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The reproductive ratio, Ry, is a fundamental quantity in epidemiology, which determines the
initial increase in an infectious disease in a susceptible host population. In most epidemic
models, there is a specific value of R, the epidemic threshold, above which epidemics are
possible, but below which epidemics cannot occur. As the complexity of an epidemic model
increases, so too does the difficulty of calculating epidemic thresholds. Here we derive the
reproductive ratio and epidemic thresholds for susceptible-infected—recovered (SIR)
epidemics in a simple class of dynamic random networks. As in most epidemiological
models, Ry depends on two basic epidemic parameters, the transmission and recovery rates.
We find that R, also depends on social parameters, namely the degree distribution that
describes heterogeneity in the numbers of concurrent contacts and the mixing parameter
that gives the rate at which contacts are initiated and terminated. We show that social
mixing fundamentally changes the epidemiological landscape and, consequently, that static
network approximations of dynamic networks can be inadequate.
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1. INTRODUCTION

The reproductive ratio, Ry, is defined as the expected
number of secondary infections of an initial infectious
individual in a completely susceptible host population,
and is related to the likelihood and extent of an epidemic
(Anderson & May 1991). The epidemic threshold is a
critical value of R, at which epidemics become possible.
This value has been shown to depend on the trans-
mission and recovery rates of a disease, as well as the
structure of the host population through which it
spreads (Diekmann & Heesterbeek 2000; Serrano &
Bogunia 2006; Trapman 2007). A primary goal of public
health is to bring diseases under their epidemic
thresholds by lowering transmission rates, increasing
recovery rates, disrupting contacts that can lead to
disease transmission, or immunizing susceptible hosts
(Meyers et al. 2005).

For most diseases, field epidemiologists go to great
lengths to estimate R(; and mathematical epidemiolo-
gists often derive results of their models in terms of R,,.
This value thus serves as a cornerstone for disease
forecasting and intervention and allows straightfor-
ward comparisons of not only different diseases and
strains but also diverse mathematical models. For some
complex epidemiological models, however, we do not
yet know how to calculate Ry (Anderson & May 1991;
Altmann 1995, 1998).

Semi-random networks have been proposed as a
realistic model for host-to-host contact patterns
(Gupta et al. 1989; Andersson 1998; Callaway et al.
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2000; Liljeros et al. 2001; Strogatz 2001; Newman 2002;
Newman et al. 2002). Epidemiologists have used net-
work models to study susceptible—infected—recovered
(SIR) epidemics through heterogeneous contact net-
works and have shown that the reproductive ratio
critically depends on host population structure. The
mean number of contacts alone is often not sufficient for
predicting disease dynamics (Andersson 1999; Eames &
Keeling 2002; Meyers et al. 2005, 2006; Bansal et al.
2007; Volz 2008a).

A critical assumption of these network models is that
contacts remain fixed throughout the epidemic period.
This will not be true for many diseases, particularly
those causing long-lasting outbreaks. Thus, researchers
have turned their attention to modelling disease
transmission through networks with transitory con-
tacts (Altmann 1995, 1998; Ferguson & Garnett 2000;
Bauch 2002; Eames & Keeling 2004; Gross et al. 20006;
Volz & Meyers 2007). We recently introduced a simple
model in which each individual has a constant number
of concurrent contacts, but the identities of those
contacts change stochastically through instantaneous
neighbour exchanges (NEs). In a NE, two randomly
chosen pairs of contacts are broken and then swapped
(e.g. A-B and C-D become A-C and B-D). This class of
network dynamics has already been well studied
outside of epidemiology (Watts & Strogatz 1998;
Maslov & Sneppen 2002; Evans & Plato 2007; Holme &
Zhao 2007).

