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Contact patterns in populations fundamentally influence the spread of infectious diseases. Current

mathematical methods for epidemiological forecasting on networks largely assume that contacts between

individuals are fixed, at least for the duration of an outbreak. In reality, contact patterns may be quite fluid,

with individuals frequently making and breaking social or sexual relationships. Here, we develop a

mathematical approach to predicting disease transmission on dynamic networks in which each individual

has a characteristic behaviour (typical contact number), but the identities of their contacts change in time.

We show that dynamic contact patterns shape epidemiological dynamics in ways that cannot be adequately

captured in static network models or mass-action models. Our new model interpolates smoothly between

static network models and mass-action models using a mixing parameter, thereby providing a bridge

between disparate classes of epidemiological models. Using epidemiological and sexual contact data from

an Atlanta high school, we demonstrate the application of this method for forecasting and controlling

sexually transmitted disease outbreaks.
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1. INTRODUCTION
Most epidemic models incorporate a homogeneous mixing

assumption, sometimes called the law of mass action (Ross

1910; Anderson & May 1991; Diekmann & Heesterbeek

2000), whereby the rate of increase in epidemic incidence is

proportional to the product of the number of infectious and

susceptible individuals. This assumption has been relaxed in

some compartmental (van den Driessche & Watmough

2002) and metapopulation models (Lloyd & May 1996;

Finkenstadt&Grenfell 1998;Grenfell et al. 2001;Watts et al.

2005), but not eliminated. The mass-action assumption is

robust in the sense that it is consistent with several scenarios

for the individual-to-individual transmission of disease. In

particular, it is equivalent to a model in which all individuals

in a population make contact at an identical rate and have

identical probabilities of disease transmission to those

contacts per unit of time. Although this assumption is

unrealistic, it facilitates mathematical analysis and, in some

cases, offers a reasonable approximation.

Populations can be quite heterogeneous with respect to

susceptibility, infectiousness, contact rates or number of

partners, and simple homogeneous mixing models do not

allow for extreme variation in host parameters. New

network-based mathematical methods capture some, but

not all, aspects of population heterogeneity (Gupta et al.

1989; Andersson 1998; Callaway et al. 2000; Liljeros et al.

2001; Strogatz 2001; Newman2002a; Newman et al. 2002).

Ideally, an epidemic model would incorporate the following

realities of human-to-human contacts:

— A given individualhas contactwithonlya finitenumber of

other individuals in the population at any one time, and
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contacts that can result in disease transmission are usually

short and repeated events.

— The number and frequency of contacts between individ-

uals can be very heterogeneous.

— The numbers and identities of an individual’s contacts

will change as time goes by.

The first two points have been addressed previously by

static network models (Eames & Keeling 2002; Newman

2002a; Meyers et al. 2005, 2006). We will focus on the third

point and introduce a modelling framework that allows an

individual’s contacts to change in time.

Concurrent and serial contacts were first shown to be

important to HIV transmission dynamics by Dietz (1988)

and Watts & May (1992). In the public health literature, the

number of concurrent contacts has long been understood

to be important for sexually transmitted disease (STD)

transmission (Ford et al. 2002; Manhart et al. 2002;

Adimora et al. 2006), independently of cumulative number

of contacts. Epidemics in dynamic networks have been

modelled using high-dimensional pair-approximation

methods (Altmann 1995, 1998; Eames & Keeling 2004)

and moment closure methods on dynamic contact net-

works (Ferguson & Garnett 2000; Bauch 2002). Others

have conducted simulation-based studies (Chick et al.

2000; Doherty et al. 2006).

Here, we introduce a low-dimensional system of non-

linear ordinary differential equations (ODEs) to model

susceptible–infected–recovered (SIR) epidemics in a simple

class of dynamic network. We find this provides a useful

departure point for mathematical analysis, although it does

not incorporate as much detail as some other models. This

model complements earlier work by providing a relatively

simple framework that is less computationally demanding,

easier to implement and amenable to the derivation of

fundamental results. Our methods are compared with the
This journal is q 2007 The Royal Society
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Table 1. Notation for epidemic and network parameters.

