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Abstract Ring vaccination can be a highly effective control strategy for an emerging
disease or in the final phase of disease eradication, as witnessed in the eradication
of smallpox. However, the impact of behavioural dynamics on the effectiveness of
ring vaccination has not been explored in mathematical models. Here, we analyze a
series of stochastic models of voluntary ring vaccination. Contacts of an index case
base vaccinating decisions on their own individual payoffs to vaccinate or not vac-
cinate, and they can also imitate the behaviour of other contacts of the index case.
We find that including imitation changes the probability of containment through
ring vaccination considerably. Imitation can cause a strong majority of contacts to
choose vaccination in some cases, or to choose non-vaccination in other cases—even
when the equivalent solution under perfectly rational (non-imitative) behaviour yields
mixed choices. Moreover, imitation processes can result in very different outcomes
in different stochastic realizations sampled from the same parameter distributions,
by magnifying moderate tendencies toward one behaviour or the other: in some re-
alizations, imitation causes a strong majority of contacts not to vaccinate, while in
others, imitation promotes vaccination and reduces the number of secondary infec-
tions. Hence, the effectiveness of ring vaccination can depend significantly and un-
predictably on imitation processes. Therefore, our results suggest that risk communi-
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cation efforts should be initiated early in an outbreak when ring vaccination is to be
applied, especially among subpopulations that are heavily influenced by peer opin-
ions.

Keywords Ring vaccination · Vaccinating behaviour · Imitation · Networks ·
Modelling

1 Introduction

Mass vaccination has historically been the dominant means of reducing morbid-
ity and mortality due to vaccine-preventable infectious diseases (Bonanni 1998).
However, in some contexts, other strategies such as ring vaccination are prefer-
able. Ring vaccination involves identifying infectious index cases and vaccinat-
ing their close contacts to prevent them from being infected (Greenhalgh 1986;
Muller et al. 2000). Ring vaccination tends to be more efficient and more effective
than UMV for preventing outbreaks when (1) outbreaks are localized, (2) infected
individuals and their exposed contacts can be rapidly identified, and (3) the vaccine
induces an immune response rapidly enough for contacts to be protected before they
can become infected.

Ring vaccination has been applied to outbreak control for hepatitis A (Diel
et al. 2000), foot-and-mouth disease in cattle (Toma et al. 2002; Keeling et al.
2003) and smallpox (Fenner et al. 1988). Ring vaccination was credited as the
strategy that culminated the eradication of smallpox (Hopkins 1988). One of the
earliest applications of ring vaccination was in Nigeria, when a smallpox out-
break developed among a religious sect. Faced with limited resources and vac-
cine supplies, staff learned to isolate infected individuals and identify and vacci-
nate their contacts, leading to successful containment of the outbreak (Hopkins 1988;
Strassburg 1982). In the case of smallpox, the vaccine can prevent both infection and
disease in persons who have already been infected, meaning that ring vaccination
could be particularly effective despite delays in identifying index cases. For pan-
demics of novel emerging pathogens, ring vaccination may likewise be an optimal
strategy if there are not sufficient vaccine supplies to mount mass vaccination cam-
paigns.

Because ring vaccination involves reaching a relatively small number of individ-
uals, the success or failure of ring vaccination can depend strongly on stochastic
effects. The debate about whether to include stochastic effects in infection transmis-
sion models is long-running (Lloyd-Smith et al. 2005). Often the average of many
realizations of a stochastic model is identical to what would be predicted from a
deterministic model, in which case the primary advantage of the stochastic model
is to provide an estimate of variability. However, in other situations the average of
many stochastic realizations may differ from the prediction of the equivalent de-
terministic model or there may be other important qualitative differences. For in-
stance, if the number of secondary infections per index case is modelled as a neg-
ative binomial distribution, a stochastic modelling approach can predict more fre-
quent extinctions, and rarer but more severe outbreaks, than a deterministic mod-
elling approach (Lloyd-Smith et al. 2005). Similarly, network models have been
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used to demonstrate that a wide range of outbreak sizes and outbreak probabil-
ities caused by severe acute respiratory syndrome (SARS) are possible even for
the same R0, highlighting the role of underlying contact networks (Meyers et al.
2005).

In a separate but related vein, models have been used to explore the interaction be-
tween disease transmission and individual vaccinating behaviour (Brito et al. 1991;
Bauch and Earn 2004; Bauch 2005, Klein et al. 2007; Reluga et al. 2006; Galvani
et al. 2007; Chane and Cottrell 2009) and how model dynamics change if trans-
mission is modelled as occurring on a network instead of through homogeneous
mixing (Salathe and Bonhoeffer 2008, Perisic and Bauch 2009a, 2009b, Funk et al.
2009). Conversely, there have been a number of mathematical models of ring vacci-
nation that do not explicitly incorporate behaviour considerations (Greenhalgh 1986;
Muller et al. 2000; Kretzschmar et al. 2004; Kaplan 2004). However, relatively little
work has focussed on behavioural effects and ring vaccination per se (Perisic and
Bauch 2009a, 2009b).

