009, the US government declared a pub-
lic health emergency, and the World Health Organization 
declared a global influenza pandemic. Vaccines became 
widely available after 6 months of sustained transmission 
(23). In the early weeks of the pandemic, the US Depart-
ment of Health and Human Services distributed 11 million 
courses of federally held SNS antiviral drugs to states (24) 
and issued a series of guidelines for implementing antiviral 
drug and nonpharmaceutical interventions. During the pan-
demic, many states sought to work in cooperation with re-
tail pharmacies and independent drug stores to assist in dis-
pensing their shares of the SNS and state caches (19–22). 
The Texas Department of State Health Services (DSHS) 
enlisted the help of several major pharmacy chains and in-
dependent retail pharmacies to dispense >200,000 antiviral 
drug courses from the SNS and state cache (25). A report 
analyzing the pandemic response indicated that additional 
planning is required to ensure that persons residing in coun-
ties in Texas lacking pharmacies can obtain antiviral drugs 
when needed (26).
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We propose a method for optimizing the location of 
dispensing points for antiviral drugs within a state. Sev-
eral state pandemic response plans include the following 
goals: using commercial pharmacies as antiviral drug-
dispensing partners to limit strain on hospitals; reaching 
a population of broad demographics, including underin-
sured populations; and improving convenience. These 
states include Virginia (19), Louisiana (20), Florida (21), 
Tennessee (22), and Texas (25). These plans further spec-
ify that the choice of participating chains will depend on 
their location and local demographics, and they include 
strategies for reaching the underinsured population at 
minimal or no cost.

Working with Texas DSHS, we developed a data-driv-
en facility-location model for designing commercial phar-
macy antiviral drug distribution networks that maximizes 
access to underinsured populations, when access is based 
on a willingness-to-travel model estimated from National 
Household Travel Survey data (27). We describe the model 
that is now available to the Texas DSHS as a Web-based 
decision-support tool for future pandemics (28), and we 
use it to evaluate and optimize the commercial pharmacy 
distribution network established in Texas during the 2009 
influenza pandemic.

Methods

Data
Texas has 1,939 US postal code (ZIP code) areas in 254 
counties; 1,023 of these ZIP code areas contain ≥1 phar-
macy (Table 1). We obtained the addresses of all commu-
nity and clinic pharmacies with active licenses listed by the 
Texas Pharmacy Board (29). The largest chains (present in 
the most ZIP code areas) in Texas are Brookshire, Costco, 
CVS, HEB, Kmart, Kroger, Randalls, Sam’s Club, Tar-
get, Tom Thumb, United, Walgreens, and Walmart. Other 
pharmacies, independent or small chain, are listed as inde-
pendents. The Texas DSHS provided the list of pharmacies 
selected to dispense antiviral drugs to underinsured popu-
lations during the 2009 influenza pandemic; these phar-
macies were in 723 ZIP code areas. To approximate the 
size of the uninsured and underinsured population in each  
ZIP code area (direct statistics were not available), we 
used the number of persons in households with an annual 
income <$20,000 (http://www.bio.utexas.edu/research/ 
meyers/_docs/publications/SinghEID14Supplement.pdf).

Our optimization model uses a geographic resolution 
of ZIP code areas based on ZIP code tabulation areas (ZC-
TAs) (30). ZCTAs differ slightly from US Postal Service 
ZIP code areas and may include ≥1 US Postal Service ZIP 
code area. We mapped each pharmacy and residential ZIP 
code area to its corresponding ZCTA (31), and, for simplic-
ity, we refer to these as ZIP code areas.

Willingness-to-Travel Model
We used National Household Travel Survey (NHTS) data 
for 2009 (27) to estimate the distances persons are willing 
to travel in Texas to obtain antiviral drugs sufficient for a 
course of treatment during an influenza pandemic (model 
described below). We created a willingness-to-travel model, 
which follows an exponentially decaying distribution, by fit-
ting the model to national-scale NHTS data for privately op-
erated vehicle travel (27) (Figure 1). This included ≈330,000 
person trips (83% of all person trips in the database), totaling 
3.3 million miles, including ≈30,000 person trips originating 
in Texas. We made the simplifying assumption that health 
care  seeking behavior in Texas during an influenza pandem-
ic will resemble national willingness to travel by privately 
operated vehicle for work, school, family, and social reasons. 
Although there are probably major differences in these esti-
mates, we believe that this model conservatively underesti-
mates actual accessibility of pharmacies during a pandemic.