S the fraction of population susceptible
I the fraction of population infectious
R the fraction of population recovered
S set of susceptible nodes
I set of infectious nodes
R set of recovered nodes
J cumulative epidemic incidence ( JZICR)
r transmission rate
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more commonly used pair-approximation methods in the

electronic supplementary material.

We use our dynamic network model to characterize the

impacts of population heterogeneity and contact rates on

epidemic dynamics. We further show that the model

reproduces basic classes of epidemiological models, such

as the standard mass-action SIR model and static

network model, as the parameter that controls population

mixing varies.
m recovery rate
r mixing rate
kego degree of node ego
pk the fraction of nodes with degree k

Table 2. Notation for network and epidemic quantities.

AX set of contacts (ego, alter) s.t. ego2X
AXY set of contacts (ego, alter) s.t. ego2X and

alter2Y
MX fraction of contacts in set AX

MXY fraction of contacts in set AXY

pIZMSI =MS fraction of contacts from susceptibles which
go to infectious nodes

pSZMSS=MS fraction of contacts from susceptibles which
go to other susceptible nodes
2. NEIGHBOUR EXCHANGE MODEL
Human contact patterns are potentially complex, as the

numbers and intensity of contacts can vary considerably

across a population. Furthermore, contacts are transitory

events such that the identities of one’s contacts change in

time. To capture such heterogeneity, we introduce the

neighbour exchange (NE) model as a simple extension of a

static contact network model. In this model, an individual’s

number of concurrent contacts remains fixed while the

composition of those contacts changes at a specified rate.

The model assumes that at any given time, an individual

will be in contact with an individual-specific number of

neighbours with whom disease transmission is possible.

Each contact is temporary, lasting a variable amount of time

before coming to end, at which point the neighbour is

replaced by a different individual.

Let the population of interest consist of n individuals,

each of which falls into one of three exclusive states:

susceptible, infectious or recovered. At some time t, an

individual ego will have kego contacts with other individuals

(i.e. alters): ðego; alter1Þ; ðego; alter2Þ;.; ðego; alterkÞ. Only

undirected contact networks will be considered such that

if there exists a contact (ego, alter) there will also be a

contact (alter, ego). In network terminology, a directed link,

denoted (ego, alter), is called an arc. An undirected link,

denoted {ego, alter}, is called an edge. The degree of a node

ego is the number of edges connected to the node. The term

contact will be used specifically to denote a directed arc in

the network, where two arcs correspond to each undirected

edge. The k-degree of a node will be the number of

concurrent contacts to/from the node (table 1).

The NE model assumes that the identities of a node’s

neighbours will continually change, while the total number

of current neighbours remains constant. This occurs

through an exchange mechanism in which the destination

nodes of two edges are swapped. For example, two nodes

ego and ego 0 with distinct contacts (ego, alter) and

(ego0, alter 0) may exchange contacts such that these are

replaced with (ego, alter 0) and (ego0, alter). There are two

edges and four contacts involved in each edge swap. The

fate of each edge and contact is summarized in the

following pseudo-chemical equation:

fego; altergC fego0; alter 0g/ fego; alter 0gC fego0; alterg

ðego; alterÞC ðego0; alter 0Þ/ ðego; alter 0ÞC ðego0; alterÞ

ðalter; egoÞC ðalter 0; ego0Þ/ ðalter; ego0ÞC ðalter 0; egoÞ:

ð2:1Þ

In the model, any given contact (ego, alter) will be

reassigned to (ego, alter 0) at a constant rate r. Equivalently,

a given edge is swapped at a rate p/2.

A node’s degree never changes during an edge swap and

thus the degree distribution is preserved. This property has
Proc. R. Soc. B (2007)
made the random edge swap a common starting point for

investigations of dynamic networks. Discrete-time versions

of the rewiring process have been well studied in applications

outside of epidemiology (Watts & Strogatz 1998; Maslov &

Sneppen 2002; Evans & Plato 2007; Holme & Zhao 2007)

For mathematical tractability, we make a few simplifying

assumptions about the epidemic process. First, for the

duration of a contact, infectious individuals transmit

disease to neighbours at a constant rate r. Second,

infectious individuals become recovered at a constant

rate m.