Some of these previous models have assumed that individuals adopt new strate-
gies through an imitation process, where individuals base their vaccinating decisions
partly on the experiences or opinions of other individuals in the population. Em-
pirical studies confirm the common knowledge that the opinion of the healthcare
provider is important determinant of vaccine uptake (Smith et al. 2006). However,
empirical studies also find that peer opinion has a very large influence on individual
vaccinating decisions (Merrill et al. 1958; Streefland et al. 1999; Sturm et al. 2005;
Rao et al. 2007). For example, Merrill et al. (1958) found that vaccinating deci-
sions of mothers in California were influenced by their peer groups. Sturm et al.
(2005) review Merrill et al. (1958) and other more recent publications document-
ing the strong roles of peer group opinion and social norms in vaccinating deci-
sions. An empirical study analyzing perceptions of vaccination on real-world social
networks likewise found that peer opinion is an important determinant of perceive
value of vaccination and vaccinating behaviour, to the point that “students coordi-
nate their vaccinating decisions with their friends” (Rao et al. 2007). Hence, imita-
tion processes appear to be an important mechanism in individual vaccination deci-
sions.

Here, we evaluate the impact of imitation dynamics on the success of voluntary
ring vaccination. We develop a series of simple stochastic models in which individ-
uals can choose whether or not to vaccinate based on the benefits (to themselves)
of vaccinating versus the benefits of not vaccinating. Moreover, in some versions
of the model the individual decision whether or not to vaccinate is influenced by
the decisions of other contacts of the index case. We incorporate stochasticity since
stochastic effects can be important determinants the success or failure of ring vac-
cination. The vaccinating choices of the index case’s contacts therefore determine
whether or not ring vaccination will be successful. The particular question of inter-
est is whether models that include stochastic effects and imitation processes have
qualitatively different predictions from a model that is deterministic, and/or does not
include imitation processes.
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2 Models

We describe three models in this subsection. In the “simple stochastic model”, we
employ a stochastic model of vaccine decision-making among the contacts of an in-
dex case, where the payoffs of vaccinating versus not vaccinating are the same for
all contacts of the index case. We analyze this model to generate expressions for the
probability of outbreak control and the expected number of secondary infections cre-
ated by the index case. In the “distributed stochastic model”, this stochastic model
is further extended by drawing parameters for vaccine and disease risks for each in-
dividual from probability distributions, meaning that contacts of the index case can
have different payoff functions, leading to different decisions. Finally, for “the dis-
tributed stochastic model with imitation”, the distributed stochastic model is extended
by including an imitation process between contacts of the index case. All three mod-
els are also simulated for a range of parameter values to gain insights into impact of
imitation behaviour in the context of voluntary ring vaccination.

2.1 Simple Stochastic Model

We suppose the index case has Q contacts, each contact is initially susceptible, and
there is a daily probability p of transmitting infection to a given contact. We assume
that the infection has an incubation period of ω days, an infectious period of δ days,
and a latent period of σ days. Likewise, we assume that the time between the decision
to vaccinate and attainment of protective immunity (where individuals do not develop
disease and do not transmit further) is λ days, as a result of either logistic delays
and/or the time required for the immune system to mount a fully protective response.
The vaccine efficacy is ε. Parameter values and definitions appear in Table 1.

We will derive Pcontrol, defined as the probability that there is no secondary trans-
mission, as well as Rcontrol, the expected number of secondary infections produced
by the index case if some of the contacts have the option to vaccinate and thereby re-
duce secondary transmission. We assume that the payoff of vaccinating as soon as the
index case exhibits symptoms is PV , the payoff of not vaccinating is PN , the baseline
payoff is L, the cost of vaccinating is rvac, and the cost of infection is rinf. We assume
that, if individuals decide to vaccinate at all, they decide to do so as soon as the index
case exhibits symptoms. If they wait to vaccinate, then they incur the same cost of
vaccinating as if they decided to vaccinate right away, but incur additional costs due
to the possibility of exposure because of their delay. Therefore, rational individuals
either vaccinate as soon as the index case exhibits symptoms, or not at all, depending
on conditions.

We restrict attention to the case ω ≥ σ since ω < σ is not biologically plausible.
This is further broken down into two cases:

Case 1: Vaccine does not work in time, λ + ω ≥ δ + σ

In this case, the vaccine does not provide protective immunity in contacts until after
the index case has recovered and, therefore, does not provide any benefit in the current
outbreak. Hence, we assume that no one will vaccinate and from basic probability
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Table 1 Parameter definitions
and baseline values Parameter Definition Baseline values

Q Number of contacts of index case 100 or 1000
p Transmission probability per edge 0.05 per day

per day
ω Incubation period 5 days
δ Infectious period 5 days
σ Latent period 4 days
λ Time between decision to vaccinate 1 day

and attainment of protective immunity

ε Vaccine efficacy 0.95
rvac Penalty due to being vaccinated 0.001

(e.g. adverse events, potential monetary
cost)

rinf Penalty due to being infected 0.3
(e.g. disease complications)

L Baseline payoff 1
PV Payoff to vaccinate as soon as

index case exhibits symptoms
PN Payoff not to vaccinate

Fig. 1 Timeline when
λ + ω < δ + σ

theory we have that

Pcont = (1 − ζ )Q, (1)

Rcont =
Q∑

k=0

k

(
Q

k

)
ζ k(1 − ζ )Q−k, (2)

where

ζ = 1 − (1 − p)δ (3)

is the probability that a given neighbour who remains susceptible is infected by the
index case before the index case recovers.

