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The risk of acquiring sexually transmitted infections (STls) depends on individual behavior and the network
of risky partnerships in which an individual participates. STl epidemics often spread rapidly and primarily
among individuals central to transmission networks; and thus they often defy the mass-action principle
since incidence is not proportional to the infectious fraction of the population. Here, we estimate the cantact
Keywords: netwo_rk structure for an f\tlanm, chrgia community with heterog‘eneous se&lal and drug-related risk
HIV behaviors and build a detailed transmission model for HIV through this population. We show that accurate
estimation of epidemic incidence requires careful measurement and inclusion of diverse factors including
concurrency (having multiple partners), the duration of partnerships, serosorting (preference for partmers
with matching disease state), and heterogeneity in the number and kinds of partners. In the focal population,
we find that injection drug users (IDUs) do not directly cause many secondary infections; yet they bridge the
heterosexual and men-who-have-sex-with-men (MSM) populations and are thereby indirectly responsible
for extensive transmission.
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The role of bridging populations has been noted in both the
theoretical and empirical (Anderson and May, 1991; Keeling and
Rohani, 2008) study of many infectious diseases. For example, several
recent studies (Kral et al., 2001; Pisani et al., 2003: Howard and Latkin,
2006; Lindenburg et al, 2006; Kretzschmar and Wiessing, 2008) on
the role of injection drug use in the HIV pandemic have found that
injection drug users (IDUs) constitute a high-risk core group which
facilitate transmission to lower risk populations with sexual risk
factors. Although the impact of injection drug use has largely been
diminished by public health interventions and herd immunity in
mature HIV epidemics in North America and Europe (Lansky and
Drake, 2009), it still accounts for a large fraction of transmissions in
emerging HIV epidemics throughout the developing world (Grassly et
al, 2003; Abramovitz et al., 2009). In the case of sexually transmitted
discases, the direct quantification of the role of bridge populations is
complicated by many factors, including the complex network
structure of sexual contacts that mediate transmission (Saidel et al.,
2003 Wiessing and Kretzschmar, 2003) and survey designs which
typically yield biased cross-sectional snapshots of a dynamic network
structure (Salganik and Heckathorn, 2004; Volz and Heckathorn,
2008: Rothenberg et al., 2000).

* Corresponding author,
E-mail address: evikvolz@umich.edu (E. Volz).

1755-4365/% - see front matter © 2010 Elsevier B.V. All rights reserved.
doi: 10,1016/ 1.epidem.2010.06.003

Here, we have sought to overcome these problems and quantify the
epidemiological roles played by various risky behaviors using data from
a social network study that included 226 individuals at high risk for HIV
infection in Atlanta, Georgia (Rothenberg et al., 2000). These data were
used to parameterize a realistic network-based mathernatical model of
HIV transmission dynamics that accounts for extended-duration
partnerships with different risk factors and thus allowed us to
investigate the epidemioclogical significance of each partnership type.
The model also incorporates the natural history of HIV infection and can
accommodate a diverse range of network topologies including arbitrary
degree distributions, variable duration of partnerships, and the tendency
of HIV positive individuals to positively assort with other seropositives.
Subjects were recruited into this study over three years using a chain-
referral survey method known to produce biased samples {Salganik and
Heckathorn, 2004 Volz and Heckathorn, 2008 Rothenberg et al., 2000).
We corrected sample bias using sociometric variables to derive inverse
probability weights, and then estimated the structure of the sexual and
drug-use contact network, including the variable numbers of partners
with different sexual and drug-use risk factors, variable durations of
partnerships, and variable contact rates per partnership.

Our analysis suggests that injection drug use can play an important
and changing epidemiological role in this community. Although HIV
spreads more rapidly among 1DUs than among other risk groups in the
community, transmissions through injection drug use never account for
the majority of transmissions and rapidly fall oft in later stages of the
epidemic. Despite this, injection drug use greatly exacerhates the ultimate
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extent of the epidemic by bridging the community of men-who-have-
sex-with-men (MSM) and the predominately heterosexual community
(HET). This essential epidemiological role of IDU's, however, is only
apparent through analyses that properly accounts for network structure.

Methods

Our data, which are described in great detail in Rothenberg et al.
12000}, were collected using a chain-link sample design. A partial
representation of the network of partnerships revealed by the survey is
iltustrated in Fig. 1. Seeds for each of the six constructed chains were
chosen as representative of the neighborhood based on ethnographic
evaluation. These persons were over 18 years of age, male or female, and
were involved in activities that placed them at risk for HIV acquisition or
transmission. The study attempted to interview all participants at least
twice, and succeeded with 80% of respondents. A third interview was
conducted with 50% of respondents. Longitudinal sampling allowed for
the identification of concurrent partnerships as described below.