We also simplify the mathematics by considering only

the simplest category of heterogeneous networks—semi-

random networks that are random with respect to a given

degree distribution (Molloy & Reed 1995, 1998). The

degree distribution will have density pk, which is the

probability that a node chosen uniformly at random has k

concurrent contacts.

The simultaneous epidemic and network dynamics

described above collectively determine the NE model. An

even more realistic model would allow the number k of

concurrent contacts of a node to vary stochastically, but

the current model offers a valuable first step towards

understanding epidemiological processes on dynamic

host networks.

(a) Dynamics

We will expand on the dynamic probability generating

function (PGF) techniques first introduced in Volz (2007)

to model SIR-type epidemics in static networks. These

techniques are powerful and are easily extended to consider

dynamic contact networks. We start with an overview of the

basic model and then introduce additional terms that

model the NE process.

The concurrent degree distribution pk will be generated

by the PGF

gðxÞZ p0 Cp1xCp2x
2 Cp3x

3 C/ ð2:2Þ
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The dummy variable x in this equation serves as a

placeholder for dynamic variables.

Let AX be the sets of contacts (arcs) where ego is in the

set X. We will consider the sets of all susceptible, infected

and recovered nodes, denoted XZS, XZJ and XZR,

respectively. MXZ#fAX g=#fAg is then defined as the

fraction of total contacts in set AX. Now let AXY be the

set of contacts such that ego is the set X and alter is in the set

Y, and MXYZ#fAXY g=#fAg be the fraction of total contacts

in setAXY. For example, MSS is the fraction of all arcs in the

network that connect two currently susceptible nodes

(table 2).

The following derivation assumes that each contact of a

susceptible node ðego; alterÞ2AS has a uniform probability

that alter 2I , denoted pIZMSI =MS, and a uniform

probability pSZMSS=MS that alter 2S. A degree k

susceptible node has an expected number kpI contacts

with infectious nodes; and, in a small time dt, an expected

number rkpI dt of a degree k susceptible nodes’ contacts

will transmit disease to that node. The instantaneous

hazard of infection for a degree k susceptible node is then

given by

lkðtÞZ rkpIðtÞ: ð2:3Þ

Let ukðtÞ denote the fraction of degree k nodes remaining

susceptible at time t. Equation (2.3) implies

ukðtÞZ exp

ðt
tZ0

KlkðtÞdt

� �

Z exp

ðt
tZ0

KrkpIðtÞdt

� �

Z exp

ðt
tZ0

KrpIðtÞdt

� �k

: ð2:4Þ

Now let qZu1ðtÞ be the fraction of degree kZ1 nodes in

the network that remain susceptible at time t. Equation

(2.4) implies that ukZqk. (Henceforth, variables that are

clearly dynamic, for example q, appear without a time (t)

variable.)

We use the PGF for the network degree distribution

(equation (2.2)) to calculate the fraction of nodes that

remain susceptible at time t.

S Z p0 Cu1p1 Cu2p2 C/Z
X
k

pkq
k Z gðqÞ: ð2:5Þ

The dynamics of q in equation (2.5) are given by

_qZ
d

dt
u1 ZKl1qZKrpIq: ð2:6Þ

Unfortunately, this does not form a closed system of

differential equations, as equation (2.6) depends on the

dynamic variable pI. From the definition of pI we have

_pI Z
d

dt

MSI
MS

Z
_MSI
MS

K
MSI _MS

M2
S

: ð2:7Þ

To obtain the derivatives of MSI and MS, we observe

that, in time dt,K _S nodes become infectious, resulting in

modifications to the sets ASI , AIS and AS. In particular,

any given arc from a newly infected individual was formerly

in one of ASS , ASI orASR and is now in one of AIS , AII or

AIR. The K _S new infected are not selected uniformly at

random from the susceptible population, but rather with
Proc. R. Soc. B (2007)
probability proportional to the number of contacts to

infectious nodes.

