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1 Degree distribution for susceptible nodes

The multivariate generating function for the number of contacts from a suscep-
tible to a node in S; I; or R will be a function of three dummy variables, xS ; xI ;
and xR. Each dummy variable corresponds to the number of contacts to a node
of the corresponding type. Assuming each contact from a susceptible node node
has independent probabilities pS and pI of going to a susceptible or infectious
node respectively, and given a degree k node, the composition of contacts will
have a multinomial distribution generated by (xSpS +xIpI +xR(1�pS �pI))

k.
Then given a probability �k of a degree k node remaining susceptible up to a
time t, the degree distribution among susceptibles is retrieved by summing over
k:

gS(xS ; xI ; xR) =
X
k

pk�
k(xSpS + xIpI + xR(1� pS � pI))

k=
X
k

pk�
k

= g(�(xSpS + xIpI + xR(1� pS � pI))=g(�)

(1)

The mean of the multivariate distribution generated by equation 1 is re-
trieved by di�erentiation with respect to the corresponding dummy variable.
For example, di�erentiating with respect to xI gives the average number of con-
tacts from a susceptible to an infectious node. We denote the average number
of contacts among susceptible nodes to nodes of type X as �S(X). For example,
the average number of contacts to infectious nodes is

�S(I) = [
d

dxI
gS(xS ; xI ; xR)]xS=xI=xR=1

= �pIg
0(�)=g(�)

(2)
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Usually we don't want to work with the distribution generated by equation 1,
but rather with the distribution for excess degree as described in the text. That
is, suppose we select an edge between susceptibles and a node of type X, and
follow the edge to the susceptible node, whereupon we enumerate the contacts
emanating from the node we arrived at. This is equivalent to selecting nodes
with probability proportional to X�degree, so the distribution is retrieved by
weighting each term of the PGF by the corresponding X�degree. For example,
the excess degree distribution for susceptibles selected with probability propor-
tional to I�degree is generated by

gSI(xS ; xI ; xR) =
d

dxI
gS(xS ; xI ; xR)=[

d

dxI
gS(xS ; xI ; xR)]xS=xI=xR=1

= g0(�(xSpS + xIpI + xR(1� pS � pI)))=g
0(�)

(3)

Due to the simplicity of the multinomial distribution of contacts among sets
ASS ;ASI ;ASR, we have that gSI(xS ; xI ; xR) = gSS(xS ; xI ; xR) = gSR(xS ; xI ; xR),
as can be veri�ed by repeating the above calculation.

As before, the mean of the distribution yields the quantities of interest. We
have

�S;I(I) = [
d2

dx2I
gS(xS ; xI ; xR)]xS=xI=xR=1=

[
d

dxI
gS(xS ; xI ; xR)]xS=xI=xR=1 =

= pI�g
00(�)=g0(�)

(4)

and,

�S;I(S) = [
d2

dx2S
gS(xS ; xI ; xR)]xS=xI=xR=1=

[
d

dxI
gS(xS ; xI ; xR)]xS=xI=xR=1 =

= pS�g
00(�)=g0(�):

(5)

If we wish to �nd the mean excess degree counting contacts to all node-types,
we set xS = xI = xR and conduct the calculation as usual.

�S;I = [
d

dx
[
d

dxI
gS(xS ; xI ; xR)]xS=xI=xR=x]x=1=

[
d

dxI
gS(xS ; xI ; xR)]xS=xI=xR=1 =

= �g00(�)=g0(�)

(6)

2 Estimation of epidemiological quantities from

Atlanta syphillis data

An individual in the study, egoi, reports mi contacts over a duration Ti, which
is the time interval from his or her �rst reported contact to the date of the
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interview. We use tij to denote the duration of the j'th contact of individual
egoi, that is, the time between the �rst and last interaction with that individual.
We assume that contacts change at a constant rate �, so that the durations tij
should be exponentially distributed with a mean 1=�. We can then estimate the
mixing rate � as the reciprocal average duration of a sample contact. Let n be
the sample size. Then,

�̂ = 1= < tij >= n

0
@X

i

X
j

tij

1
A
�1

(7)

In this sexual network, the characteristic contact duration was < tij >= 31
days, and �̂ = :032.