The sample composition is not generalizable to the population-at-
large, whose risk behavior is likely to be much less intense. We
hypothesize that the sample is representative of inner city at-risk
groups in Atlanta.

Respondents in the survey were able to report multiple concurrent
partnerships which sometimes featured multiple risk factors. In each
partnership, we recorded the primary risk factor, which could be anal
intercourse {Al), vaginal intercourse (VI), or sharing needles when
injecting drugs {NS). The primary risk factor (PRF) for each partnership
was determined by following a hierarchy of risk factors in the order of
NS. Al and VI. These simplifications were necessary as the full spectrum
of risk behaviors within a single partnership can be very complex and
difficult to operationalize in a mathematical model. The PRF was
considered to be needle sharing if any sharing of injection paraphernalia
was reported and regardless of sexual behavior. Sexual risk behavior
was reported in only six of 53 needle-sharing partnerships, so there was
not much overlap of risk behavior in this sample. Al was considered the
PRF if there was no needle sharing and regardless of whether there was
V1. And VI was the PRF otherwise. Sexual partnerships in which perfect
condom use was reported were excluded from the analysis. And drug
injection partnerships were excluded if no needle sharing was reported.
We then estimated two quantities:

» the mean duration of each partnership type (the interval from first
to final contact with a given partner), and
» the mean contact rate {contacts per day) of each partnership type.

Analyses were based on both the point estimate of these quantities
and a sensitivity analysis using estimated standard errors.

We estimated the structure of the contact network using sampling
theory developed for Respondent Driven Sampling (Salganik and
Heckathorn, 2004; Volz and Heckathorn, 2008), a chain-referral
sampling method. Survey weights were calculated that account for
sample bias due to over-recruitment of individuals with high
sociometric degree. For the purpose of deriving sample weights, we
defined sociometric degree to be the number of partnerships reported
during an interview, regardless of whether those partnerships are
used for subsequent analysis. This includes partnerships of a social
nature, which lack epidemiological significance, but could neverthe-
less influence the probability of being included in the survey.

Weights are inversely proportional to the probability that a unit is
included in the sample. The sample inclusion probability is assumed
to be proportional to sociometric degree of a unit, d;, since more
partnerships create more avenues for recruitment into the study.
Therefore weights are proportional to 1/d.. Justification for this idea
can be found in Salganik and Heckathorn (2004) and Volz and
Heckathorn (2008). We further weighed each unit by a factor that
corrects for homophilous recruitment tendencies, called a recruitment
weight, which we denote . This accounts for the possibility that if a
certain unit is sampled, similar units will subsequently be sampled
and that moreover, such units may generate more recruitments on
average. These patterns can, for example, skew a sample towards
units similar to the seeds that begin the recruitment trees. Unfortu-
nately, ¢ does not have a closed form, but our approach does not
deviate significantly from the one presented by Volz and Heckathorn
{2008 . The total weight for unit i is w;=;/d,.

Weighted means are used as estimates for model parameters such
as concurrency and partnership durations. For example, let {w;} be the
set of derived weights for each sample unit i, and {r;} be the set of
average durations of partnerships for each sample unit. Then, we
would estimate the average duration of partnerships as

1/p= 2w xr/ 2w i1
i 1

In Section 1.1, we describe how weights are incorporated into the
degree distributions used for modeling. Standard deviations were
estimated using the variance estimator presented (Volz and Hecka-
thorn, 2008}, which is a refinement of the Hansen and Hurwitz (1943)
variance estimator for chain-referral samples.

&
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Fig. 1, The nelwork of risky partnerships reported by participants in the Atlanta Urban Networks study. Triangles are males, and ovals are females. Large nodes represent HIV positive
individuals, Red links represent partnerships such that the primary risk factor is sharing needles when injecting drugs (NS). Green and blue links respectively represent anal
intercourse {Al) and vaginal inlercourse (V). The direction of arrows indicates that a study participant (the origin of the arrow) reported contact with the target of the arrow. The
color of nodes represents the order in which subjects were recruited into the study {dark shades were recruited earlier and light shades later). Individuals that report any injection

drug use have white interiors.
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Fig. 2. A schematic of the dynamic network model. Edges are selected at random from
the network at a constant rate and exchanged. The two dashed orange edges are
selected and replaced by the two solid orange edges. As the rate of this process, p, is
increased, the system reduces to mass-action dynamics with no stalic network
structure,

Network model

A large body of theory has been developed for static random
networks (Newman et al., 2001, Callaway et al., 2001; Catanzaro et al.,
2005) with arbitrary degree distributions and the spread of epidemics
on such networks (Volz and Meyers, 2007; Volz and Meyers, 2009;
Meyers, 2003; Meyers et al, 2006). We will focus on random
networks generated by the configuration model (CM) (Molloy and
Reed, 1998) with degree distribution {py}. Since we will often need to
refer to the two nodes that constitute an edge, we will use the
terminology ego and alter to refer to the nodes under consideration.
K(ego) is a random variable describing the degree of node ego. K{ego)
can be interpreted as the number of simultaneous or concurrent
contacts experienced by ego, and we will call it the concurrent degree.