Using a least-squares fit, we obtained the following 
model (Equation 1):
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in which the p̂(d) term is the fraction of the target popula-
tion willing to travel at least d miles. As the required travel 
distance increases, the fraction of the population willing to 
travel distance d decreases. We used a piecewise model that 
allows for different coefficients below and above a distance 
threshold of 5 miles to enable urban and rural populations 
to exhibit different willingness-to-travel patterns (http://
www.bio.utexas.edu/research/meyers/_docs/publications/
SinghEID14Supplement.pdf).

To estimate travel patterns for the underinsured pop-
ulation, we considered NHTS data for households with 
incomes <$20,000 (http://www.bio.utexas.edu/research/
meyers/_docs/publications/SinghEID14Supplement.pdf) 
and found that the travel patterns for this group are given 
by Equation 2:
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The estimated willingness-to-travel for the underin-

sured population is slightly greater (<1%) than that for the 
entire population. The adjusted R2 values for each model 
exceed 0.99.

Optimization Model
The optimization model we used identifies ZIP code areas 
for pharmacy-based distribution of SNS and state-cache 
antiviral drugs to maximize access in the target population 
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(either underinsured or entire population). It is a facility-
location type model (32,33) with an objective function de-
fined in terms of the expected number of persons willing to 
obtain antiviral drugs from the nearest dispensing point. We 
estimated this quantity by using our willingness-to-travel 
model for the distance between the home ZIP code cen-
troid and pharmacy ZIP code centroid. For the distance to 
a pharmacy within the home ZIP code area, we used a cor-
rection factor based on the size of the ZIP code area (http://
www.bio.utexas.edu/research/meyers/_docs/publications/ 
SinghEID14Supplement.pdf).

The optimization model takes as input the total number 
of ZIP code areas to be included in the distribution net-
work (b). The model does not account for the number of 
available antiviral drug doses, the number to be shipped 

 
Table 1. Number of ZIP code areas containing ≥1 pharmacy of 
each chain and geographic overlap with Walgreens, which is 
present in the most ZIP code areas, Texas, USA* 

Pharmacy name No. ZIP code areas 
Overlap with 

Walgreens, % 
Walgreens  490 100.0 
CVS/Pharmacy 422 75.1 
Walmart 372 68.8 
HEB 189 77.8 
Kroger 167 86.8 
Target 127 86.6 
Brookshire 118 28.0 
Sam’s Club 74 89.2 
Tom Thumb 51 74.5 
Randalls 42 90.5 
United 40 50.0 
Costco 20 80.0 
Kmart 16 81.3 
Independents 893 48.0 
*ZIP code areas, US postal code areas. 

 

Figure 1. Willingness-to-travel curve for receiving antiviral 
drugs during the 2009 influenza pandemic given by equation 
(2) (in Methods section) fit to National Household Travel Survey 
(NHTS) data on privately operated vehicle travel for the entire US 
underinsured population.

Figure 2. Antiviral drug access in underinsured populations 
achieved by the Texas antiviral drug distribution network during 
the 2009 influenza A pandemic and by optimized antiviral 
drug distribution networks, for A) small ZIP code (US postal 
code) areas (i.e., ZIP code areas with <1,000 underinsured 
persons) and B) statewide. Access is the expected fraction 
of the underinsured population willing to travel to the nearest 
dispensing pharmacy to obtain antiviral drugs. The black vertical 
and horizontal lines indicate the number of ZIP code areas 
that participated in the Texas 2009 distribution network and the 
estimated access achieved, respectively. For each network size 
(number of dispensing ZIP code areas), a hybrid optimization 
was performed to maximize coverage in small ZIP code areas 
and overall (see Methods for details). Color indicates which 
combination of 13 major pharmacy chains plus independents 
were considered in the optimization. For a distribution network 
of size 723 (comparable to the Texas 2009 H1N1 antiviral drug 
distribution), the best performing single-chain (Walgreens), 
2-chain combination (Walgreens and Walmart), and 3-chain 
combination (Walgreens, Walmart, and CVS) provided near 
optimal coverage statewide, but critically underserved the 
smallest ZIP code areas.
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to each pharmacy, or the capacity of individual pharma-
cies. Additional details on methods are available at http://
www.bio.utexas.edu/research/meyers/_docs/publications/ 
SinghEID14Supplement.pdf. 