We pause for a few definitions. First, it is useful to break

the degree of a node into three quantities: the number of

contacts to currently susceptible, infected and recovered

nodes. We refer to these as X-degrees, where XZS; I or R,

respectively. Second, imagine following a randomly chosen

contact to its alter and counting all the edges emanating

from that node, except for the one on which we have

arrived. We call the resulting total quantity the excess degree

of the node, and the resulting neighbour-specific quantities

excess X-degrees of the node, where X indicates one of the

three possible disease states.

We introduce the notation dX ;Y ðZÞ to represent the

average excess Z-degree of nodes currently in disease state

X selected by following a randomly chosen arc from the set

AYXK; in other words, the excess Z-degree of a node of type

X selected with probability proportional to the number of

contacts to nodes of type Y. We further define dX ;Y to be the

average (total) excess degree of nodes currently in disease

state X selected by following a randomly chosen arc from

the set AYX . For example, imagine first randomly choosing

an arc from AIS, then following that arc to its destination

(susceptible) node and finally counting all of the other

edges emanating from that node (ignoring the one along

which we arrived). Then dS;IðSÞ, dS;IðIÞ and dS;IðRÞ give the

average number of contacts to other susceptible, infected

and recovered nodes chosen in this way, respectively; dS;I

gives the average total number of contacts emanating from

nodes chosen in this way.

Using this notation, the equations for _MSI and _MS are

as follows (for more details, see Volz (2007))

_S Z
d

dt
gðqÞZ _qg 0ðqÞZKrpIqg

0ðqÞ; ð2:8Þ

_MSI Z ððK _SÞdS;IðSÞKðK _SÞdS;IðIÞÞ=g
0ð1ÞKðrCmÞMSI ;

ð2:9Þ

_MSS ZK2ðK _SÞdS;IðSÞ=g
0ð1Þ and ð2:10Þ

_MS Z
d

dt
qg 0ðqÞ=g 0ð1ÞZKðrp Iqg

0ðqÞC rp Iq
2g 00ðqÞÞ=g 0ð1Þ:

ð2:11Þ

The calculations of the dX ;Y ðZÞ are straightforward and

based on the current degree distribution of susceptible

nodes. The calculations are given in the electronic

supplementary material and in Volz (2007) and result in

the following:

dS;IðIÞZ pIqg
00ðqÞ=g 0ðqÞ and ð2:12Þ

dS;IðSÞZ pSqg
00ðqÞ=g 0ðqÞ: ð2:13Þ

Combining the equations for MS ; _MS ; and _MSI yields

the dynamics of pI in terms of the parameters r and m, the

PGF g($), and the dynamic variable pS. The resulting

model is given in table 3. The dynamics for pS complete the

model and can be derived analogously to the equation for p I

(see the electronic supplementary material for details).
(i) Dynamic contact networks

We now extend the model given in table 3 to allow NEs at a

rate r. First consider q. An edge swap (equation (2.1)) will

affect the arrangement of edges among susceptible,



Table 3. System of equations used to model the spread of SIR
epidemic in a static semi-random network.

_qZKrpIq
_pSZ rpSpIð1KqgðqÞ=g 0ðqÞÞ
_pIZ rp IpSqgðqÞ=g

0ðqÞKpIð1KpIÞrKpIm

SZg(q)

Table 4. Deterministic NE model. (This system of equations
is used to model the spread of an SIR-type epidemic in a
dynamic semi-random network with stochastic exchange of
neighbours at constant rate r.)

_qZKrpIq

_pSZ rpSpIð1Kqg 00ðqÞ=g 0ðqÞÞCrð qð Þg 0ðqÞ=g 0ð1ÞK pSÞ
_pIZ rpIpSqg

00ðqÞ=g 0ðqÞK pIð1K pIÞrK pImCrðMIK pIÞ
_MIZKmMIC rpIðq

2g 00ðqÞCqg 0ðqÞÞ=g 0ð1Þ
SZg(q)
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infectious or recovered nodes; however, it will never directly

cause a node to change its disease state. The dynamics of q

are only indirectly influenced by NE dynamics, through

changes to pI, and thus equation (2.6) still holds.