In the limit of large network size, our networks have the property
that given an edge from node ego to node x, the probability that
x = alter is proportional to the degree of node alter (kyy.,). Below, we
use {ego,alter} to denote the edge connecting nodes ego and alter to
cach other and (ego,alter) to denote a directed half-edge from ego to
alter. Half-edges are potential conduits for transmission, so that if the
half-edge (ego,alter) exists, ego may potentially transmit to alter.

Our model considers only undirected networks in which every
edge {ego,alter} consists of two half-edges (ego,alter) and (alter,ego).

In Volz and Meyers, (2007), we introduced a class of dynamic
network that is a generalization of CM networks. In these networks,
edges are constantly rearranged by a neighbor-exchange process. A

Table 1
Model parameters and parameter estimates.
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neighbor exchange can be represented by the following pseudo-
chemical equation and is represented in Fig. 2:

{ego, alter} — lego’ alter'} — {ego. alter’} -+ {ego’ alter!. 12

A given half-edge, (ego,alter), will undergo a neighbor-exchange at
a constant rate p. At a rate p, the half-edge (ego,alter) will be
transformed to (ego,alter’) such that alter’ is a node selected with
probability proportional to the degree of aiter’. This process preserves
the concurrent degree sequence of the network.

We have extended the mode] so that during a neighbor-exchange,
individuals can preferentially attach to others with matching
serostatus, for example, a diagnosed HIV positive individual may
seek new partners who are also HIV positive. This phenomenon,
which has been dubbed serosorting (Cassels et al., 2009;: Butler and
Smith, 2007), is thought to play a large role in modulating HIV
incidence in the modern epidemic.

To model this, partnerships between serodiscordant couples termi-
nate at a constant rate i and are then replaced with seroconcordant
parterships. A pseudo-chemical equation illustrating this process is the
following:

2{S.0y—{S.S} + {11}, 03

There was insufficient information within the behavioral survey
data to estimate serosorting rates directly. Therefore we indirectly
inferred serosorting rates by choosing the value that is most
consistent with the observed patterns of connectivity between
susceptibles and infecteds and the sample HIV prevalence. The
methods used are described in detail in Appendix B.

Nodes in the network progress through four states: susceptible,
acute or early HIV infection, chronic or asymptomatic HIV infection,
and removal or death. Infected nodes transmit to their concurrent
partners in the network at a constant rate.

The transmission rates for acute and chronic infecteds to their
susceptible partners are given in Table 1, along with other
transmission probabilities that are based on published estimates
(Baeten and Overbaugh, 2003; Leynaert et al, 1998; Kaplan and
O'Keete, 1993; White et al., 2007).

The model assumes that the acute or early HIV infection stage lasts
on average 60 days (Vanhems et al., 2000), and the chronic infectious
period lasts on average 10 years (Morgan et al., 2002).

We model transmission via three distinct pathways: the sharing of
needles (NS) during injection drug use, anal intercourse (Al), and
vaginal intercourse {VI).

Parameter Mean Std. Dev. Symbol
Avg. duration of acute infection (Vanhems et al., 2000) GO days 17y
Avg. duration of chronic infection {(Meigan et al,, 2002) 10 years - 1y
Contact rate (Al) 116 per thousand per day 0.00026 ¢
Contact rate (VI) 112 per thousand per day 0.00028 i
Conlact rate (NS) 111 per thousand per day 0.00026 o
Avg, duration of partnership (Al) 323 days 206 1M
Avg. duration of partnership (VI) 556 days 46.2 1Y
Avg. duration of partnership (NS) 909 days 52.8 L/
Transmission probability per contact {acute infection, Al) (Leynaert et al., 1998) 18.3% 083 A
Transmission probability per contact (acute infection, VI) (Leynaert et al., 1998) 0.92% 0.0013 ¥
Transmission probability per contact (acute infection, NS) (Kaplan and O'Keefe, 1993) 8.8% 0.088 &
Transmission probability per contact (chronic infection, Al) (Leynaert et al., 1998) 1.4% 010 e
Transmission probability per contact (chronic infection, V1) (Leynaert et al., 1998) 0.07% 0.0001 rj“"f‘
Transmission probability per contact {chronic infection, NS) (Kaplan and O'Keefe, 1993; While et al., 2007) 0.67%

Serosorting rate

0.0067 7
0.336 -
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Each partnership type has its own associated contact rate,
transmission probability per contact, and average duration.