Here, we derive the epidemic thresholds for this
simple class of dynamic random networks. Our model
is made mathematically tractable by making certain
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simplifying assumptions, such as that the number of
concurrent partnerships of a given node is fixed, and
that NEs happen instantaneously as a Poisson process.
We refer to the process of NE as ‘random mixing’, and
the rate of NE as the ‘mixing rate’. In simple models, as
the transmission rate increases, an epidemic is initially
impossible but becomes possible above the epidemic
threshold. In this model, as transmission rate increases,
diseases cross through three states: initially epidemics
are impossible, then epidemics become possible, but
only when there is a critical level of random mixing,
and, finally, epidemics are always possible regardless of
the mixing rate.

Mathematical models of disease transmission through
dynamic networks are relatively new and difficult, and
thus epidemiologists previously have approximated
dynamic contact patterns using static network models
(Newman 2002; Meyers et al. 2005, 2006). These models
allow easy calculation of important epidemiological
quantities through bond percolation (BP) methods
(Callaway et al. 2000; Newman 2002; Meyers et al.
2005, 2006). Using the reproductive ratio derived below
for dynamic networks, we systematically evaluate the
adequacy of these simple approximations. Under modest
mixing rates, dynamic networks are almost fixed and
can be adequately modelled as static networks. As the
mixing rate increases, these approximations worsen.
When the mixing rate is very high, however, the
population becomes well mixed and can be effectively
modelled using another simple framework introduced in
Volz & Meyers (2007) and Volz (2008b).

Below, we begin by summarizing the epidemic model
introduced in Volz & Meyers (2007). We then derive
the reproductive ratio and epidemic thresholds for this
model, and use these quantities to evaluate static
network approximations of fluid host populations.

2. SIR EPIDEMICS IN DYNAMIC RANDOM
NETWORKS

There is extensive theory describing static random
networks with arbitrary degree distributions (Callaway
et al. 2001; Newman et al. 2001, 2002; Chung & Lu 2002;
Catanzaro et al. 2005), particularly networks generated
by the configuration model (CM; Molloy & Reed 1995,
1998). We consider a network with degree distribution
with density {p;}; that is, K(ego) is a random variable
giving the degree of node ego and has density p, for all
nodes ego. K(ego) is the number of simultaneous
contacts experienced by a node and is referred to as
the concurrent degree. In the limit of large network size,
CM networks have the property that given an edge
from node ego to node z, the probability that x = alteris
proportional to the degree of node alter (kite,). Below,
we use {ego, alter} to denote the edge connecting nodes
ego and alter to each other and (ego, alter) to denote the
contact from ego to alter. We consider only undirected
networks in which every edge {ego, alter} consists of
two contacts (ego, alter) and (alter, ego).

In Volz & Meyers (2007), we introduced a class of
dynamic networks that are a generalization of CM
networks. These networks evolve by a NE process
whereby the pairs of edges are selected uniformly at
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random and instantaneously interchanged. An edge
swap can be represented by the following pseudo-
chemical equation:

{ego, alter} + {egd, alter'} — {ego, alter'}

+ {ego', alter}. (2.1)

From the perspective of a given contact (ego, alter),
an edge swap will take place at a constant rate p, that is,
at a rate p, the contact (ego, alter) will be transformed
to (ego, alter’), where alter’ is a node selected with
probability proportional to the degree of alter’. This
process conveniently preserves the degree sequence of
the network. We will refer to a specific contact
(ego, alter) as a transitory contact, and the number of
such contacts experienced over an individual’s infec-
tious period will be called the transitory degree.

We briefly review the model presented in Volz &
Meyers (2007), which describes the co-dynamics of
these evolving networks and a simple SIR-type epi-
demic. Let nodes fall in three mutually exclusive states:
susceptible; infectious; and recovered. Given the diffi-
culty of modelling both dynamic processes simul-
taneously, we considered only the simplest type of SIR
dynamics. An infectious node transmits disease along
each its edges at a constant rate r, causing susceptible
neighbours to enter the infectious state; and, it enters
the recovered state at a constant rate u. Following the
convention introduced in Volz & Meyers (2007), we refer
to the combined network and disease dynamics as the
NE model.