Given a concurrent degree ki for individual i, the expected number of unique
contacts over a duration Ti is mi = �kiTi. This can be reversed to estimate the
concurrent degree for individual i.

k̂i =
mi

�̂Ti
(8)

It can be di�cult to generalize properties of the sample to the population
at large for link-tracing sample designs. Nevertheless, suppose the likelihood
of being included in the sample depends on the probability of being traced
by a sexual contact from someone who is already in the sample. Then as a
simple approximation, let the sample inclusion probability of individual i be
proportional to ki. This allows us to estimate the population degree distribution
using an RDS-type estimator (refer to citations in text). Let nk denote the
number of sample elements with estimated degree k. Then the probability of
an individual having degree k is estimated as

p̂k =
nk
k
=
X
i

ni
i
: (9)

Assuming a transmissibility of 62.7% and the recovery and mixing rates
given above, the transmission rate can be estimated using the equation for � .

r̂ =
�

1� �
(�̂+ �̂) = 0:0649 (10)

We estimate the prevalence of syphilis in the 1996 outbreak using an estimator
similar to equation 9, which yields Ĵ1 =35%:

Ĵ1 =
X
j

yj
dj
=
X
j

1

dj
(11)

where dj is the degree of sample unit j and yj = 1 if unit j is infected and
yj = 0 otherwise.

Figure 1 shows a colorized version of the �nal-size diagram found in the text.
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Figure 1: The �nal epidemic size as predicted by the NE model is shown with
respect to the transmission rate r and recovery rate � for the Atlanta syphilis
data. Lighter colors correspond to larger �nal size, as given by the color bar on
right. The thick black line corresponds to the ratio r=� that gives the expected
transmissibility of � = 0:627. The large data point indicates the expected
recovery rate of � = 1=154.
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3 Dynamics of pS

_pS =
d

dt

MSS

MS

=
_MSS

MS

�
MSS

_MS

M2

S

(12)

As � _S nodes become infectious a number of contacts proportional to � _S�S;I(S)
move from set ASS to ASI . Thus

_MSS = �2� (� _S)�S;I(S)=g
0(1) (13)

where the factor of two accounts for two contacts corresponding to each edge
between two susceptible nodes. Combining equation 13 with the equations for
MS and _MS yields the result reported in main text.

4 Comparison of deterministic NE model to re-

lated MA and static network models

A natural question is whether there already exist simpler models that can ade-
quately reproduce the important features of the NE model (table 4, main text).
In fact, there are static network models that reasonably approximate the �nal
size of an epidemic in the NE model, but cannot address epidemiological dy-
namics. Standard compartmental SIR models, however, cannot reproduce any
of the important aspects of the NE model dynamics.

Figure 2 shows epidemic �nal size predicted by the deterministic NE model
as the mixing rate � is varied, as well as by three other models: a standard
compartmental SIR model (i.e. a mass-action model) and two static network
approximations. The mass action model is based on the common approximation

_S = ��R0SI (14)
_I = �R0SI � �I: (15)

In this approximation, R0 is calculated as

R0 =
�

�

�
g00(1)

g0(1)
(�+ �) + �

�
(16)

The derivation of this value of R0 is found in a paper currently in preparation [4].
Since this approximation presupposes no network structure at all, it fails to
reproduce NE dynamics for any level of random mixing.

The two static network approximations are also derived in the manuscript in
preparation [4]. Given a static network, bond percolation methods can be used
to calculate the �nal size [Newman(2002)]. These values are graphed in �gure 2.
The \Static net-concurrent" approximation naively assumes the concurrent de-
gree distribution and therefore does not take random mixing into account at all.
This approximation matches the NE model at � = 0, but quickly diverges. The
\Static net-implicit" approximation assumes that each node has degree equal to
its expected number of contacts during an infectious period. This approximation
much more closely tracks the NE model over the entire range of �.
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Figure 2: Comparison of �nal epidemic size versus the mixing rate �. The
deterministic NE model is compared to two static network approximations and
a simple compartmental SIR model (MA).
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5 Comparison of deterministic NE model to PA

model

Pair approximation (PA) [] is an alternative framework for modeling epidemic
dynamics in random networks. A network consists of nodes with various degrees
and edges between nodes. PA works by explicitly modeling the number of degree
k nodes in each epidemic state for degree k, as well as the number of edges
between each possible pair. PA is highly intuitive and 
exible, and has been
used to model a variety of complex epidemiological scenarios. Nevertheless, PA
has some disadvantages relative to our methods. PA is high-dimensional, with
the number of dynamic variables increasing as O(n2) with n distinct degree
classes. In our experience, this can cause numerical instability of solutions.

For example, consider the power law degree distribution used in the main
text. This distribution was truncated at kmax = 75. PA requires a dynamic
variable for every degree value 1-75 for each state S; I;R.