NE does, however, affect the composition of contacts

between susceptible and infectious nodes. We postulate that

the equations for _pI and _pS can be expressed in the following

modified forms:

_pIZ rp IpSqg
00ðqÞ=g 0ðqÞK pIð1K pIÞrK pImC fIðpI;MIÞ

ð2:14Þ

and

_pS Z rpSpI 1Kq
g 00ðqÞ

g 0ðqÞ

� �
C fSðpS;MSÞ; ð2:15Þ

where the functions fxð$; $Þ represent the contribution of

NE dynamics to the system.

NE dynamics can both decrease or increase the values of

pI and pS. First, consider the decrease of pI due to NE

dynamics.

— At rate r, a given contact (ego, alter) will transform to

(ego, alter 0 ).

— Given that (ego, alter)2AS, alter 2I with probability pI.

— With probability 1KMI, alter
0;I .

Thus pI will be decreased by NE dynamics at a rate

rpIð1KMIÞ.

Similarly, pI can increase due to NE as follows:

— At rate r, a given contact (ego, alter) will transform to

(ego, alter 0 ).

— Given that ðego; alterÞ2AS, alter;I with probability

1KpI.

— With probability MI, alter
0 2 I.

Thus pI is increased by NE dynamics at rate

rð1K pIÞMI. We add the positive and negative contri-

butions to calculate the total influence of NE on pI.

fIðpI;MIÞZ rðMIK pIÞ: ð2:16Þ

By similar reasoning, we determine fSðpS;MIÞ.

fSðpS;MSÞZ r Pr½alter;S�!Pr½alter 0 2S�
�

KPr½alter 2S�!Pr½alter 0;S�
�

Z rðMSK pSÞZ r qð Þg 0ðqÞ=g 0ð1ÞK pS

� �
: ð2:17Þ

The complete system of NE-adjusted equations is

reported in table 4. The dynamic variable MI, however,

appears in equation (2.17) and cannot be put in terms of

the variables q, pS and pI. Therefore, a fourth dynamical

equation must be included for MI, which is listed in table 4.

Fortunately, the dynamics are very straightforward. Recall

that dS,I denotes the average excess degree of susceptibles

chosen by following randomly selected arcs between

infectious and susceptible nodes, and thus indicates the

average excess degree for individuals who become infected

in a small time interval dt. We add one (dS;IC1) to obtain
Proc. R. Soc. B (2007)
the average degree for such newly infected nodes. Then,

recalling that MI decays at rate m, we have

_MI Z ðK _SÞðdS;I C1Þ=g 0ð1ÞKmMI: ð2:18Þ

All of the results that follow will assume that a very small

fraction e of nodes is initially infected, and thus there is only

a very small probability that two initially infected individ-

uals contact each other. Then we anticipate the following

initial conditions (Volz 2007):

qZMI Z 1Ke; ð2:19Þ

pI Z e=ð1KeÞ and ð2:20Þ

pS Z ð1K2eÞ=ð1KeÞ: ð2:21Þ
(b) Convergence to a mass-action model

In the limit of large mixing rate (r/N), the probability of

being connected to a susceptible, infectious or recovered

node is directly proportional to the number of edges

emanating from nodes in each state. Referring to table 4, it

is clear that pI converges instantly to MI and pS converges

instantly to MS. Here, we show that as the mixing rate

grows, the underlying network structure becomes irrelevant

and the model converges to a mass-action model.