Case 2: Vaccine may work in time to prevent infection, λ + ω < δ + σ

In this case (Fig. 1), we derive the payoff to vaccinate immediately and the payoff not
to vaccinate, and we assume that a contact vaccinates if

PV > PN. (4)

The payoff not to vaccinate is given by

PN = (L − rinf)ζ + L(1 − ζ ), (5)
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where the first term of the equation represents the outcome in which the unvaccinated
contact is infected by the index case, and the second terms represent the outcome
in which the unvaccinated contact is not infected by the index case. The payoff to
vaccinate is given by

PV = (L − rvac − rinf)
{[

1 − (1 − p)λ+ω−δ
]

+
[
(1 − ε)(1 − p)λ+ω−δ

(
1 − (1 − p)δ−(λ+ω−σ)

)]}

+ (L − rvac)
{[

ε(1 − p)λ+ω−δ
(
1 − (1 − p)

δ−(λ+ω−σ))] + [1 − p]δ
}
. (6)

Details of the derivation are given in Appendix A. The expression in the first square
brackets of the top line of (6) represents the outcome where an individual chooses to
vaccinate but makes an effective contact before vaccine-derived protective immunity
is developed (and is thus infected). The expression in the second square bracket of
the top line represents the outcome where the individual chooses to vaccinate, makes
an effective contact after the time required for protective immunity to develop but
is still infected because of ineffective vaccination. The expression in the first square
bracket of the bottom line represents the outcome where the individual choose to
vaccinate, makes an effective contact after the time required for protective immunity
to develop but is not infected because the vaccine was efficacious. The expression
in the second square bracket of the bottom line represents the outcome where the
individual vaccinates but is never challenged because an effective contact is never
made.

When PN ≥ PV , there is no incentive for any of the contacts of the index case
to vaccinate and so Pcont and Rcont are given by (1) and (2). However, when PN <
PV , every contact of the index case vaccinates as soon as the index case exhibits
symptoms, and we have

Pcont = (1 − ξ)Q, (7)

Rcont =
Q∑

k=0

k

(
Q

k

)
ξk(1 − ξ)Q−k, (8)

where

ξ = 1 −
{
(1 − p)λ+ω−σ

(
1 − p[1 − ε]

)δ−(λ+ω−σ)} (9)

is the probability that a given neighbour who decides to vaccinate as soon as the index
case exhibits symptoms is infected by the index case. Together, (1)–(9) under the
various cases for parameter values determine the probability Pcont that an outbreak
is controlled through ring vaccination as well as the average number of secondary
infections Rcont produced by the index case.

The simple stochastic model was simulated in Matlab version 7.6.0. The algorithm
used for the simulation appears in Appendix B.

2.2 Distributed Stochastic Model

In the distributed stochastic model, the parameters values for the infectious period
δ, latent period σ , vaccine efficacy ε, cost of infection rinf, cost of vaccination rvac,
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time to protective immunity λ, incubation period ω, and transmission probability p

are sampled from a lognormal distribution for each individual. The resulting variation
between individuals can be conceived of either as real or perceived differences. This
model was likewise simulated in Matlab version 7.6.0.

2.3 Distributed Stochastic Model with Imitation

The distributed stochastic model with imitation is identical to the distributed stochas-
tic model except for the imitation-based decision making process used by contacts of
the index case. On the first day that the index case is symptomatic, we determine PV

and PN as before from (5) and (6). We let V denote the number of individuals for
whom PV > PN (hence, Q-V is the number for whom PV ≤ PN). Each individual
chooses to vaccinate with probability ν, where

ν = (1 − κ)H(PV − PN) + κg(V ), (10)

and where H() is the Heaviside function, g(V ) is a function of V describing how
individuals tend to imitate the most prevalent strategy among the contacts, and κ

is a parameter governing the relative importance to an individual’s decision making
process of imitation processes versus weighing the individual’s own values of PV and
PN . The function g(V ) is an increasing function of V , indicating a higher probability
that the individual vaccinates if vaccinating is also favourable for the majority of
other contacts. We explore cases where g(V ) is a hyperbolic tangent function or
a step function. With ν thus calculated for each individual, we determine whether
individuals vaccinate by sampling a random number between 0 and 1.

2.4 Simulation Design

For each parameter set analyzed, we ran 2,500 realizations, computing the mean and
standard deviation of the average number of secondary infections R across all realiza-
tions. We explored R as it depended on parameters governing natural disease history
and imitation behaviours. We also plotted the frequency distribution of the number
of secondary infections and the number of vaccinators for certain scenarios of the
distributed stochastic model in the presence of imitation.

3 Results

The mean and standard deviation of R across all 2,500 realizations were calculated
as a function of cost of infection rinf, cost of vaccination rvac, vaccine efficacy ε, and
incubation period ω for all three models. The standard deviation for these realizations
is large since the neighbourhood size Q is approximately 10. However, the mean
value of R varies within certain parameter regimes, as described below.
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Fig. 2 Mean and +/− the standard deviation of values of R versus rinf, rvac, ε, ω with all other parameter
values fixed at values in Table 1. “DSI” indicates the distributed stochastic model with imitation

3.1 Simple Stochastic Model

In the simple stochastic model, all individuals make the same decision: all individ-
uals either vaccinate or do not vaccinate at a given set of parameter values, because
the payoff function and its constituent parameter values are the same for all contacts
of the index case. Hence, the value of R can change suddenly as certain threshold
parameter values are surpassed (Fig. 2). For instance, for low infection risk, none of
the contacts of the index case vaccinate since PV < PN , and thus the average value of
R is 2.3. However, for the cost of infection rinf > 0.25,PV > PN , all of the contacts
vaccinate and the mean value of R becomes approximately 1 (Fig. 2a). A similar ef-
fect appears in the plot of R versus rvac, cost of vaccination, (Fig. 2b) and ε, vaccine
efficacy, (Fig. 2c). The mean value of R is constant on either side of these thresh-
olds for the plots of mean R versus rinf and rvac because these parameters influence
vaccinating behaviour but not the probability that a susceptible or vaccinated person
becomes infected. However, the mean value of R declines with increasing ε beyond
the threshold in ε because beyond this threshold, all contacts vaccinate, and ring vac-
cination is more successful at higher vaccine efficacy.