3. Ry AND THE EPIDEMIC THRESHOLD

R, traditionally indicates the expected number of
secondary infections following the introduction of an
initial infected into a completely susceptible popu-
lation. In network models, however, this definition does
not always lead to threshold behaviour at Rg=1
(Newman 2002; Trapman 2007). For example, suppose
a static network has degree distribution p; (§2) and a
uniform transmission probability 7’ per edge. If we
assume that the initially infected node is selected
uniformly at random from the population, then the
expected number of transmissions by that node will be
7' kpy,. As usual, when this value (the mean number
of transmissions) exceeds unity, the growth in the
number of cases is supercritical, and epidemics can
occur. But in a CM network, an individual infected
early in an outbreak (other than the very first
individual infected) would not have degree described
by distribution p;, but rather would be selected with
probability proportional to degree. Then, the number of
secondary cases from such an individual would
be 7' 3" (k — 1)kpy./ > kpy.. This latter quantity can be
larger than the former, implying that epidemics can
spread among high-degree nodes even when the mean
degree appears inadequate to sustain transmission.
Therefore, we define the quantity R, to be the
expected number of secondary infections from an
individual who is infected early in an epidemic but is
not the very first case in the population (patient zero).
Similar quantities were described in Andersson (1997)
and Aparicio et al. (2000). Unfortunately, notation is
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not consistent within the literature on epidemic
thresholds. Not all authors differentiate between R,
and the definition of R, above (e.g. Andersson 1998).

For CM networks, R, represents the expected
number of transmissions events from an infected node
chosen with probability proportional to degree, assum-
ing that all of the node’s contacts are susceptible except
for the one that transmitted disease to it. When R,>1,
there is positive probability that epidemics will occur
(Trapman 2007).

R, depends on both the random number of
transitory contacts experienced by a node over its
infectious period and on the transmissibility 7 of the
disease (the probability that an infectious node will
transmit disease to one of its transitory contacts).
M will be a random variable denoting the number of
transitory contacts, and ®, will denote the infectious
period. A node with a number k concurrent contacts
will experience a number m > k transitory contacts over
its infectious period t. This quantity m, which depends
on k, t and Pr[M = m|K = k,®, = {], results from the
stochastic exchange of neighbours. An infected indi-
vidual transmits disease to each transitory contact
with a probability 7 that depends on the other epidemic
and social parameters. Thus, given m transitory
contacts, the number of transmission events will also
be a random variable.

3.1. Derivation of transmissibility

Suppose that a node ego becomes infected and that ego
has a transitory contact with alter that overlaps with
ego’s infectious period. The duration of ego’s infectious
period will be denoted ©y(ego), which has distribution
exp(u). We will use the term infectious contact period
to mean the overlap between ego’s infectious period and
the ego—alter transitory contact, and use the symbol
O(ego, alter) to denote the duration of this period.
Subscripts will be dropped when the context is obvious.
We next define 7 to be the probability of transmission
from ego to alter during their infectious contact period.
7 is easily derived using the theory of Markov processes,
but here we provide a detailed calculation.

Our model assumes that recovery and edge swapping
are two independent Poisson processes with rates u and
p, respectively. The termination of the infectious
contact period between ego and alter will thus also be
a Poisson process with rate pu+p.

Then 7 is given by

7 = E(1 —exp(—7r0(ego, alter)))

= J Pr[ego transmits to alter|@(ego, alter) = 1
=0

X Pr[O(ego, alter) = t]dt. (3.1)

Since the timing of both transmission and the
infectious contact period are exponentially distributed

with parameters r and u+ p, respectively, we have
Pr[O(ego, alter) = 1] = (u + p)e#H°)", (3.2)