To see this, we replace every occurrence of the variable pI

in the system of equations in table 4 with MI. Then

_qZKrMIq and ð2:22Þ

_MI Z
rMI

g 0ð1Þ
qg 0ðqÞCq2g 00ðqÞ
� �

KmMI: ð2:23Þ

Neither equations (2.22) or (2.23) depend on pS, and thus

together form a closed system of equations that describe the

epidemic dynamics. These equations incorporate arbitrary

heterogeneity in contact rates, but no longer consider an

explicit contact network. When we assume that contact

rates are homogeneous throughout the population, then

these equations are equivalent to a simple SIR compart-

mental model. To illustrate, we retrieve the standard SIR

dynamics by setting g(x)Zx, which means that every node

has exactly one concurrent contact. In such a population,

the number of arcs to infectious individuals is exactly equal

to the number of infectious nodes, that is, p IZI. Then,

substituting into equations (2.22) and (2.23), we reproduce

the standard equations

S Z gðqÞZ q; ð2:24Þ

_qZKrIqZKrIS and ð2:25Þ

_MI Z rMIqKmMI Z rISKmI : ð2:26Þ

Equations (2.22) and (2.23) are potentially extremely

useful, as they incorporate arbitrary heterogeneity into a

system of equations no more complex than the standard

compartmental SIR model.
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Figure 1. Trajectories of the NE model (solid lines, table 4) are compared for several values of the mixing rate (r) with an
analogous mass-action model (circles, equations (2.22) and (2.23)). The degree distribution is Poisson (zZ1.5) and rZmZ0.2.
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Figure 1 demonstrates the convergence of the NE model

to the corresponding mass-action model for a Poisson

degree distribution (rZmZ0.2, zZ1.5). The circles

indicate the solution to the mass-action model (equations

(2.22) and (2.23)). We observe that the convergence is

quite rapid as r is increased in the multiples of m. This

supports the common assumption that the mass-action

model is a reasonable approximation for populations

marked by many short-duration contacts.
3. STOCHASTIC SIMULATIONS
To test the NE model, we compare its predictions to

stochastic simulations of an analogous epidemic process in

networks. We first generate semi-random networks using

the configuration model (Molloy & Reed 1995). The

epidemic simulations then proceed as follows:

(i) One node is selected uniformly at random from the

population to be patient zero, the first infected

individual.

(ii) Each contact a2A has an exchange time

DtEðaÞ drawn from an exponential distribution

(parameter r). This time is added to a queue.

(iii) When a node v is infected at time t, a time of

infection DtIðv; aÞ is drawn from an exponential

distribution (parameter r) for each contact

aZ ðego; alterÞ such that v is ego. The time

tCDtIðv; aÞ is added to a queue.

(iv) When a node v is infected at time t, a time of

recovery DtRðvÞ is drawn from an exponential

distribution (parameter m) and is assigned to v.

The time tCDtRðvÞ is added to a queue.

(v) When t 0Z tCDtEðaÞ is the earliest time in the

queue, an edge swap is performed, as per equation

(2.1). The first edge involved in the swap

corresponds to the contact a. The second edge is

selected by choosing a unique element out of all

edges uniformly at random. Then a new time

t 0CDtEðaÞ is drawn and added to the queue.

(vi) When t 0Z tCDtIðv; aÞ is the earliest time in the

queue, a transmission event will occur, providing v

has not recovered. Node v transmits to whatever
Proc. R. Soc. B (2007)
node is occupying the position of alter at that time,

causing alter to change state to I if currently

susceptible. If a transmission event occurs, a new

time t 0CDtIðv; aÞ is drawn and added to the queue.

(vii) When tCDtRðvÞ is the earliest time in the queue, the

corresponding node v enters a recovered state such

that any transmission event with vZego is removed

from the queue.

This process continues until there are no more

transmission events in the queue.

Figures 2 and 3 show a comparison of 1000 stochastic

simulations to the solution of the NE–SIR equations for

two concurrent degree distributions:

— Poisson. pkZzkeKz=k!, kR0. This is generated by

gðxÞZezðxK1Þ.

— Power law with cut-off. pkZkKa=
P

k
iZ1 iKa, kR1; k%k.

This is generated by gðxÞZ
P

k k
Kaxk=

P
k
iZ1 iKa.

Figure 2 depicts epidemics on a network with a Poisson

degree distribution (zZ1:5) and parameters rZ0.2, mZ0.1

and rZ0.25. Figure 3 shows epidemics on a network with a

power-law degree distribution (aZ2.1, kZ75) and par-

ameters rZ0.2, mZ0.1 and rZ0:20. The deterministic NE

model (table 4) predicts a trajectory that passes through the

central-most region of the swarm of simulation trajectories

and shows good agreement with the final size. There is

nevertheless a great deal of variability among the simulation

trajectories in terms of the onsetof the expansion phase—the

point in time when the epidemic increases at its maximal

rate. At the onset of expansion phase, all trajectories are

more or less similar, in agreement with the NE model.