The Web-based decision-support tool based on this 
model provides solutions for a range of values of b (Fig-
ure 2) and displays the trade-off between the expected ac-
cess for the target population and the number of dispensing 
points. This tool also enables the user to select specific so-
lutions for further analysis.

We considered 3 types of objective functions, all of 
which focus exclusively on the underinsured population in 
Texas: maximizing statewide access, maximizing access 
in small ZIP code areas (i.e., ZIP code areas with <1,000 
underinsured persons), and a hybrid that combines the first 
2 objectives. For our hybrid optimization model, we first 
specified a percentage of all dispensing points to focus on 

small ZIP code areas (P). Second, we optimized P of all 
dispensing points solely for access in small ZIP code areas 
and recorded the access achieved in small ZIP code areas 
(As). Third, we started over and optimized all dispensing 
points by using the statewide objective function with the 
added constraint that the solution must achieve a minimum 
of 0.95As access in small ZIP code areas. This method si-
multaneously achieves near maximal coverage statewide 
and in small ZIP code areas.

Results
During the 2009 influenza pandemic, the Texas DSHS re-
cruited 1,393 pharmacies from 6 major chains and 71 in-
dependent pharmacies to dispense antiviral drugs from the 
SNS and state cache to underinsured populations. These 
pharmacies were located in 723 of the 1,023 ZIP code 
areas in Texas that had ≥1 pharmacy. We estimated that 

 
Table 2. Expected access for antiviral drugs during the 2009 influenza pandemic provided by 3 drug distribution networks,  
Texas, USA* 

Characteristic Texas 2009 network Optimized network† 
All pharmacies 

network 
Small ZIP code area access, % 34.5 60.5 63.8 
Statewide access, % 88.0 90.8 95.2 
No. ZIP code area dispensing points 723 723 1,023 
Population living within dispensing ZIP code areas, % 76.5 79.3 91.8 
Average miles traveled outside ZIP code area (SD)‡ 4.5 (3.8) 3.8 (3.1) 5.7 (4.0) 
Median miles traveled outside ZIP code area§ 3.0 2.6 4.2 
*ZIP code area, US postal code area. A small ZIP code area is an area with <1,000 underinsured persons. 
†Initially, we optimized 75% of dispensing points (542) to maximize access solely in small ZIP code areas and recorded the access achieved. We then 
optimized all 723 dispensing points to maximize statewide access and constrained the solution to achieve 95% of the small ZIP code area access 
achieved in the initial optimization. 
‡Population-weighted average travel distance to nearest dispensing pharmacy considering only ZIP code areas without their own dispensing pharmacies. 
When all pharmacies dispense antiviral drugs (fourth column), the longer average distance is an artifact of few persons living in ZIP code areas without 
pharmacies. 
§Population-weighted median travel distance to nearest dispensing pharmacy, considering only ZIP code areas without their own dispensing pharmacies. 
When all pharmacies dispense antiviral drugs (fourth column), the longer median distance is an artifact of few persons living in ZIP code areas without 
pharmacies. 

 

Figure 3. Antiviral drug access in underinsured populations for single-chain and 2-chain pharmacy distribution networks during the 2009 
influenza pandemic, Texas, USA. Each network contains a maximum of 723 distribution points, and was designed by using a hybrid 
optimization that maximizes coverage in small ZIP code (US postal code) areas and overall (see text for details). Color indicates the 
expected percentage of the underinsured population willing to travel to dispensing pharmacies to obtain antiviral drugs A) statewide 
and B) in small ZIP code areas. Numbers along the baselines and the y-axes indicate single-chain networks. 1, Walgreens; 2, CVS; 3, 
Walmart; 4, HEB; 5, Kroger; 6, Target; 7, Brookshire; 8, Sam’s Club; 9, Tom Thumb; 10, Randalls; 11, United; 12, Costco; 13, Kmart; 14, 
Independents (independent pharmacies).
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this network provided antiviral drug access for 88% of the 
state’s underinsured population (Figure 2). In comparison, 
we also estimated that optimization over all possible phar-
macy chains produced a network expected to achieve com-
parable access by using only 526 ZIP code areas, increased 
access to 92.5% with 723 ZIP code areas, and reached a 
maximum access of 95.2% with all 1,023 ZIP code areas.