Pr[ego transmits to alter|@(ego, alter) = 1] =1—e ™",

(3.3)
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Substituting these expressions into the integral in
equation (3.1) and solving yields
r=—
r+u+p
Owing to the memoryless property of Poisson
processes, every transitory contact corresponding to a
given concurrent contact has uniform probability 7 of
resulting in transmission. Consider the history of a
single concurrent contact. The individual becomes
infected at time ¢y, and the concurrent contact is
exchanged at times t;, to, ..., ty—1. Recovery occurs at
tar- The total number of potential transmissions, M, is a
random variable whose distribution is calculated in
§3.2. Our goal is to find the transmission probability
in each interval (¢, t), ..., (tar—1, ty) corresponding to
the duration of a single contact. If we know that the
interval begins and ends at times ¢, and ¢4,
respectively, then the probability of transmission is
1 —exp(—=r(t;y1 — t;)). If instead we assume only that
the #th exchange occurs at time t;,; and that the
individual has not yet recovered, then we have 3~
t;i+exp(u), and ¢4 ~t;+exp(p), by the memoryless
property of Poisson processes. The probability of
transmission during the interval beginning at ¢; can be
found by repeating the calculation given in equation
(3.1), but shifting all time intervals by ¢, Once again
we find

(3.4)

ro= j (1—exp(—r(t— 1,)))(u + p)
Xexp(—(u+ p)(t— 1)) dt = r/(r + p +p) =1,

which says that each transitory contact has uniform
probability of resulting in transmission. Consequently,
given a total m transitory contacts along a single edge,
the distribution of the number of transmissions along
that edge has distribution Binomial(m, 7).

It is possible that many individuals will have more
than one concurrent contact (K(ego) >1). Once infected,
the number of transmission events along each of an
individual’s edges will be correlated since each edge is
constrained by the length of the individual’s infectious
period. Owing to this correlation among edges emanat-
ing from the same individual, the number of trans-
mission events per edge is not iid random variables
across all edges in the network (Durrett 2006; Kenah &
Robins 2007). Therefore, our calculation above does not
hold in the case of K(ego)>1, and we can only say that
the distribution of transmissions is approximately
binomial in this case.

3.2. Derivation of R,

In the following derivations, we will use probability
generating functions (pgf’s; Wilf 1994) to manipulate
discrete distributions such as the random number of
contacts or transmissions over an infectious period.
We will use the pgf Hj(z) to generate the random
number of transmissions made by an infected individ-
ual, ego, such that

(i) ego was selected with probability proportional to
concurrent degree, and
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(ii) all of ego’s contacts are susceptible, except the
one by which ego became infected.

The rest of this section will concern the derivation of
Hi(z). R, will formally be defined as the mean of the
distribution generated by Hi(x).

First consider the distribution of M. The minimum
number of transitory contacts during an infectious
period is M= K, corresponding to no NEs. If a contact
(ego, alter) is exchanged for another contact (ego,
alter’) at rate p, then the time between exchanges is
exponentially distributed with parameter p, and the
number of such exchanges during an infectious period of
length ®¢=t¢ will have a Poisson distribution with
parameter pt. Supposing K=1, the distribution for the
number of transitory contacts will thus be given by

Pr[M = m|®y = t] = Pr[m

(pt) m—1 —pt
=T 3.5
It follows that the pgf for the number of transitory
contacts minus one (M—1) given K=1 and ®y=thas a
Poisson density and is generated by

— 1 exchanges|®, = {]

(pt)m—le—pt m—1 t(z—1)
fla) = S E gt — ),
! ; (m—1)!

Because this is offset by one transitory contact (the
original contact), the total number of transitory
contacts, M, is generated by zfi(z). If an individual
has k concurrent contacts, the total number of
transitory contacts will be generated by the product
of generating functions, (zf,(z))".