In contrast to the homogeneous Poisson network, the

power law gives an almost immediate expansion phase.

This can be understood by noting that the hazard of

infection is proportional to p I, and initially

_pIðt Z 0ÞZ 3 r
g 00ð1K3Þ

g 0ð1K3Þ
K rKmK

r3

1K3

� �
: ð3:1Þ

There is a ratio of PGFs in equation (3.1)

g 00ð1KeÞ=g 0ð1KeÞzg 00ð1Þ=g 0ð1ÞZ

P
kk

2pkP
kkpk

K1:
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Figure 2. One-thousand stochastic simulations (small dots) are compared with the predicted trajectory of a NE epidemic (large
dots) in a Poisson network (zZ1.5). rZ0.2, mZ0.1 and rZ0.25.
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Figure 3. One-thousand stochastic simulations (small dots) are compared with the predicted trajectory of a NE epidemic (large
dots) in a power-law network (aZ2.1, kZ75). rZ0.2, mZ0.1 and rZ0.20.
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This is approximately the ratio of the second moment to the

first moment of the degree distribution, which for the

power-law approaches infinity as the cut-off k/N. Because

the ratio is very large, power-law networks have almost

immediate expansion phase (Pastor-Satorras & Vespignani

2001a,b; Boguna et al. 2003; Barthélemy et al. 2005).
4. APPLICATION OF THE NE MODEL TO SYPHILIS
OUTBREAK AMONG ATLANTA ADOLESCENTS
We next implement the NE model using link-tracing data

from a 1996 outbreak of syphilis among Atlanta adoles-

cents. Sexual network data typically report contact time,

duration of a contact and frequency of interaction. Most

network models do not take into account the serial aspect of
Proc. R. Soc. B (2007)
sexual contacts and instead assume that all contacts

reported in a survey are constant over the duration of an

epidemic or infectious period. Here, we illustrate that the

dynamic SIR network model (table 4) can explicitly capture

the transitory nature of sexual contact patterns. Owing to

data limitations and uncertainty around syphilis infection

rates, the NE model cannot describe this particular

epidemic with much fidelity. Instead, this section is simply

intended to demonstrate the straightforward application of

the NE model to public health data.

We use public health data from an outbreak of syphilis

within an adolescent community centred on an Atlanta

high school (Rothenberg et al. 1998). Initially, several

adolescents diagnosed with syphilis were interviewed by

epidemiologists. The sexual contacts of these respondents
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Figure 4. The final epidemic size as predicted by the NE model (table 4) is shown with respect to the transmission rate r and
recovery rate m for the Atlanta syphilis data. Contours are also provided for tZ0.637 and 0.20.
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were then traced and interviewed. In all, 34 people were

interviewed and 204 contacts were traced. Each interviewee

named his/her sexual contacts and listed the date of first and

last interaction with each contact.

The complexity of syphilis transmission dynamics

(Garnett et al. 1997) and the small size of our dataset

make modelling the 1996 outbreak difficult. Thus, our

analysis suffers from significant uncertainty in the estimated

rates and parameters, particularly the transmission and

recovery rates. We offer an additional caveat that recovery

from syphilis does not provide lifelong immunity; yet our

model does not allow recovered individuals to return to the

susceptible state. We believe that this is appropriate in so far

as the transition from the infected state back to the

susceptible state occurs at a low rate relative to the spread

of this particular outbreak. In practice, immunity is very

long due to treatment and behavioural change, such that

fast-spreading epidemics can be considered in isolation

without including recovery or birth into the population

(Grassly et al. 2005).

We estimate the relevant parameters using equations

given in the electronic supplementary material and in

Heckathorn (2002), Salganik & Heckathorn (2004) and

Volz & Heckathorn (in press). In brief, a typical syphilis

infection can last about a year if left untreated, and a typical

infectious period will last 154 days on average (Jones 2005).

A convenient estimate of the recovery rate is then

m̂Z1=154Z0:0065. This estimate ignores many features

of the pathology of syphilis for mathematical convenience,

such as different probabilities of recovery at different stages

of the infectious period (Garnett et al. 1997). There are

diverse estimates for the transmissibility of syphilis, ranging

from 9.2 to 63% per partner (Garnett et al. 1997). The

estimate of 63% was selected as the most credible by the

authors in Garnett et al. (1997).