Although a threshold is not observed in the plot of mean R versus the incubation
period ω at the parameter values tested, the mean value of R increases as ω increases
because contacts are exposed to infection for a longer period before symptoms appear
in the index case, giving contacts the first opportunity to vaccinate (Fig. 2d).
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The deterministic predictions from (2) in the case of no vaccination and (8) in
the case of vaccination agree with the mean values of the realizations of the simple
stochastic case (results not shown).

3.2 Distributed Stochastic Model

In the distributed stochastic model, each individual is assigned a parameter value for:
time to protective immunity λ, latent period σ , infectious period δ, incubation period
ω, vaccine efficacy ε, cost of vaccination rvac, cost of infection rinf, and transmis-
sion probability p. The values are drawn from a lognormal distribution with the same
mean value as in the simple stochastic model (see values in Table 1). The distributed
stochastic model is otherwise identical to the simple stochastic model. The resulting
mean value of R is plotted against the mean parameter values for rinf, rvac, ε, and
ω from the lognormal distribution (Fig. 2). The model predictions are qualitatively
different from the simple stochastic model. Primarily, the thresholds in rvac, rinf, and
ε appear to be “smeared out” relative to the simple stochastic model, because het-
erogeneity in the sampled parameter values means that the payoff functions for indi-
viduals are also variable. Therefore, in general there is no parameter value for which
either PV > PN or PV < PN is true for all individuals. In general, for any given
mean parameter value, PV > PN will hold for some individuals and PV < PN will
hold for others. However, as the mean parameter values change, so does the mean
behaviour: the mean value of R increases for increasing rvac and ω, because vaccina-
tion becomes less favourable as the perceived vaccine risk and the incubation period
increase (Fig. 2b, d). In contrast, the mean value of R decreases for increasing rinf
and ε, because vaccination becomes more favourable as the disease risk and vaccine
efficacy increase.

3.3 Distributed Stochastic Model with Imitation

In the imitation model, individuals consider both their own values of PV and PN

as well as the inclination of other contacts (as measured by whether PV > PN or
PV < PN) in making their decision about whether or not to vaccinate, as specified in
(10). We use the stepwise functional form for g(V ) for our analyses, except where
noted otherwise, because the impact of imitation is most clear with this functional
form.

In the presence of imitation, the mean value of R (the average number of sec-
ondary infections) appears to be roughly the same as the mean value of R in the
distributed stochastic model without imitation, for a broad range of parameters, in-
cluding the lack of a threshold (Fig. 2). Moreover, the mean value of R does not
change across a wide range of values of the imitation strength κ , under three differ-
ent functional forms for the function g(V ) (Fig. 3). We attribute this to the fact that
imitation does not have a bias: individuals tend to imitate whichever strategy appears
to be favoured.

However, if we examine how the values of R are distributed across the stochastic
realizations, some interesting differences emerge. The distribution of R, and also of
the number of individuals are who vaccinated, changes as the imitation strength κ
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Fig. 3 Mean and +/− the standard deviation of values of R versus imitation strength κ for three different
functional forms for g(V ), with all of the other parameter values fixed at values in Table 1

Fig. 4 The distribution of the number of secondary infections (left) and number of vaccinators (right) for
the case of Q = 10 neighbours for different values of imitation strength κ and other parameter values as
in Table 1

increases (Fig. 4). For low values of κ , both distributions are unimodal and clustered
around the same mean value as for the distributed stochastic model without imitation.
However, as κ increases, the distribution of the number of vaccinated individuals be-
comes bimodal: for some parameter sets, vaccination is the favoured strategy in terms
of what the payoff functions indicate for most individuals, and thus a strong major-
ity of contacts opt for vaccination; for other parameter sets, non-vaccination is the
favoured strategy and most contacts refuse vaccination (even those for whom the



Impact of Imitation Processes on the Effectiveness of Ring

payoff to vaccinate exceeds the payoff not to vaccinate). This bimodal effect occurs
at parameter values such that, on average, neither vaccination nor non-vaccination are
favoured by a strong majority of contacts. (We note that the special case κ = 0 recov-
ers the case of the distributed stochastic model without imitation, and simulations of
the distributed stochastic model without imitation at the same parameter values fail
to show bimodality (results not shown).)

Interestingly, at the same parameter values where the number of contacts who vac-
cinate is bimodal, the distribution of secondary infections appears to remain relatively
unimodal (Fig. 4). This is partly because imitation has larger impact on the first order
effect of distribution of vaccinators than on the second order effect of the distribu-
tion of secondary infections. However, this is also because a relatively low number
of contacts (Q = 10) does not provide sufficient resolution to distinguish two close
peaks. Indeed, when the number of neighbours is increased to Q = 100 and parame-
ter values are otherwise unchanged, clear bimodality in the distribution of secondary
infections emerges as κ increases (Fig. 5, p = 0.05 results). Bimodality in the num-
ber of vaccinators remains dominant (in fact, with some appearance of trimodality)
(Fig. 5, p = 0.05 results). The stronger unimodality in the distribution of the number
of secondary infections compared to the distribution of the number of vaccinators
also explains why the variance in the average number of secondary infections R is
so similar for the distributed stochastic models with and without imitation (Fig. 2),
despite the fact that the parameter ranges covered in Fig. 2 include baseline parameter
values where the number of vaccinators is known to be bimodal for the model with
imitation.