However, optimizing for statewide access can lead to 
critical gaps in coverage. We categorized all Texas ZIP 
code areas on the basis of underinsured population sizes into 
small (<1,000 persons), medium (1,001–7,000 persons),  

and large (>7,000 persons). These areas contained 7%, 
51%, and 42% of the statewide underinsured population, 
respectively. The actual Texas 2009 distribution network 
and the corresponding optimized network (with 723 ZIP 
code areas) were estimated to achieve only 34.5% and 
38.3% access in small ZIP code areas, respectively, but 
reached 88.0% and 92.5% access overall. By definition, the 
small ZIP code areas do not carry much weight in a state-
wide optimization model. They also tend to be more remote 
than larger ZIP code areas, and thus have lower access to 
selected pharmacies.

To address this gap, we modified the objective func-
tion to maximize access specifically in small ZIP code ar-
eas. Although these modifications improved coverage in 
these hard-to-reach populations, the solutions were subop-
timal overall. Thus, we developed a hybrid optimization 
procedure that sequentially ensures high access statewide 
and in small ZIP code areas. With 723 dispensing points, 
the hybrid method with P = 75% of dispensing points al-
located to small ZIP code areas produced networks that 
are expected to achieve 60.5% access in small ZIP code 
areas and 90.5% overall. For comparison, the highest pos-
sible access (when all pharmacies in the state dispense an-
tiviral drugs) was estimated to reach 63.8% and 95.2% in 
the 2 populations, respectively (Table 2). For populations 
living in ZIP code areas without pharmacies dispensing 
antiviral drugs, optimization reduced the average travel 
distance to the nearest dispensing pharmacy from 4.5 
miles to 3.8 miles.

A state might opt to limit the number of chains in the 
distribution network to simplify logistics. The pharmacy 
chains eligible for participation in Texas include Brookshire, 
Costco, CVS, HEB, Kmart, Kroger, Randalls, Sam’s Club, 
Target, Tom Thumb, United, Walgreens, Walmart, and 
independent retail pharmacies (henceforth independents).  

Figure 4. Number of sites in the antiviral drug distribution 
network during the 2009 influenza pandemic that contained only 
independent pharmacies (independents; i.e., no major chains) 
when optimizing for the underinsured population in small ZIP 
code (US postal code) areas (i.e., ZIP code areas with <1,000 
underinsured persons), statewide, or both (hybrid), Texas, USA.

Figure 5. Flowchart of the antiviral 
drug distribution decision support 
tool during the 2009 influenza 
pandemic (28), Texas, USA. 
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During the 2009 influenza pandemic, the Texas DSHS 
distributed antiviral drugs from the SNS and state cache 
through 6 major chains (Brookshire, HEB, Kroger, United, 
Walgreens, and Walmart), and independents. When we re-
stricted the optimization to a few major chains, the result-
ing networks still achieved broad statewide coverage (Fig-
ures 2, 3). For example, Walgreens alone was expected to 
achieve ≈75% coverage if it dispenses in all of its 490 ZIP 
code areas; CVS and Walmart followed close behind (lo-
cated in 422 and 372 ZIP code areas, respectively). These 
3 chains have the greatest presence in the state (Table 1), 
but have highly overlapping geographic areas. Broad ac-
cessibility can also be achieved through a combination of 
smaller chains with geographic complementarity, for ex-
ample, HEB and Kroger (in 189 and 167 ZIP code areas, 
respectively). Walgreens and Walmart overlap over half of 
their ZIP code areas (256), whereas HEB and Kroger over-
lap in only 30 ZIP code areas. However, the number of ZIP 
code areas alone is not predictive of access. For example, 
Brookshire has almost as many stores as Target (in 118 and 
127 ZIP code areas, respectively), yet provides consider-
ably less statewide access alone and in combination with 
other stores.

However, the major chains did not reach the underin-
sured populations in the small ZIP code areas, even under 
the hybrid optimization that explicitly targets these hard-
to-reach populations (Figure 2, panel A). Independent 
pharmacies are essential to bridging this gap in coverage. 
The maximum access achieved by a 2-chain combina-
tion in small ZIP code areas is only 33% (Brookshire and 
Walmart) (Figure 3). Under the hybrid objective, optimized 
networks with <500 dispensing points yield solutions for 
all major pharmacy chains plus independents that provided 
slightly lower statewide accessibility than the correspond-
ing solutions for major chains (Figure 2, panel B), in ex-
change for higher coverage in small ZIP code areas (Figure 
2, panel A). Of the 1,023 ZIP code areas with ≥1 pharmacy, 
271 have only independent pharmacies. Of these pharma-
cies, 167 are in small ZIP code areas, and were typically se-
lected when optimizing for access in small ZIP code areas, 
but not when optimizing for access statewide (Figure 4).