Using the contact durations reported in the Atlanta

study, we estimate the mixing rate of the population to be

r̂Z0:032 (electronic supplementary material). We then use
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the reported numbers of contacts to estimate k̂ego, the

average number of concurrent contacts for each individual

in the sample. The degree distribution pk can then be

estimated (electronic supplementary material, Heckathorn

2002; Salganik & Heckathorn 2004; Volz & Heckathorn

in press) from the sequence k̂i, which is well fit by a power

law with exponent aZK2.66. For the power-law fit,

c2=nZ0:018. An exponential distribution provided a

worse fit to the data with c2=nZ0:632. We assume the

estimated degree distribution in the following analysis.

Figure 4 shows the final size of an outbreak as predicted

by the NE model over a broad range transmission and

recovery rates. The straight contours correspond to the

ratio of r to m that yields a transmissibility tZ0.637 and

0.20. Unfortunately, altering the transmissibility within this

plausible range can yield any final size from almost 0 to

100%. From our sample, we can estimate the epidemic

prevalence as 35%. We conclude that the NE model is

consistent with the observed outbreak; however, this does

not constitute a critical test of the suitability of the NE

model to this outbreak.
5. DISCUSSION
Human contact patterns are characterized by hetero-

geneous number of transitory contacts. If contacts change

at a rate that is slow relative to the rate of epidemic

propagation, then static network approximations such as

those based on bond percolation (Callaway et al. 2000;

Newman 2002a; Meyers et al. 2005, 2006) may be

appropriate. Alternatively, if contacts have very short

duration relative to epidemic dynamics, then static network

approximations break down and a mass-action model is

more appropriate (equations (2.22) and (2.23)). In

between these extremes, contacts are neither fixed nor

instantaneous, and accurate epidemiological forecasting

requires models that explicitly capture their dynamics, such

as the NE model developed here. In fact, by changing a
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single parameter (the mixing rate), the NE model crosses

the spectrum of models from static network to mass action.

The NE model is particularly useful for building

models from link-tracing data. For many datasets, standard

mass-action models do not adequately capture the finite

number and extended duration of contacts, whereas static

network models ignore the transitory and serial nature of

contacts. Using the example of a 1996 syphilis outbreak

in an adolescent population, we showed that the NE

model can be easily fit to sexual contact data and then used

to explore the epidemiological implications of host

population structure.

In the limit of large mixing rate, the NE model becomes

a simple (low-dimensional) mass-action model (equations

(2.22) and (2.23)) that captures SIR dynamics in

populations with arbitrary heterogeneity of contact rates.

It reduces to the standard mass-action model when one

assumes that all individuals have the same number of

contacts. The mass-action model could potentially find

wide utility in populations that are heterogeneous with

respect to contact rates, infectiousness or susceptibility,

specifically for modelling highly contagious diseases

(such that brief contacts lead to transmission) or slow-

propagating infectious diseases (such as many STDs); in

either case, epidemic propagation is slow relative to the

turnover in contacts.

We check our mathematical results using simulations

that model continuous-time stochastic processes (both

social and epidemiological) and take into account the finite

size and heterogeneity of the population (§3). We wish to

highlight our specific simulation techniques as an interest-

ing alternative to the commonly used chain-binomial

simulation (Daley et al. 2001).

The NE model offers a flexible starting point for

analysing epidemiological processes in dynamic networks.

Although we have started by analysing a simple category of

dynamic random network, it should be fairly straightfor-

ward to extend the model to populations with simple spatial

heterogeneity or assortative mixing by type (Newman

2003). Indeed, similar methods for static networks have

recently been extended to directed networks, networks with

assortativity, and affiliation structure (Newman 2002b;

Meyers & Newman 2003; Meyers et al. 2006). It is probable

that these, and other extensions, can be made to the

NE model.

The authors thank Richard Rothenberg for providing the
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grant support from the James S. McDonnell Foundation.
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NOTICE OF CORRECTION

Equations (2.17), (2.18) and table 4 are now presented in the correct form.
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