The degree distribution p; introduced in §2 will be
generated by g(z)=3_;p;z". The hazard of infection is
proportional to the number of concurrent contacts at
that time (Volz & Meyers 2007), so if a node is infected
at time t, the probability of it having concurrent degree
k will be proportional to k. Denote the probability
density ¢, = kp,/(K), and let g;(z) generate the
concurrent degree distribution for nodes selected with
probability proportional to K discounting one concur-
rent contact. This is called the excess degree distri-
bution (Newman 2003) and is generated by

(3.6)

— Z qukfl _ Zk kpkmkil — g/(éﬁ) (37)

Zk kpy, g/(l) '

_ By analogy with equation (3.7), we will also define
H,, which generates transitory contacts selecting nodes
proportional to the concurrent degree, but subtracting
one transitory contact. The mean of the distribution
generated by H; will give the expected number of
potential transmissions of a second generation infected.
Constructing this generating function involves several
steps as follows:

— Integrating over all infectious periods, ©g, and
weighting by the density Pr[@; = t] = ue .

— Summing over possible concurrent degree K, while
weighting by the probability g;.

— Adding a term fi(z) to account for the concurrent
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partnership by which ego was infected excluding the
specific transitory contact that infected ego.

k4>w
k

Therefore, we have

Hy(2) = jPr@o 4 ( (2)

- ujexpu(p(x ~1)

+3 aah(@)

—w)dt + p zk: gz
xjamww—nmx—n—mma (3.9)
Provided z<1, the integrals in equation (3.8) can be

solved analytically, yielding a somewhat unusual
generating function.

~ _ m _ M
Hy(z) —m—i—;quk 1’u_(k—1)p(x—1).

(3.9)

Differentiating with respect to z and evaluating at x=1
yields the mean number of potential transmissions for a
second generation infected.

o) =|—"——>+ (k—l "2
1(1) (# p(z—1)) Z ax;
up k—1
(u—(k=1D)p(z —1))? o
i
_pyrtrg ) (3.10)
wooowo g1
where we have used the definition of ¢;(z) in equation
(3.7).

Now that we have derived the number of possible
transmissions from an infected node, we next consider
the distribution of actual transmissions given the
number of potential transmissions. In §3.1, we saw
that given m transitory contacts corresponding to a
single concurrent contact, the number of transmissions
would be distributed as binomial(m, 7), which is
generated by (1—7+7z)™. But we also saw that this
breaks down when m corresponds to multiple (k>1)
concurrent contacts. Nevertheless, we will make the
approximation that the distribution is binomial when
k> 1. This will provide only an approximate generating
function for the number of transmissions from a second
generation infected, but, most importantly, it will still
give the correct epidemic threshold. This is because the
first moment of the distributions will coincide. In other
words, we will use the fact that the mean value of the
sum of k correlated identically distributed random
variables will be the same as the mean value of the
sum of k iid random variables. Using the composition
property of pgf’s, we have H(z)=H(1—7+ 71),
and the solution for the reproductive ratio is given by

d d -
R* = |:d$H1(.Z'):| . = |:dH1(]. -7+ Tff)
wtpg"(1)
g'(1)
Depending on the degree distribution, solving for
explicit values of R, can be very simple. We use three

z=1

=rH 1) =" +7
m m

(3.11)
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common degree distributions to demonstrate this and
other quantities derived below:

— Poisson with mean z p, = z"e */k!, k>0, generated
by

2(z—1)

g(z) =e¢ . (3.12)

— Power law with exponent a and cut-off x: p,=
k™)1 k7Y, k=1, k<k, generated by

Z/C<K k_a-rk

9(z) = S (3.13)

— A constant: p, = {1if k= «,0 otherwise}, generated
by

g(z) = ", (3.14)

When k=1, this is called the monogamous network.
Constant networks have R,=p7r/pu+ (k —1)7
(u+p)/p, and thus a monogamous network (k=1)
has just R,=p7/u; Poisson networks have R, = p7/
w+ 2r(u+p)/p; and power law network have
R, = pr/p+ (g™ = k') /o ha k™) (u+ p) /1.
Consider the special case of a static network with
p=0. Intuitively, monogamous static networks never
experience epidemics (R,=0), whereas Poisson net-
works have R,=zr as shown previously (Andersson
1998; Diekmann & Heesterbeek 2000; Newman 2002).