Our analysis was based on the empirical distribution of contacts,
which is generated by

. R — dyiegor dyfegoi d,iego) N .
X4 X Xyl = 320 wiego)x " xy Xy / > wiego). (4)

egoS egee-S

where g+ is a probability generating function (Wilf, 2006), and d 4, d,,
and dy are the numbers of concurrent Al sex, needle sharing, and Vi
sex partners, respectively. The survey weight is denoted w{ego).

Table 2 gives our model of HIV transmission through contact
networks with the following properties:

« An arbitrary distribution of partnerships with extended duration

» Multiple partnership types with distinct transmission rates

» Partnerships with variable durations

» Multiple stages of infection with distinct transmission and removal
rates

+ Preferential attachment by serostatus (serosorting).

The modeling framework is a relatively low-dimensional system of
ordinary differential equations that express the dynamics of edges
between susceptibles and infecteds. Expressing the dynamics in terms
ol edges (as opposed to individuals or nodes) simplifies the system
(reducing the number of equations needed). We here provide some
intuition for how the model equations work, while Appendix A
provides detailed derivations. The approach is similar to the one taken
by Volz and Meyers {2007} My is proportional to the number of half-
edges of partnership type i from a node of type X to a node of type Y.
The total number of such half-edges in a network of size N is NME\"Q’.
Then, for example, the probability that a given type i partnership with
a susceptible goes to an acutely infected individual and is thus a
potential conduit for infection is My / MY where MY is proportional
to the total number of half-edges connected to susceptible individuals
(less by a factor of N}. Then we can calculate the hazard of infection

Table 2

Model equations. § is the fraction of the population susceptible. Mgs, Ms; and Mg; are
proportional to the number of edges between susceptibles and other susceptibles,
susceptibles and acute infecteds, and between susceptibles and chronic infecteds
respectively. Each quantity has a superscript (i} which is an index for contact types
{anal mtercourse (Al), vaginal intercourse (VI), or sharing needles when injecting
drugs (NS} M, My and M; are proportional to the number of half-edges such that node
15 susceptible, acute inlected, or chronic infecled respectively. T; is a derived variable
which is proportional to the number of transmissions per unit time by each contact
type. olif is a derived variable equal to the average excess degree of type |
partnerships among susceptible nedes selected with probability proportional to the
numiber of type j partnerships.

Derived variables:

Ti= M + My

1
By = 00 o () ({q 7J )
Bl L’)ﬁd’ﬂé( >J7ﬂ/'/ wEO|

Ordinary differential equations:
i s MY LMy
o = 4/1,""/-)"& ¥“;| grirtly

M; My
"

MG = MG (5 + ) + M gy 4 (MM O
s

' Vil A i M\'{ T (i Al it i patil A
My = MG (57 4w - My YT ) My ot (MM MMy
. - - . N . N2 .
M = ST+ R (MY MY )+ n*"((M;") /M—M&f)
A= My

M=y sy

from acutely infected individuals for a susceptible node with a
number of risky partnerships described by the integers d4, dy, and d,.
The hazard is proportional to

dA[;;;/\]M;/li; / Mgm 5 dvﬁ;v.‘xMS"r / M;V} + dlB;”MS‘? / Mghv

The survivor function for escaping infection for a single partner-
ship of each type is then found by integrating such a hazard function;
the sequence of surviy_gr functions for each partnership type is
denoted by the vector ¢.

The number of susceptible and infected individuals can be
retrieved from the system via the probability generating function
for the number of concurrent partnerships. The probability of
someone with da,dy, and d, risky partnerships remaining susceptible
would be 630%0% Then the fraction of the population remaining

—

susceptible at any time is given by S = g(6), where g(-) is the
generating function defined in Eq. (4). Further details can be found in
Appendix A.

Results

The prevalence of HIV in the sample is 13.3%. We estimated the
joint-distribution of the number of concurrent partnerships of each
type. The predominant risk factor in this population was vaginal sex
(84% of partnerships), while there were very few MSM and drug-use
partnerships (both comprising 8% of partnerships). Several paramet-
ric distributions (geometric, negative binomial, discretized lognormal,
Poisson and power law) were fit to the data and compared using AIC.
The distribution of the number of concurrent Al partnerships was
geometric (mean 1.7), as was the distribution of the number of
concurrent injection partnerships (mean 2.8). The distribution for the
number of concurrent vaginal sex partners followed a Poisson
distribution (mean 3.0). The distributions are illustrated in Fig. 3.
The parametric distributions (geometric and Poisson) were not used
in subsequent analysis. Rather, all models were constructed using the
empirical distributions.

The epidemiological impact of different partnership types is
determined by the average concurrency, transmissibility per act, the
typical duration of a partnership, and the contact rate per partnership.

Contact rates per partnership were relatively constant among the
three risk factors (Table 1). Partnerships between MSM had the
shortest duration (323 days), while vaginal sex partnerships lasted
556 days. Needle-sharing partnerships were relatively constant,
lasting 909 days on average. Seropositives and seronegatives exhib-
ited similar numbers of concurrent partnerships, averaging 2.8 and 2.9
concurrent partners, respectively.

