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Figure 1. Joint impact of clustering and variance of the degree distribution on epidemic size. Upper

left: The final epidemic size is shown as a function of clustering (the fraction of edges in triangles) and

the variance of the degree distribution. All results are based on a solution of equations 13–17 in the

main text . β = γ = 1. The remaining panels show the absolute value of the difference between final

size predicted by the clustering model (equations 13–17 in the main text) and final size predicted by

alternative models.The heatmaps were calibrated to have the same color scale.



Figure 2. Joint impact of clustering and variance of the degree distribution on timing of epidemic

peak. Left: The time to peak epidemic incidence as a function of the fraction of edges in triangles, pt,

and the variance of the degree distribution. Results are based on a solution to equations 13–17 in the

main text, with β = γ = 1 and a degree distribution generate by equation 30 in the main text. Right:

The absolute value of the difference between the time of peak incidence predicted by the HK model and

the clustering model (equations 13–17 in the main text).



Bond percolation solution for final epidemic size in models with generalized
distributions of clique sizes

Consider a clique of t nodes. Assume that n of the nodes would receive infection from outside the clique.

For the purposes of calculating the probability that a given node in that clique ultimately gets infected,

it makes no difference what order the infections are introduced. In fact, we can assume that all n of those

nodes are infected at the same time. This is the assumption we will make.

Define αt(n) to be the probability that a node u is not infected by any node in a clique of size t of

which u is a member; furthermore we assume u is not among the n introduced infections. A few cases

are trivial: αt(0) = 0: if there is no introduced infection, it cannot become infected. Similarly, if all

other nodes are infected, the probability that each does not lead to infection of u is independent, with

probability γ/(β + γ) so αt(t− 1) = [β/(β + γ)]
t−1

.

Now consider the general case for αt(n). Infection occurs at rate βn(t− n) and recovery at rate γn.

The probability the first event is an infection is βn(t− n)/[βn(t− n) + γn] = β(t− n)/[β(t− n) + γ]. If

the first event is an infection, the probability it is not an infection of u is (t− n− 1)/(t− n). Assuming

this happens, the probability u is ultimately infected is the same as if there were n+1 introductions, i.e.,
αt(n + 1). The probability the first event is a recovery is γ/[β(t− n) + γ]. Assuming that this happens,

the recovered node no longer plays a role: the probability u is eventually infected is the same as in a

clique of one fewer node with one fewer introduced infection, αt−1(n− 1). This leads to the system
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This is a straightforward system to solve numerically.

Then qt = g(xt)(θ2, θ3, . . .)/g(xt)(1, 1, . . .) and
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This can be solved iteratively starting with the assumption that qt = 0

Generalization of the φXY system to clique sizes > 3

The system of equations based on probabilities φ can also be extended to cliques of size > 3 as follows.

Consider a clique of size k containing the test node u, let φ(ns, nI , nR) denote the probability that there are

nS ≥ 0 susceptible, nI ≥ 0 infected, and nR ≥ 0 recovered neighbors in the clique (nS +nI +nR = k−1).

Let θk be the probability that no node in the k-clique has transmitted to u.

Assuming nS > 0 (there are susceptible nodes) there is flux from φ(ns, nI , nR) to φ((nS − 1), (nI +

1), nR) resulting from infection of a susceptible nighbor. This occurs at rate (Ak + nIβ)nS where Ak is

the rate at which a neighbor in a k-clique is infected by a node outside the clique. If nI > 0, then there

is also flux from φ(ns, nI , nR) to φ(nS , (nI −1), (nR +1)) resulting from recovery of an infected neighbor.

This occurs at rate γnI . The only remaining flux is from φ(ns, nI , nR) to 1− θk representing infection of

u by a neighbor. This occurs at rate βnI .

To calculate Ak, we must find the flux from φ((k − 1), 0, 0) to φ((k − 2), 1, 0) which occurs at rate

(k− 1)Akφ((k− 1), 0, 0). To accomplish this, we explicitly find φ((k− 1), 0, 0) and differentiate it. Then

we find Ak = −φ̇((k − 1), 0, 0)/(k − 1)φ((k − 1), 0, 0) where

φ((k − 1), 0, 0) =

�
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(θ)
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�k−1

.