For all values of the imitation strength κ , the peaks in the distribution of sec-
ondary infections shift to higher values (i.e., more simulations with a large number of
secondary infections) when the transmission p is increased from the baseline value
p = 0.05 to a higher rate p = 0.2 (Fig. 5). This effect is not surprising because a
higher transmission rate implies a greater number of secondary transmissions, even
when vaccination is taken up and provides some reduction in secondary cases. How-
ever, what is more interesting is that the relative magnitude of the two peaks in the
distribution of number vaccinated changes as p is increased: when p = 0.05 most
individuals do not vaccinate, whereas when p = 0.2, most of them do (i.e., the rel-
ative size of the two peaks in the distribution of vaccinators is switched in the case
for p = 0.05 compared to p = 0.2). An increase in p increases the probability of
eventually becoming infected and thus experiencing disease penalties, hence vacci-
nation becomes attractive for higher p, at least at these parameter values. This switch
is again observed in the distribution of the number of secondary infections: when
p = 0.05, the peak corresponding to more secondary infections (i.e., less vaccination)
is larger, indicating that in most realizations, the majority of contacts do not vaccinate
and the number of secondary infections increases. By comparison when p = 0.2, the
peak corresponding to fewer secondary infections (i.e., more vaccination) is larger,
indicating that in most realizations, the majority of contacts vaccinate.

As noted above, we used a step function to represent our imitation function g(V )
in the case of distributed stochasticity with imitation (Figs. 4–5). However , we also
explored these results for a hyperbolic tangent function (results not shown) and found
that instead of obtaining a bimodal distribution, we obtained a distribution that re-
sembled a skewed normal distribution. This effect occurs because for most parameter
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Fig. 5 The distribution of the number of secondary infections (left) and number of vaccinators (right) for
the case of Q = 100 neighbours for different values of imitation strength κ and other parameter values as
in Table 1
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values, the switch between favouring vaccination versus favouring non-vaccination is
much sharper at the origin for the step function than for tanh under most parameter
choices.

These results imply a fully-connected network where each contact of the index
case is connected to—and exchanges information with—every other contact of the
index case. To understand the impact of this assumption, we also explored the semi-
connected case where individuals can only imitate the nearest plus or minus n neigh-
bours in the ring. The introduction of semi-connectedness can change the results
significantly for certain values of connectedness. For the special case of no connect-
edness (n = 0), the case of the distribution stochastic model without imitation is re-
covered and distributions are unimodal (results not shown). For n = 3, there was like-
wise little impact and the distributions remained unimodal (results not shown). For
cases of intermediate connectedness (n = 12 and n = 25), the results change signifi-
cantly (Fig. 6). The distribution of the number of vaccinators is no longer bimodal but
becomes a highly skewed unimodal distribution with a high variance. The variance
increases as the strength of imitation κ increases. This spreading effect occurs be-
cause in the semi-connected case, individuals are sampling a small proportion of the
total number of contacts of the index case and, therefore, the average attractiveness
of vaccinating versus not vaccinating is more highly variable than in the fully con-
nected case, giving rise to greater variation in the level of vaccine adherence overall.
Although the bimodality disappears, the greater variance still supports the conclusion
that adding imitation can increase the variability in the predicted vaccine adherence,
relative to the case of the distribution stochastic model without imitation. For the
case n = 50, the fully-connected case is recovered, including bimodality (results not
shown).

The emergence of bimodality occurs for parameter sets such that the payoff to
vaccinate is close to the payoff not to vaccinate. In such situations, individual vari-
ability in model parameters means that for some stochastic realizations, the payoff
to vaccinate will be higher for the majority of contacts and hence vaccination tends
to dominate. For other stochastic realizations, however, the payoff not to vaccinate
will be higher and hence non-vaccination will dominate for the same mean parameter
values. Moving away from this parameter regime sufficiently far means that either
vaccination or non-vaccination will be favoured for all stochastic realizations, and
imitation will only strengthen this tendency. This should cause a unimodal distribu-
tion of the number of secondary infections and the number of vaccinators.

This effect is seen in the distribution of secondary infections (Fig. 7) and vac-
cinators (Fig. 8) for a range of possible values for eight of the model parameters:
λ, ε,ω, rvac, δ, σ,p, rinf. For most parameters, moving away from the baseline values
collapses, the bimodal distribution function into a unimodal function that represents
either dominant vaccination or dominant non-vaccination, depending on whether
there has been an increase or a decrease relative to the baseline parameter value
(Figs. 7 and 8). For instance, increasing the cost of vaccination rvac above the base-
line value makes vaccination unattractive, collapsing the bimodal distribution to a
unimodal distribution that represents dominant non-vaccination behaviour. In con-
trast, decreasing rvac below the baseline value creates a unimodal distribution repre-
senting dominant vaccinating behaviour. However, for the transmission probability
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Fig. 6 The distribution of the number of secondary infections (left) and number of vaccinators (right) for
the case of Q = 100 neighbours, who are imitating n neighbours to the right and n neighbours to the left,
for different values of imitation strength κ and other parameter values as in Table 1. The values of n are
n = 24 (top half of panels) and n = 50 (bottom half of panels)



Impact of Imitation Processes on the Effectiveness of Ring

Fig. 7 The distribution of the infected individuals under full imitation for the case of Q = 100 for the
parameters λ, ε,ω, rvac, rinf,p,σ, δ. The baseline parameter values are used to generate the gray distribu-
tions and black distributions represent variations from baseline

p, the distribution remains bimodal across a broad range of parameter values before
collapsing to a unimodal distribution. This is because p appears in both the payoff to
vaccinate and the payoff not to vaccinate ((5) and (6)). Increasing p decreases both
payoffs because the individual is more likely to get infected for higher values of p,
thus the relative size of PV versus PN does not change as much. Therefore, the distri-
bution of secondary infections and vaccinators remains bimodal for a range of values
of p.
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Fig. 8 The distribution of the vaccinated individuals under full imitation for the case of Q = 100 for the
parameters λ, ε,ω, rvac, rinf,p,σ, δ. The baseline parameter values are used to generate the gray distribu-
tions and black distributions represent variations from baseline