An important implicit assumption of the network-based models is
that the contact rate and neighbor-exchange rate is specified per edge,
such that people with more edges have a higher contact rate
(summed over all partnerships), and the duration of a partnership is
independent of the number of partners {Blower and Boe, 19933, 1t is
possible that individuals are constrained by a finite budget of
potentially risky contacts, and that heterogeneity is most pronounced
in the number of potential people contacted, not in frequency of risky
contact. Unfortunately, our data are not very informative about the
relationship between the frequency of sex acts and degree; respon-
dents didn't report specific acts, but rather rated the frequency of
contact with each partner on a scale of 1 to 5. We did not find any
evidence for a sexual budget influencing our results, though the
survey may not be sensitive enough to detect one. A linear regression
of mean self-reported contact rate on the number of concurrent
partners did not find a statistically significant downward trend
(p==043).

We used our mathematical model to predict the dynamics of HIV
through a community with these estimated contact patterns. Fig. 4
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Fig. 3. Empirical distribution of the number of concurrent partners with three primary risk factors: A. anal intercourse (Al), B. needle sharing (NS), C. vaginal intercourse (V().

shows the median and 90% confidence interval for the predicted
prevalence of acute HIV infection over time. This is based on four
thousand runs of the model, where each used a random sample of
parameter values from the joint prior distribution of model
parameters in Table 1. We model the priors as a multivariate normal
distribution; standard deviations are reported in Table 1. We set the
initial fraction of the population that is infected to be a normal
random variable (mean=std. dev.=10 "3) to reflect our poor
knowledge of the actual size of the at-risk population in Atlanta.
The fraction initially infected will not have a large effect on the
ultimate extent of the epidemic provided the fraction is small, but it
can have a large influence over the timescale of the epidemic. All
initial infections started in the acute stage and were selected among
those that report an Al partnership.

Substantial uncertainty about epidemic prevalence accrues from
uncertainty in underlying probabilities and rates. However, the model
predicts with high confidence that peak incidence will occur within
about a year of the initial introduction.

To assess the impact of needie sharing, we removed needle-sharing
partnerships from our model entirely. Fig. 5 compares the predicted HIV
prevalence in the presence and {hypothetical) absence of transmission
through needle sharing. Trajectories illustrate the median prevalence
from 4000 model runs at a given time point. Parameters in each model
run were drawn independently from the distributions in Table 1. The
absence of needle-sharing transmission greatly diminishes the spread to
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Fig. 4. Predicted prevalence of acute HIV infection over five years. The thickest line
shows the median prevalence from 4000 miodel runs at a given time point. Each
trajectory is based on a distinct set of parameters drawn independently from the set of
prior distributions in Table 1. The thinnest lines at the top and bottom show 90%
confidence intervals (the 5% and 95% quantiles). Intermediate lines show quantiles in
increments of 10%: 45-55%, 35-65%, 25-75%, and 15-85%.

the heterosexual population and decreases the number ultimately
infected. 33% fewer individuals are infected after five years in the
population without IDUs. But this decline is almost entirely due to
infections prevented among HET. Very few infections are prevented by
removing injection drug use among individuals that report at least one
partnership with a PRF of Al. However [DUs have little impact on the
time of peak incidence, which occurs after =225 days and depends
primarily on the rapid spread among MSM.

IDUs dramatically impact the fate of the epidemic, despite the fact
that they are directly responsible for very few transmissions. Fig. 6
shows the fraction of transmissions that are due to infectious
individuals who are acute and chronic and engaging in any of the
three risk behaviors considered in the model.

The epidemiological importance of IDUs can be explained by their
high centrality in the risky contact network. Betweenness centrality is a
measure of how many shortest paths between pairs of individuals route
through a particular individual (Freeman, 1977). The betweenness of a
node ego is defined as the fraction of shortest paths between all pairs of
actors (alter = ego,alter’ # ego) which pass through ego. The average of
this value tends to go down with the size of the networls, so small values
are unsurprising; only relative values of betweenness are important for
comparing IDUs and non-IDUs. Although one must be cautious when
calculating centrality from incomplete network data, we find that
individuals in the Atlanta Urban network with at least one IDU contact
have an average betweenness centrality of 0.0058 while non-IDUs have
an average betweenness centrality of 0.0024.

The importance of IDUs is partly attributable to the high
transmissibility per act of NS relative to VI {Table 1). We did a
sensitivity analysis (not shown) to investigate a scenario with very
low transmissibility by needle sharing. When the transmissibility by
needle sharing is equal to the transmissibility by VI, we observe a
reduced bridging effect by IDUs; there was lower prevalence in the
heterosexual population (= 13% after five years), and the removal of
IDUs produced a smaller decrease in the prevalence (= 0.5% after five
years). The studies we have cited, however, indicate that the
transmissibility values used in our initial analysis are realistic. Because
there is so much uncertainty about the true value of this parameter,
we used an uninformative prior to generate these results.