3.3. Epidemic thresholds

Epidemic thresholds are found by solving for para-
meters with the condition R,=1. The result is a set of
critical functions of the parameters r, u, p and para-
meters controlling the degree distribution. When
parameters exceed their epidemic threshold, epidemics
have positive probability. Solving for the critical
transmissibility 7= r/(r+ u+ p) gives
!
= = ug'(1) . (3.15)
r+ut+p ¢ (L)(k+p) +pg(1)

Solving for the critical transmission rate, we have
. _ pp+p)g'(1)
9" W) (u +p) + (p—n)g'(1)
And, solving for the critical mixing rate, we have

+ / 1 _ 7 1
. M(T” u)g(/) rpg"(1) (3.17)
rg"(1) +g'(1)(r —u)
For the special case of a monogamous network in which
all nodes have concurrent degree k=1, this becomes

(3.16)

o _ (st
r—u

The critical mixing rate p* does not exist for some
values of transmission rate r and recovery rate u. In
particular, the mixing rate must always be positive and
finite. As the denominator in equation (3.17) goes to
zero, p* diverges to infinity. So, the condition of rg”(1)
+¢'(1)(r —u) = 0 defines a lower bound on the ratio of r
to u below which epidemics are impossible even in the
limit of large mixing rate.

(r/wh, = ¢'(1)/(g"(1) + ¢'(1)).

. (3.18)

(3.19)
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Figure 1. The final epidemic size as predicted by the NE model
(Volz & Meyers 2007) versus the mixing rate p. The * symbols
along the z-axis indicate the predicted critical value p*
(equation (3.17)) at which epidemics become possible. The
power law (solid line) has parameters a=4, k=75 with
w=0.17, r=0.2 and p*=0.50. The Poisson (dot-dashed line)
has z=1.5 with ©u=0.25, r=0.2 and p*=0.15. The monog-
amous (dashed line) network has k=1 for all nodes, with
w=0.1, =0.1 and p*=0.3.

Similarly, it may be possible for epidemics to occur
even if p=0. This occurs when the numerator of
equation (3.17) is zero, which is exactly the epidemic
threshold for static networks (also derived using pgf’s
in Newman 2002).

(r/whw = ¢'(1)/(g"(1) —g'(1)).

Figure 1 gives several examples of the final size
(attack rate) and epidemic threshold given by equation
(3.17) for three degree distributions: Poisson; power
law; and a constant degree (equations (3.12)—(3.14)).
The * on the p-axis indicates the predicted epidemic
threshold in terms of p. The final size in this figure is
predicted by the NE model, introduced in Volz &
Meyers (2007). As predicted, the final size takes off at
the epidemic threshold derived above. As the mixing
rate increases, so does the number of transitory
contacts a typical infectious node has during its
infectious period. Thus, intuitively, the size of the
epidemic grows with the mixing rate, though it may or
may not asymptotically approach 100 per cent. Figure 1
also provides an important check on our derivations.
The dynamic NE model has already been tested against
detailed simulations (Volz & Meyers 2007), so that
the correct thresholds observed here also agree with the
simulated NE model.

Figure 2 shows that, depending on r, 4 and p, there
are three qualitatively different epidemiological possi-
bilities for a Poisson degree distribution (z=1.5). Below
the threshold (r/u)f, (equation (3.19)), no epidemics
are possible; and above the threshold (r/u)y, (equation
(3.19)), epidemics can occur regardless of the mixing
rate p. Between the two thresholds, epidemics are
possible, but only if the mixing rate exceeds its
threshold p* (equation (3.17)). Figure 2 also shows
how the critical mixing rate diverges within the interval
between (/)i and (r/u)3,

(3.20)
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Figure 2. (a) Dynamics fall into three qualitatively different classes depending on the ratio r/u. In the range where epidemics are
conditional on NE dynamics, the critical mixing rate p* (equation (3.17)) is well defined. (b) The critical mixing rate versus the
transmission rate r for u=1. This assumes a Poisson degree distribution (z=1.5).