4 Discussion

In this paper, we developed three models of ring vaccination where individual con-
tacts of the index case choose whether or not to vaccinate according to payoffs for
vaccinating versus not vaccinating. These payoffs depend on disease and vaccine
risks. We considered a simple stochastic model that permitted us to derive expres-
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sions for the probability of no secondary cases Pcontrol and the expected number of
secondary infections R. In the distributed stochastic model, we also developed an
extension where the parameter values constituting the payoff functions were sampled
from a lognormal distribution for each individual, resulting in heterogeneous payoff
functions. This was further extended in the distributed stochastic model with imita-
tion, where the individual vaccine decision-making process was partly determined by
imitating the vaccinating decisions to which the majority of contacts are inclined.

In the simple stochastic model, all contacts are assigned the same parameter val-
ues, and hence all contacts either vaccinate or do not vaccinate depending on the
parameter values that influence the payoff functions. As a result, there are thresh-
old parameter values at which all contacts of the index case switch from vaccinator to
non-vaccinator or vice versa. The effect of sampling parameter values from lognormal
distributions for each individual (i.e., the distributed stochastic model) is to moderate
this effect and remove the thresholds, since each individual can have a different pay-
off. Consequently, mixed outcomes are possible where some contacts vaccinate and
some do not. Adding imitation to the model has little effect on the mean and variabil-
ity of the number of secondary infections at the parameter values tested. However,
even when the mean and variability do not change very much, the distribution of the
number of secondary infections and number of vaccinators can become bimodal at
certain parameter values when imitation is strong (for the assumption of fully con-
nected contacts of the index case). This occurs because individuals adopt whichever
strategy appears to be favourable to the majority. For some stochastic realizations the
apparently favourable strategy is vaccinating, whereas for others it is not vaccinating.
The consequence is that ring vaccination can be highly successful under some real-
izations (when imitation causes most contacts to vaccinate), but can completely fail
under other realizations of the same parameter values (when imitation causes most
contacts not to vaccinate), resulting in failure to contain the outbreak. This occurs
despite the average outcome being the same as for the model without imitation. If the
contacts are semi-connected instead of fully connected, the distribution of the num-
ber of vaccinators is no longer bimodal but it remains very broad, with many possible
outcomes for the same mean parameter values.

Previous work has analyzed how the predictions of models that include stochastic
effects or contact structure differ qualitatively from the predictions of models that
do not include such effects (Lloyd-Smith et al. 2005; Meyers et al. 2005). Similarly,
it has been shown how opinion formation in social networks can lead to pockets
of susceptibility, ensuring the persistence of infection despite high vaccine coverage
even when homogeneous mixing models predict that the infection should already
be eliminated (Salathe and Bonhoeffer 2008). Here, we have shown how imitation
behaviours can exacerbate such differences in situations where ring vaccination is
employed, by making the contacts of an index tend to behave in similar ways. As a
result, there is a parameter regime where, for approximately the same input parameter
values, vaccinating is a dominant strategy in some realizations and non-vaccinating
is a dominant strategy in others. Even for parameter regimes where either vaccinat-
ing or non-vaccinating is always favoured, imitation has the role of ensuring greater
homogeneity in vaccination decisions than would occur under purely rational behav-
iour.



C.R. Wells et al.

Given that social contact networks tend to be highly clustered, especially for close
contact infections, the contacts of an index case are likely to know one another. More-
over, imitating the decisions of others in one’s peer group is often an important factor
in vaccine decision-making (Merrill et al. 1958; Dempsey et al. 2006). Therefore the
results of our model suggest that imitation effects may have an important additional
role in determining the success or failure of ring vaccination strategies for many in-
fectious diseases where vaccination is voluntary or where a mandatory policy is not
enforceable.

Network models are a natural way to describe infection transmission through a
social contact network and the effects of ring vaccination, although they tend to be
difficult to analyze (Perisic and Bauch 2009a, 2009b). Here, we opted for a simpler
approach that did not model the full network but rather just the contacts of the index
case. This model has the advantage of being much easier to analyze than network
models; it has the disadvantage of not capturing the full network—this is relevant to
imitation processes in ring vaccination since contacts of the index case may imitate
individuals who are not contacts of the index case. One rationale for only modelling
the contacts of the immediate case is that if ring vaccination fails for the contacts of a
single index case, it will likely fail in more complex situations where the infection has
already started to spread through the social contact network. However, this may not be
the case in clustered networks where the possibility of containment is determined not
only by edge-wise transmissibility but also by the structure of the emerging cluster of
infections (Keeling 1999; Bauch 2005). Thus, an important limitation of our model is
that it does not describe the links between contacts of the index case. We also did not
capture changes in the contact structure in response to the appearance of symptoms
in the index case (Zanette and Gusman 2008) or other interventions such as antiviral
drugs.