Discussion and conclusion

HIV epidemics continue to emerge in the developing world
(Crassly et al., 2003; Abramovitz et al, 2009). A thorough under-
standing of how HIV epidemics unfold in their early stages remains
important for the design of successful interventions.

Mathematical models have the potential to increase our under-
standing of early dynamics of HIV epidemics. For example, they can
focus our attention on certain groups or behaviors that have a
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disproportionate impact on the growth of the epidemic. As we have
shown, the relationship between behavior, contact networks, and
epidemic outcomes can sometimes be non-obvious. Although injec-
tion drug use does not account for very many transmissions in our
study population, it can play an important role in determining the
ultimate extent of the epidemic.

The epidemiological impact of a given risk behavior is modulated by
concurrency, transmissibility per act, the duration of partnerships, and
the contact rate per partnership. All of these factors can vary from
individual to individual. It is difficult to incorporate such behavioral
complexity into a simple mathematical model, and many different
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Fig. 6. The predicted fraction of transmission events thal are due to anal intercourse {Al),
vaginal intercourse {VI), and needle sharing (NS} over five years. These {ractions are
further categorized by whether transmission was committed by an acute or chronically

infected individual

approaches have been tried. We believe that the approach we have taken
strikes a good balance between realism and tractability. Incorporating as
much detail as we have would often require a computationally expensive
simulation, whereas we have accomplished this task within a single
mathematical framework consisting of eighteen ordinary differential
equations. Simplistic mass-action models would have difficuity making
full use of these data, and might not reveal the complex relationship
between risk behavior and epidemic outcomes that we found.

Our model also motivates the collection of new kinds of data in
future behavioral surveiilance. Many parameters are readily estimated
using chain-referral sampling data. But there are relatively few
behavioral surveys that collect all of the social network information
necessary for parameterizing complex network models such as the one
presented here. These models require detailed information on the
duration, overlap, and concurrency of partnerships as well as the
diversity of these values at the individual level. Ideally, such data should
also provide information on the population-scale network of contacts,
so that the centrality of certain actors, such as IDUs, can be assessed.

Our data was based on longitudinal investigation which repeatedly
returned to the same individuals. There was considerable attrition in
later waves of the study, suggesting that diary-based sampling
methods may be better for estimating the changing structure of
contact networks (Mossong et al., 2008).

While our modeling approach is largely a generalization of the
approach taken by Volz and Meyers (2007), a novel feature is our
ability to account for preferential attachment of individuals with
matching serostatus. Many network-based samples have issues
related to correlation between sample units who are connected in
the social network (Christakis and Fowler, 2007). This correlation may
arise from the tendency for an attribute to spread from a node to a
neighbor (e.g. social influence). Or it may arise from partnerships
dissolving and reforming with preferential attachment (e.g. social
selection). Determining the relative importance of these mechanisms
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has become a notorious problem when interpreting cross-sectional
network data. Our network model allows us to predict how much
correlation between network partners to expect as a function of time,
epidemic prevalence, and serosorting rates. Consequently, we are able
estimate serosorting rates by finding the value that is most consistent
with the observed partner correlations and epidemic prevalence.
Although we did not find evidence for significant serosorting in our
study population (Appendix B), this indirect approach is potentially
generalizable to other domains including those outside epidemiology.

While our model accounts for many aspects of network structure
and evolution, there are many directions in which it could be
extended. For example, it considers a closed population without
immigration or natural mortality, and thus it is not appropriate for
modeling long time periods or populations experiencing inflows or
outflows. We have not assessed the importance of insertive/receptive
roles in sexual partnerships. And, we have also not accounted for
certain higher-order correlations in the contact network, such as the
possibility that an MSM that injects drugs may be more likely to inject
with another MSM than a non-MSM. While we did not find any evidence
of such correlations, this could reduce the bridging role played by IDUs
to the heterosexual community. Only six out of 53 needle-sharing

partnerships reported any sexual risk behaviors, and the frequency of

anal intercourse in these partnerships was not significantly different
from the sample frequencies ( y* test, p == 10 7). These models can also
be used in the future to evaluate and optimize targeted interventions
such as pre- and post-exposure prophylaxis (PREP) (Lima et al., 2008;
Granich et al., 2009; Lalani and Hicks, 2008). PREP has been investigated
previously using mass-action compartmental models; and network
models might allow a more nuanced consideration of PREP targeted at
core-groups or bridging population such as IDUs.
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Appendix A. Dynamic network model

Every individual has a number of contacts of different types. There
will be m contact types. The probability that a random individual will
have number dl'dz,»»»,ﬂ,, contacts of each type is described by the
degree distribution P(d). The number of contacts of each type of a
randomly selected individual will be generated by

—

gixy = 2
d' o

P:’E; ﬂxi” (5

All dynamic variables have a superscript (i) which indexes the
contact types (e.g. Al, VI, or NS). 617(¢) gives the probability that an
individual with one contact of type i will remain susceptible at least to
time t. The fraction of the population which is susceptible is given by

N
S = g{0).
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Acutely infected individuals transmit to type i partners at the rate
equal to the transmission probability per contact times the contact
rate: 4" = "% ", Similary £ =77 ¢ is the transmission rate
per type-i partnelship between a susceptible and a chronic infected.