4. STATIC NETWORK APPROXIMATIONS
AND BP

When applying BP methods to dynamic network data,
it is common to approximate the dynamic contact
network with a static network, such that each
transitory contact is considered fixed (Meyers &
Newman 2003; Jones 2005). A randomly chosen node
ego will have a random number m transitory contacts
generated by F(z) during a hypothetical infectious
period. To determine the form of F(z), first consider the
distribution for the number of transitory contacts,
integrating over all infectious periods. p,, ;—1 will denote
the probability of m transitory contacts per one
concurrent contact during an individual’s infectious
period. We integrate over all possible infectious periods

— =J Pr®, = ] X Prim|@, = dt.  (4.1)
' t=0

Substituting equation (3.5) from §3 into the integral in
equation (4.1) and solving yields the following geometric

density:
) _ m p m—1
m,k=1 1 ¥ P 1 ¥ P .

Using equation (4.2), it follows that the density p,, x—1 is
generated by

© m—1
5 p m K
h(z) = — )| — r =
(@) mz_l<u+p><u+p) mtp—pz
(4.3)

(4.2)

By approximation, we will suppose that each
concurrent contact will realize an independent random
number of transitory contacts such that, for a degree k
node, M will be generated by h(z)*. This approximation
neglects correlations between the infectious period and
the number of transitory contacts as in equation (3.8),
and would be exact only in a scenario where the
infectious period had zero variance (Trapman 2007).
Making these approximations, we find F(z) = g(h(z)).
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The excess transitory degree distribution is analo-
gous to the excess degree distribution defined in §3. It
gives the degree discounted by one contact of a node
that is selected with probability proportional to its
transitory degree and is generated by

B €7 () NP
R@) = e — = /N @/ F ),

(4.4)

where each term in the pgf is weighted by the
transitory degree.

Assuming a static network, BP methods (Newman
2002) can be used to predict final epidemic size (F'S) by
solving' the following self-consistent equations:

u=F(l—7+7u) FS=1—-F(1—7+71u).

(4.5)

This solution is only an approximation, as it does
not take into account the dynamic nature of the
underlying contact network and is based on an
approximate generating function for the number of
transitory contacts.

We can now evaluate the performance of the static
network approximation. Figure 3 is a fixed point
diagram that compares the FS calculated from the
NE equations (Volz & Meyers 2007) with that calcula-
ted from solving equation (4.5). The true FS is found by
integrating a system of ODEs known to reproduce
epidemic prevalence that matches stochastic
simulations (Volz & Meyers 2007). We have assumed
a power law concurrent degree distribution (a=2.1,
k=1T75), arecovery rate of u=0.1, a transmission rate of
r=p or r=2u and mixing rates varying from p=0 to
0.5. The static network approach offers a reasonable
approximation for relatively static populations (low p),

A solution to these equations can be found by a very simple root-
finding algorithm, which works because F; is convex: select a small
number wuy<<1. Then, solve wu;y;=F;(1—7+7u;) for many
iterations.
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Figure 3. Predicted final epidemic size for the NE model
(squares with solid line, r=0.1; with dashed line, r=0.2;
Volz & Meyers 2007) and BP model (circles with solid line,
r=0.1; with dashed line, r=0.2; equation (4.4)) over a range
of mixing rates. The degree distribution is a power law
(a=2.1, k=75), the recovery rate is u=0.1 and the
transmission parameter is r=u or r=2u.

but not for populations with high mixing rates. As
expected, the BP and NE solutions coincide when p=0.