Mathematical models have often suggested that early intervention is valuable for
controlling an outbreak, because the effectiveness of early intervention is dispropor-
tionately higher than the impact of later intervention (Moghadas et al. 2008; Zivkovic
Gojovic et al. 2009; Ferguson et al. 2005). Typically, these models have considered
interventions such as vaccination, contact precautions, and antiviral drugs and have
implicitly assumed that the uptake of these interventions can be set at any level de-
sired. Our model shows that the success of containment through ring vaccination
can be highly variable in cases where the uptake cannot be guaranteed by the pub-
lic health authorities, such as when the contacts of the index case are free to choose
whether or not to vaccinate and in cases where contacts also tend to be influenced
by the vaccination decisions of other contacts. Under some circumstances, these im-
itation processes can lead to a failure of ring vaccination. Therefore, early action to
counter the possible emergence of vaccine exemption in epidemiologically important
peer groups during an outbreak may be warranted. Our findings suggests that risk
communication should also be thought of as an important public health intervention
during a disease outbreak and that it should be likewise be applied in a timely fashion
at the start of an outbreak.
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Appendix A: Derivation of the Payoff Functions

Let Q be the number of neighbours and ε the vaccine efficacy. We want to derive
conservative estimate for outbreak control.

Let qibe the probability of not infecting neighbour i during the infectious period,
qtot the probability of not infecting any neighbour. Thus, the probability of not infect-
ing anyone is

qtot =
Q∏

i=1

qi = q1 · q2 · q3 · · ·qQ.

For identical neighbours, qtot = qQ. Let qi,j be the probability of no transmission to
neighbour i on day j . Thus,

qi = qi,1 · qi,2 · qi,3 · · ·qi,δ =
δ∏

k=1

qi,k,

where δis the duration of infection in days (integer). So, what is qi,j ?
Let τ be the time required for vaccine to mount a protective immune response,

and δthe duration of infection. If τ > δ, then, assume no one will vaccinate. On the
contrary if τ < δ, then some or all would vaccinate.

B1: Case where τ > δ

Under assumption of identical neighbours, qi,j = 1 − p where p is the per day
transmission probability. So,

qi = qi,1 · qi,2 · qi,3 · · · = (1 − p)δ = q ⇒ qtot = q1 · q2 · q3 · · ·qQ = qQ = (1 − p)δQ.

B1: Case where τ < δ

In this case, some may vaccinate since the vaccine may protect before the individ-
ual is infected by the index case. Let

PV (t) be the payoff to vaccinate on day t where t = 1 is the day that the index case
is infectious and starts showing symptoms.

PN is the payoff not to vaccinate at all.
rvacc the penalty to vaccinate, i.e., the risk of adverse events.
rinf the penalty due to being infected, i.e., the disease complication risk.
L is the payoff before penalties, i.e., the number of life years if never vaccinated

and never infected.
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Assume

PV (1) < PN ⇒ PV (t)

{
PV (t) < PV (1),

PV (t) < PN(t),
∀t.

Since a person who waits several days to vaccinate accepts the same vaccine penalty
as the individual who immediately vaccinates, PV (1), say, but also accepts a greater
probability of infection since the individual may be infected during the time the indi-
vidual waited (waiting time), the two possible outcomes are:

PV (1) < PN ⇒ never vaccinate (same qtot as in the case B1 above).

PV (1) > PN ⇒ vaccinate as soon as a neighbour exhibits symptoms. But what

are the explicit expressions for PV (1) and PN ?

Now let ρ(t) be the probability of infection on day t (and not before), p the trans-
mission probability per day. Thus,

PN = ρ(1)(L − rinf) + ρ(2)(L − rinf) + · · · + ρ(δ)(L − rinf)

+
(
1 − ρ(1) − ρ(2) − · · · − ρ(δ)

)
L

= p(L − rinf)
{
1 + (1 − p) + (1 − P)2 + · · · + (1 − p)δ−1}

+ L
{
1 − p

[
1 + (1 − p) + · · · + (1 − p)δ−1]}.

Using Taylor series expansion of the functions 1
1−x , we have 1−xn

1−x = 1 + x + x2 +
· · · + xn−1. Therefore, the above expression for PN simplifies to

PN = (L − rinf)
[
1 − (1 − p)δ

]
+ L(1 − p)δ. (11)

A.1 Payoff to Vaccinate Immediately

This involves the following scenarios: t < τ , t > τ but vaccine failed (t < δ), t > τ
and vaccine worked and t > δ (not infected).

PV (1) =
[
ρ(1) + ρ(2) + · · · + ρ(τ)

]
(L − rvac − rinf) t < τ

+ (L − rvac − rinf)(1 − ε)
[
ρ(τ + 1) + ρ(τ + 2) + · · · + ρ(δ)

]
t > τ

but vaccine failed (t < δ)

+ ε(L − rvac)
[
ρ(τ + 1) + ρ(τ + 2) + · · · + ρ(δ)

]
t > τ and vaccine worked

+ (L − rvac)
[
1 − ρ(1) − ρ(2) − · · · − ρ(δ)

]
t > δ (not infected)

= +(L − rvac − rinf)
[
p + p(1 − p) + p(1 − p)2 + · · · + p(1 − p)τ−1]
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+ (L − rvac − rinf)(1 − ε)
[
p(1 − p)τ + p(1 − p)τ+1 + · · · + p(1 − p)δ−1]

+ ε(L − rvac)
[
p(1 − p)τ + p(1 − p)τ+1 + · · · + p(1 − p)δ−1]

+ (L − rvac)
[
1 − p − p(1 − p) − p(1 − p)2 − · · · − p(1 − p)δ−1].

The terms in the square brackets are geometric series and can simply be written as

PV (1) = (L − rvac − rinf)
{[

1 − (1 − p)τ−1] + (1 − ε)(1 − p)τ
[
1 − (1 − p)δ−τ−1]}

+ (L − rvac)
{
ε(1 − p)τ

[
1 − (1 − p)δ−τ−1] +

[
1 −

(
1 − (1 − p)δ−1)]}.