If the population size is N, the total number of half-edges in the
network of type i will be

/Wi]IiNX[(»I (6)
. ‘

Subsequently, and without loss of generality, we will scale all
variables as if N=1,

Mgs. Mg, and Mg will be proportional to the number of edges
between susceptibles and susceptibles, susceptibles and acute
infecteds, and susceptibles and chronic infecteds respectively. These
variables will be normalized such that the maximum value ome will
be M. Ms. M,. and MJ will be proportional to the number of edges
such that one of the two nodes is susceptible, acute infected, or
chronic infected respectively.

The hazard of infection for contact type I is proportional to the
number of contacts from susceptibles to infecteds. M;‘,f M and
M7 ME?, where the superscript gives the index of the contact Lype.
This leads to the time derivative of 6 {further details can be found in
Volz and Meyers (2007 }):

M )i Mg/

~p0 (7

J

0

The equations governing the evolution of the M variables are most
easily understood in terms of several derived variables.

The number of contacts of type i made by susceptibles is

=
) .
Kbl

The transmissions per unit time by contact type i is proportional to
the number of edges from susceptibles to infecteds:

M I
M = H"[( 3
S dXi

T = MY+ 3 My

.

Nodes newly infected via partnerships of type j will have a number
of contacts generated by

The average excess degree of type i of a susceptible node that is newly
infected via a partnership of type j is the mean of the preceding
distributicn, and is given by

P R L d -
Oij)y =0 { g(x)} / <{——g(x)} )
dx;dx; . dx; .

This is the average degree of a node infected at time ¢ not counting
the partnership which it was infected (Meyers, 2003).

To evaluate Eq. (7}, we must know MY for each contact type i. This
is found by adding up the following terms:

» Contacts of type I from acute infected to susceptibles are eliminated

at a rate equal to the transmission rate plus the rate of progression
to the chronic phase

M ().
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+ At the rate p, an edge is re-wired. With probability proportionaj to
the fraction of half-edges connected to acute infecteds, M{" ; M1
the new edge starting at a susceptible will terminate at an acute
infected. This is accounted for with the addition of the mixing
term

pUMSM M),

Serosorting occurs at a rate t. At each sorting event, two partnership
between a susceptible and an infected are terminated and replaced
with partnerships between two susceptibles and between two
infecteds. This is accounted for with the addition of the sorting term

—uMy

At time t, a number of transmissions proportional to Tj(f) occur via

contacts of type j.

- Individuals newly infected via contacts of type j will have an
average of 6(i,j) partnerships of type i.

- A fraction M§{/ M§" of the contacts from susceptibles go to other
susceptibles, and will subsequently lie between susceptibles and
infecteds.

- A fraction M) 7 MY” of these go to infecteds, and will subsequently
lie between infecteds and infecteds.

So the total change per unit time due to transmission

Adding these terms for all contacts of type j results in the following
solution:

My = =M (1" + )
VY (U ..
+ T T o
MS' J

—uMy ! (:M_;'f‘M,"” /MY —M;.T).

Note that if there is only one contact type and one stage of
infection, this is a much more simple equation similar to the system
presented by Volz and Meyers {2007):

M., CMgtf3 Y
Mys—Mg ...
P T
M,
—uMg -+ pIMM, [/ M-—-Mq).

The dynamics of Mg, are found by accounting for the following:

« Contacts of type i from chronic infecteds to susceptibles are
eliminated at a rate equal to the transmission rate plus the rate of
progression to the dead/inactive state, /3" + ;.

As acutes move to chronic-stage infection, edges between suscep-
tibles and acute infected change to susceptible and chronic infected
at the rate Mé‘fy,.

At the rate p, an edge from a susceptible to chronic infected is re-
wired. With probability proportional M{"/M‘ the new edge
starting at a susceptible will terminate at a chronic infected. This
is accounted for with the addition of the mixing term

pl(mia MY hhj‘).

Serosorting occurs at a rate y. At each sorting event, a partnership
between a susceptible and an infected is terminated and replaced
with partnerships between two susceptibles and two infecteds. This
is accounted for with the addition of the sorting term

—pMy

At time t, a number of transmissions proportional to Tj(t) occur via
contacts of type j.