Discussion
Many states plan to enlist commercial pharmacies in 
the dispensing of SNS antiviral drugs during future in-
fluenza pandemics (20–22,34). We have developed and  

Figure 6. Screenshot of the 
antiviral drug distribution 
decision support tool used during 
the 2009 influenza pandemic 
(28), Texas, USA.



	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 21, No. 2, February 2015	 257

Optimizing Distribution of Influenza Antiviral Drugs

demonstrated a simple, extensible, facility-location model 
for designing pharmacy-based antiviral drug distribution 
networks that effectively reach target populations. This 
model has been parameterized for the state of Texas and 
incorporated into a Web-based decision-support tool (28) 
for the Texas DSHS (Figures 5, 6). The user can opt to 
target the underinsured or total population statewide or 
within any specified counties and to exclude or include 
particular pharmacies and pharmacy chains. On the ba-
sis of user input, the tool solves a family of optimization 
models, spanning the full range of possible network sizes, 
and presents the structure and performance of the opti-
mized networks by using interactive graphs and maps. The 
tool is designed for use by Texas DSHS staff, who have 
Web-based access to it. Although this implementation is 
specific for Texas, the general model structure is read-
ily adaptable to other jurisdictions. Adaptation requires 
specification of geographic units (e.g., ZIP code areas or 
counties), distances between each pair of units, estimated 
target population sizes within each unit, and number of 
pharmacies from each eligible chain located within the 
unit. The model can be easily extended to other states by 
using data available through the US Census Bureau and 
state pharmacy associations (29,35).

The optimization model is driven by a willingness-to-
travel model, which was estimated from NHTS data. The 
nature and resolution of available data led to several simpli-
fying assumptions. After fitting several decaying functions 
to the data, we chose a simple model that considers only the 
distance between one’s home ZIP code area and the nearest 
pharmacy ZIP code area, rather than, for example, a more 
complex gravity model that incorporates the attractiveness 
of a store (36,37). The national data did not specify health-
related travel patterns. Texas NHTS data had coarser mile-
age bins, and represented only 1% of the nation-wide per-
son-trips. Thus, we used national-scale data on all available 
travel categories (to earn a living, family/personal business, 
school/church, social/recreational, and miscellaneous), and 
included only travel by privately operated vehicles (be-
cause of the sparsity of data on public transportation and 
bicycles). We also approximated home ZIP code area dis-
tances to pharmacy ZIP code area distances by using great 
circle distances between the ZIP code centroids, rather than 
road travel distances between their street addresses, which 
can underestimate the distance an individual must travel. 
Finally, we approximated the underinsured and small ZIP 
code area populations by using methods described in the 
Data section.

During future pandemics, timely and effective deploy-
ment of antiviral drugs from the SNS and state cache might 
be essential for reducing early illness and death (19). Data-
driven models, such as those in this optimization tool can 
be instrumental in the planning process, enabling public 

health agencies to identify and recruit networks of broad-
reaching chains and remote independent pharmacies that 
can achieve equitable and effective distributions to target 
groups, such as underinsured, high-risk, or age-specific 
populations. This tool will also facilitate rapid, adaptive 
decision-making during pandemics, if, for example, a re-
gion requires additional supplies, particular pharmacies 
are unwilling or unable to provide assistance, or the target 
population changes.

As with many optimization studies, the general insights 
gleaned from the design and preliminary applications of this 
decision-support tool might be as valuable as the tool itself. 
The Texas DSHS has gained actionable perspectives on the 
geographic coverage and redundancies of major pharmacy 
chains, the unique reach of independent pharmacies, and 
as discussed further (http://www.bio.utexas.edu/research/
meyers/_docs/publications/SinghEID14Supplement.pdf), 
the convenient overlap between optimal distribution net-
works for the underinsured population and total population. 
Given the need for and difficulties associated with enlisting 
independent pharmacies in sparsely populated areas, state 
agencies should engage them well before the next pandem-
ic, perhaps in partnership with local health departments.
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