After some rearrangements, we have

PV (1) = (L − rvac − rinf)
{[

1 − (1 − p)τ−1] + (1 − ε)(1 − p)τ
[
1 − (1 − p)δ−τ−1]}

+ (L − rvac)
{
ε(1 − p)τ

[
1 − (1 − p)δ−τ−1] + (1 − p)δ−1}. (12)

Therefore, the two subclasses under B1 are:

C1: Case where PV (1) < PN with payoffs PV (1) and PN given by (11) and (12).

qtot = (1 − p)δQ.

C2: Case where PV (1) > PN . Hence, individuals vaccinate immediately. Thus,
qi,j ≡ q̃j under assumption of identical neighbours, where q̃1is the probability
of no transmission on day 1, that is, q̃j = 1 − p. Similarly,

q̃2 = 1 − p,

...

q̃τ−1 = 1 − p (probability of no transmission on day τ − 1),

q̃τ = 1 − p(1 − ε),

q̃τ+1 = 1 − p(1 − ε),

...

q̃δ−1 = 1 − p(1 − ε),

q̃δ = 1 − p(1 − ε).

Therefore, q̃tot = q̃Q where q̃ is the probability that the neighbour never gets
infected. Thus,

q̃ = q̃1 · q̃2 · · · q̃δ = (1 − p)τ−1[1 − p(1 − ε)
]δ−τ+1

.

Thus,

q̃tot =
{
(1 − p)τ−1[1 − p(1 − ε)

]δ−τ+1}Q
.
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A.2 Summary OR Results

B1: τ > δ, no one vaccinates, qtot = (1 − p)δQ (probability of no secondary trans-
mission)

B2: τ < δ, some may vaccinate
– Subcase C1: PV (1) ≤ PN , no one vaccinates and qtot = (1 − p)δQ.
– Subcase C2: PV (1) > PN , all neighbours vaccinate, q̃tot = {(1 − p)τ−1[1 −

p(1 − ε)]δ−τ+1}Q.
D: ε = 1, then

PV (1) = (L − rvac − rinf)
[
1 − (1 − p)τ−1] + (L − rvac)(1 − p)τ ,

PN = (L − rinf)
[
1 − (1 − p)δ

]
+ L(1 − p)δ.

E: rvac ' rinf ⇒ L − rvac − rinf ∼= L − rinf and L − rvac ∼= L. Thus,

PV (1) = (L − rinf)
[
1 − (1 − p)τ−1] + L(1 − p)τ and

PN = (L − rinf)
[
1 − (1 − p)δ

]
+ L(1 − p)δ.

A.3 Generalization

Let ω be the incubation period, τ the time required for the vaccine to provide protec-
tion, σ the latent period and δthe infectious period.

Case 1: ω < σ this is not biologically relevant.
Case 2: ω ≥ σ .
Scenario 1: τ + ω > δ + σ ⇒ no one vaccinates and

qtot = (1 − p)δQ

Scenario 2: τ + ω < δ + σ

– PV (1) ≤ PN , no one vaccinates, thus, qtot = (1 − p)δQ.
– PV (1) > PN all neighbours vaccinate

q̃tot =
{

(1 − p)τ+(ω−σ)

︸ ︷︷ ︸
No infection before vaccine

starts to work

[1 − p(1 − ε)]δ+σ−(ω+τ)

︸ ︷︷ ︸
No infection after vaccine
should have started to work

}Q
,

PN = (L − rinf)
[
1 − (1 − p)δ

]
︸ ︷︷ ︸

Infected

+L(1 − p)δ︸ ︷︷ ︸
Not infected

,

PV (1) is the payoff to vaccinate as soon as index case symptoms show,
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PV (1) = (L − rvac − rinf)
{
1 − (1 − p)τ+ω−σ

︸ ︷︷ ︸
a

+ (1 − ε)(1 − p)τ+ω−σ
[
1 − (1 − p)δ+σ−ω−τ

]
︸ ︷︷ ︸

b

}

+ (L − rvac)
{
ε(1 − p)τ

[
1 − (1 − p)δ−τ−1]

︸ ︷︷ ︸
c

+ (1 − p)δ−1
︸ ︷︷ ︸

d

}
.

(a) Those infected before vaccine could start working.
(b) Those infected after vaccine started working plus infected due to ineffective

dose.
(c) Those infected after vaccine started working plus not infected due effective

dose.
(d) Those never infected.

Appendix B: Simulation algorithm

In the simulation, the following algorithm was used for each day

1. Determine if it is the first day that symptoms show in the index case. If it is the
first day that symptoms show and PV > PN (where PV and PN comes from (5)
and (6)), then all contacts of the index case will vaccinate.

2. To determine which contacts are successfully vaccinated one samples Q random
numbers between 0 and 1. The individuals for whom the random sample is less
than or equal to ε are considered to have been successfully vaccinated (although
it will still require a time λ before they are protected).

3. Determine if the index case is still infectious. If so, then determine which sus-
ceptible individuals are infected. Sampling random numbers from 0 to 1 for each
susceptible individual, the individuals whose sample is less than or equal to p

become infected.

Steps 1 and 2 are repeated until either the maximum simulation time is exceeded
or the infectious period of the index case ends. After each day, individual states are
updated as well as the counter for days remaining in each state. The natural history
assumptions are as given in the first part of this subsection: individuals who have been
vaccinated but are not yet immune remain fully susceptible to infection because the
vaccine has yet to take full effect; when a susceptible contact becomes infected they
enter the latent stage. Recall that payoffs are such that vaccination can only occur
once for each individual, on the first day that symptoms appear in the index case.
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