To provide some intuition for the divergence between
the two models, we compare their reproductive ratios.
Recall that equation (3.11) gives the reproductive ratio
for the NE model, now denoted RYF. For the static
network model, BP calculations yield

d u+pg'(1) <p>2

REP: —F(1l=74+72 =7— +27(—|.
a1t )z=1 poog(1) I

(4.6)

Comparing these equations, we see that RY" differs from
RBP by

RYE=RPP when p=0 or p=u/2, which explains the
two intersection points in figure 3. The second intersec-
tion does not in general occur when p=p/2. There is a
one-to-one correspondence between R, and final size;
however, this correspondence differs for the NE model
and BP approximation. Therefore, RYF = RPY does not
imply that final size will be the same for both models.
In the limit of large mixing rate, we have

//1
1imR§E=ﬁ(g,( )+1>,
oo w\g'(1)

This implies that the final size of an epidemic in the BP
model approaches 1 as the mixing rate increases. By
contrast, the dynamic NE model converges to a mass-
action model in this limit, which in general will not have
final size=1 (Volz & Meyers 2007).

lim RPY = .

p—o®

5. DISCUSSION

We have derived the conditions under which epidemics
can spread through populations with heterogeneous
contact patterns characterized by multiple concurrent,

J. R. Soc. Interface

yet transitory contacts. The fate of an outbreak
depends on the contagiousness of the disease, the
recovery rate, the underlying heterogeneity in the
numbers of concurrent contacts and the fluidity of
social contacts. These equations provide insight into
the impacts of population structure and disease
characteristics on disease transmission through
dynamic contact networks and offer a computationally
tractable framework for forecasting and the evaluation
control strategies.

There are three qualitatively different regimes for
the epidemic threshold in terms of the parameter that
controls random mixing via exchange of contacts:
epidemics may be possible independent of random
mixing; epidemics may be possible conditional on the
rate of random mixing; or epidemics may be impossible
even if mixing rates are very high. From a public health
perspective, this suggests that freezing all current
contacts will not necessarily prevent an epidemic and,
conversely, rapid turnover in contacts will not necess-
arily make epidemics inevitable.

We also used the new equations to evaluate the
performance of simpler static network models pre-
viously used to approximate dynamic networks. We
present an intuitive static network approximation for
dynamic networks, and find that it performs reasonably
well for low to medium mixing rates. When mixing rate
is very high, the approximation breaks down, but other
simple models become possible (Volz & Meyers 2007;
Volz 2008b).

These results have practical implications. Many
populations exhibit not only extreme heterogeneity in
contact rates but also dynamic extended duration
partnerships. In Volz & Meyers (2007), the NE model
was applied to a syphilis outbreak in an urban adole-
scent population, and in Volz (2008b), to a hypothe-
tical smallpox outbreak in a simulated urban network.
In both cases, the quantities derived above (the
reproductive ratio and epidemic threshold) allow us
to evaluate and improve vaccination and other public
health strategies.

Future work might consider relaxing the assumption
that NE occurs at a constant rate. In reality, partner-
ships may have characteristic survival times that differ
from the exponentially distributed survival times
implicit in our model. This could have unpredictable
effects on epidemic dynamics, depending on the exact
distribution and the transmission and mixing rates.
Furthermore, our derivations rely on the assumption
that partnerships are uncorrelated and that the net-
work topology is locally tree-like. For many networks,
these quantities will offer reasonable approximations
(Volz & Meyers 2007), but ideally we will eventually
develop similar methods that relax this assumption.

This work complements a related model with
dynamic extended duration partnerships that change
independently of a homogeneous set of nodes (Altmann
1995). Although the model in Altmann (1995) lacked
the heterogeneous network structure of the NE model,
it had the advantage that the concurrent number of
partnerships for a given node was not fixed. This
motivates future development of a more general model
in which the numbers of concurrent contacts vary
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within a population with heterogeneous contact rates.
The case of serial monogamy has also been investigated
in Eames & Keeling (2004), a framework based on pair
approximation, which was subsequently extended to
the case of random numbers of concurrent contacts.
Similarly, we are optimistic that our model can be
extended to a scenario where there is a random number
of cumulative partnerships over the lifetime of an
individual, many of which overlap in a stochastic
manner, but such that the number of concurrent
partnerships at any time is not fixed.
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