� Sn : 75 variables for susceptibles of degree n

� In : 75 variables for infecteds of degree n

� [SnSm] : 75
2 = 5625 variables for number of pairs between susceptibles

� [SnIm] : 752 = 5625 variables for number of pairs between susceptibles
and infecteds

� [InIm] : 75
2 = 5625 variables for number of pairs between infecteds

Thus the total number of variables in this PA model is 17025. In contrast, the
NE model will always have four dynamic variables. When � = 0, this reduces
to three variables; and in the limit of �!1, it reduces to two variables.

The predictions of our model are fairly consistent with those made by com-
parable PA models. In �gure 3 we have compared the trajectories of identical
SIR epidemics as solved by the PA model and NE model. To make the com-
parison as fair as possible, the same integration method (Runge-Kutta) and
time step (0.01) was used for both models. The degree distribution was Poisson
(� = 2:5) truncated at kmax = 8. Unfortunately, our implementation of PA
became unstable for maxiumum degree kmax > 8. The �nal size is very close,
but, there is some discrepancy in the predicted trajectories. This may result
partly from the forward-looking integration method, which was chosen for its
simplicity.

6 Robustness of NE model

Most of the results presented in this manuscript assume parameter values that
yield R0 well above unity. Many models that behave well at high values of R0,
show noticeable errors near the epidemic treshold. We have therefore compared
the NE model to PA over a range of transmission rates. As a baseline, we

7



Figure 3: Prevalence is shown versus time for 100 simualtions (dots), the NE
model(blue), and the PA model (red). The green line shows the expected �-
nal size based on bond-percolation. The degree distribution is Poisson (2.5)
truncated at 8. � = :1; r = :2.
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Figure 4: The �nal size as predicted by the NE and PA models is compared
to the bond-percolation solution over a range of R0. The degree distribution is
Poisson(2.5) truncated at 6. � = :1. r is varied to give the corresponding R0

value.

have computed the �nal size (FS) using bond-percolation techniques, which are
known to give asymptotically correct results.

Figure 4 shows that the �nal size as predicted by both the NE model and
the PA model are in close agreement with BP. Although it is di�cult to draw
generalizations from this experiment, PA is closer to BP below the epidemic
threshold, and NE is closer to BP above it. NE and PA diverge around R0 = 1.
Some discrepancy is inevitable given that the initial conditions � = 1��4{ FS
can never be less than �, and both NE and PA converge to � as R0 ! 0. It is
likely that the discrepancy between NE, PA, and BP could be made arbitrarily
small for both NE and PA by 1. decreasing �, 2. using a smaller time step for
integration, and 3. using a better integration method (Runge-Kutta).

6.1 Clustering

The NE model applies to a simple class of random networks that do not include
transitivity (clustering) or assortativity. This new framework is, however, quite

exible and can be extended to consider more complex network structures in
the future.

To address this possible limitation of the model, we have evaluated its per-
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Figure 5: The NE model is compared to several hundred simulated SIR epi-
demics in networks with clustering of approximately 13%. The degree distribu-
tion is Poisson (3). r = :2; � = :1; � = 0.

formance on networks with non-trivial amounts of clustering. We conducted
SIR simulations on static networks with variable amounts of clustering gener-
ated using the algorithm in [3], and compared the results to solutions of the NE
model with � = 0.

Figure 5 compares simulations to the NE model at C = 13%, where C is the
clustering coe�cient [3]. This level of clustering produces a noticable error in the
NE model, which may not be acceptable for some applications. Figure 6 shows
simulations and the NE model at C = 3:5%. There is no noticable discrepancy
in this case.

Fortunately, the NE model is applicable to a number of populations that are
likely to have low clustering. Many sexual networks have very low clustering
(<4%). Heterosexual populations have no transitive closure at all, by virtue of
their bipartite structure. In that case, one can consider the a measure similar
to the clustering coe�cient, namely the frequency of 4-cycles.

A study [2] of 250 MSMs in Colorado Springs revealed a clustering coe�cient
of 2.98%. A study of a heterosexual population [5, 2] with 82 people found
that the frequency of 4-cycles was 0.486%. And, a study using data from Add
Health [1] showed that when individuals choose sex-partners, they tend to avoid
former or current partners of their friends. This prevents the creation of short
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Figure 6: The NE model is compared to several hundred simulated SIR epi-
demics in networks with clustering of approximately 3.4%. The degree distri-
bution is Poisson (3). r = :2; � = :1; � = 0.
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cycles (e.g. triads and 4-cycles) or cliques. Since network models are most easily
applied to sexual and drug-use networks, the NE model should be suitable for
a large range of applications.
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