- Individuals newly infected via contacts of type j will have an
average of &(i,j) partnerships of type i.

A fraction M{// M of these go to chronic infecteds, and will
subsequently lie between acute and chronic infecteds.

So the total change per unit time due to transmission is

(i

— S T aL).
M;;“ 7 1

Adding these terms gives:

yuL i i (0
Mg = Mg (B + )+ My
My
L5 Toii ) (10!
gt f
7

—pM (M‘S"“MJ‘" [ MM )

A similar calculation gives the dynamics of M.

(i
{

M
LT )
s

T
(11}
4™ (MS!I} + Msl/) 4 pP <(Ms;_i;>2 /M- Mxls)

If there is only one contact type and one stage of infection, this is a
much more simple equation similar to the system presented by Volz
and Meyers {2007):

2%7‘6 (12}

Mss = M,

AT P ;)(Mif /M- Mss)-

To account for the effects of mixing (re-wiring of partnerships), we
also require the number of contacts originating from infecteds which
appears in Eq. (8).

- Edges counted in M{" change state to the chronic infected - y,M;".

» At the rate mM;-“. edges connected to susceptibles become
connected to acute infected.

M =~y M~ MY (13)
where

" d -
M =8 —wg(x‘)}

8 dX,' \ X0

(14
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Similarly, the equation for M, is found by noting

« Edges counted in M,“) are eliminated by recovery/death events at
therate — yM".

« At the rate y,Mf”, edges connected to acutes become connected to
chronic infected.

Adding these terms gives

R LI (15

Appendix B. Estimation of serosorting rates

The serosorting rate, g, is the rate at which susceptible individuals
terminate partnerships with infected individuals and create new
partnerships with other susceptible individuals. This is illustrated
with the pseudo-chemical Eq. {3) in the main text. The behavioral
survey data used in this study did not include enough information to
estimate serosorting rates directly. This necessitated an indirect
approach, whereby we examined a range of serosorting values, i,
within the model and selected the value which was most consistent
with the observed sample HIV prevalence (13.3%) and the observed
pattern of partnerships between infected and susceptible individuals.

We used the following odds ratio as a measure of network
connectivity between susceptibles and infecteds:

My /M,

OR = MM (16)

This is odds that a partner will be infected given that you are
infected, which changes over the course of the epidemic. The observed
odds ratio from the sample is 2.2.

The procedure for finding the optimal ¢t was the following:

1. Generate 4000 parameter sets from the multivariate normal prior
distribution in Table 1. To generate sorting rates: (a) For each of the
4000 parameter sets, fix the sorting rate for NS, Al, and VI
partnerships to the corresponding neighbor-exchange (or “mix-
ing”) rate times an i.i.d. uniform random variable between 0 and 5.
We wili call the uniform r.v. the sorting rate expansion factor (SREF),
and results will be reported in terms of this value.

Qdds Ratios

05 10 15 20 25
Sorting rate expansion factor

N 0.010

0.008 /\ \
N
N

0.006

0.004 \

0.002 .

~

0 1 2 3 4 5
Sorting rate expansion factor

Kerne! density at O

0.000

Fig. 7. Top: The odds of having an infected partner given that one is susceptible versus
the ratio of the sorting rate to the neighbor-exchange rate. Each point corresponds to
the solution of the model with a stochastic parameter set and at the time when the
epidemic has a prevalence of 13.3%. The color scale illustrates a two-dimensional
Gaussian kernel density that was fit to the cloud of points. The dashed line shows where
the odds ratio equals 2.2. Bottom: The kernel density of the sorting rate when the odds
ratio equals 2.2.

2. Generate 4000 model trajectories using each of the parameter sets.

3. For each trajectory, calculate the odds ratio at the point where the
epidemic has a prevalence of 13.3%, which is the prevalence
observed in the sample.

4. Plot the odds ratio versus the sorting rate.

5. Fit a two-dimensional Gaussian kernel density to the resulting set
of points in the SREF x OR space.

6. Use the kernel density to estimate the likelihood of having a
combination of 13.3% prevalence and an odds ratio of 2.2.

Fig. 7 shows the resulting collection of odds ratios and the
Gaussian kernel fit. As the sorting rate increases, edges in the network
become more concentrated between seroconcordant pairs {e.g.
susceptible-susceptible and infected-infected), and the odds ratio
increases.

The Gaussian kernel predicts that the most likely value for the SREF
is quite small: 0.336. In other words, individuals choose partners on
the basis of serostatus only about a third as frequently as they choose
partners for other reasons.

It also predicts that there is 32.9% probability that there will be an
odds ratio of 2.2 (the observed value) or less when y== 0. Hence. we
cannot reject the hypothesis that there was no serosorting in this
population at all.
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